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ABSTRACT The synchronization behaviors of memristive synapse-coupled fractional-order neuronal
networks are investigated in this paper. Based on the integer-order memristive synapse-coupled neuronal
network, a fractional-order model is proposed, and a ring network composed of fractional-order mem-
ristive synapse-coupled neuronal subnetworks is constructed. Then, the synchronization behaviors of two
fractional-order memristive synapse-coupled neurons and the ring fractional-order memristive synapse-
coupled neuronal network are discussed numerically. These research results suggest several novel phenom-
ena and allow several conclusions to be drawn. For the two coupled neurons, different fractional-orders can
change the threshold of memristive synapse parameter k1 when the two neurons are in perfect synchroniza-
tion. The synchronization transitions are affected by the fractional-order and memristive synapse. Different
from the integer-order model, perfect synchronization can occur before phase synchronization for some
fractional-orders. Under a certain external current intensity, the transition between periodic synchronization
and chaotic synchronization occurs as the fractional-order changes. The chaotic synchronization range is
larger because of the memristive synapse. For the ring neuronal network coupled subnetworks, the results
illustrate that the collective behaviors including incoherent, coherent, and chimera states can be induced by
the fractional-order. In addition, the network’s synchronization degree is influenced by the fractional-order.
The synchronization transition of the neuronal network also occurs with changes in the fractional-order.

INDEX TERMS Fractional-order neuronal models, neuronal network, memristive synapse, synchronization
transition, chimera state.

I. INTRODUCTION
The firing behaviors of neurons are nonlinear processes. Neu-
rons have been modeled and analyzed from a large amount
of experimental data, and the results show that the firing of
neurons constitutes a complex nonlinear dynamical system.
In 1952, Hodgkin and Huxley used equivalent circuits and
large amounts of data form experiments to model and analyze
the data and constructed the Hodgkin-Huxley (HH) neuron
model through a theoretical derivation [1]. In 1961, FitzHugh
simplified the variables in the HH model, and constructed
a low-dimensional model, the two-dimensional FitzHugh-
Nagumo (FHN) model [2]. Morris and Lecar summarized the
new neuron model (Morris-Lecar (ML) model), which is a
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further simplification of the HH model, from experimental
data of arctic goose muscle fibers. In 1982, based on data of
a voltage clamp experiment of snail nerve cells, Hindmarsh
and Rose proposed the Hindmarsh-Rose (HR) model [3].
Synchronization is an important phenomenon in neuronal
systems and an important operationalmechanism of the brain.
A number of researchers have used the coupled neuronal
model to try to explain some of the synchronization phenom-
ena observed in experiments. Studying the motor mechanism
of the neuronal dynamical system helps understand relevant
phenomena in the brain, and contributes to the development
of artificial intelligence.

A large number of studies have investigated the syn-
chronization and synchronization transition of neuronal net-
works [4]–[15]. The relevant literature shows that the main
factors affecting the synchronization of coupled neuronal
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networks are the network topology [4]–[8], time delay in the
network [9], [10], coupling strength [11]–[14], andmultilayer
network structure [15], etc. Recently, researchers have found
that the electrical activity of neurons may be affected by
electromagnetic fields, and thus, electromagnetic fields can
be detected by the neuronal system [16], [17]. Memristors
controlled by magnetic fluxes can be treated as coupled
synapses between neuronal cells. Some studies investigated
the chaos and period of a Hopfield network coupled with
memristive synapses [18,19] and the rich dynamic behaviors
of memristive synapse-coupled neuronal networks [20]–[22].
By adjusting the relevant parameters, different firing models
arise, increasing the synchronization efficiency in a memris-
tive synapse-coupled neuronal network [20]. Different syn-
chronization behaviors are observed when the neuron initial
states change [22].

The above studies investigated integer-order neuronal net-
works. Fractional-order neuronal networks can give a more
complete picture of nature than their integer-order coun-
terparts. In the past, scholars have conducted many stud-
ies on fractional-order dynamical systems and applied them
in many fields, such as financial systems [23], biomedi-
cal systems [24], [25], and the spread of infectious dis-
eases [26]. [27] proposed a new numerical method based
on two-step Lagrange polynomial interpolation to obtain
numerical simulations and adaptive anti-synchronization
schemes for two fractional conformable attractors of variable
order. In terms of fractional-order neuronal models, single
fractional-order HR neuronal models [28] was investigated,
and the transitions of chaotic firing to periodical firing, spike
firing and bursting firing were observed. Two coupled neu-
rons were found to achieve complete synchronization through
a designed controller [29]–[31]. Two coupled neurons with
magnetic flux can achieve perfect synchronization by adap-
tive controlling. Coupled fractional-order HR neuronal mod-
els without memristive synapse-coupling was investigated
in [32]; it was observed that different fractional-orders can
induce different synchronization models. The above ref-
erences illustrate that the fractional-order is an important
parameter that can induce rich dynamical behaviors. Few
studies have been performed on the synchronization and syn-
chronization transition of coupled fractional-order neuronal
networks. Complex synchronization transition and emer-
gence phenomena occur when fractional-order neurons are
coupled with memristive synapses, but there is no literature
on this topic. The phenomenon of chimera states can describe
the related degree of neurons in the network [33], and this
phenomenon is widespread in neuronal networks [34]–[38],
such as nonlocally and globally coupled time-delay Mackey-
Glass oscillators [35], and subnetworks distributed in differ-
ent regions of neuronal networks [38]. The chimera states,
coherent states and incoherent states could be relevant for
brain dynamics.

Many studies adopt the predict-corrector method [39], [40]
to study fractional-order systems. The predict-corrector
method has a high accuracy but a large computational cost.

The Adomian decomposition method (ADM) used in this
paper also has a high computational cost, but this cost is
smaller than that of the predict-corrector method [41].

This paper is organized as follows: First, a memris-
tive synapse-coupled fractional-order HR neuronal network
model is proposed, and a ring network is constructed by
subnetworks. Then, the synchronization behavior and syn-
chronization transitions of coupled neurons under the influ-
ence of fractional-order and memristive synapse-coupling are
investigated by numerical simulation. Finally, the synchro-
nization transitions and chimera states of the ring network
with fractional-order variation are discussed.

II. MODEL DESCRIPTION
There are many definitions of fractional derivatives, and
in practice, three definitions are most frequently used: the
Grunwald-Letnikov, Riemann-Liouville and Caputo deriva-
tives. According to [25], under some conditions, these three
definitions are equivalent and can be inter-translated. The
Caputo derivative makes the Laplace transformmore concise,
and the physical meaning of the initial condition in the Caputo
derivative is clear, so it is simpler to solve the fractional-order
derivative. Similar to most studies, the Caputo derivative is
adopted in this paper.
Definition 1: The Caputo derivative of the function f (x) is

defined as

C
0 D

q
t f (x) =

1
0 (n− q)

∫ t

0

f (n) (τ )

(t − τ)q−n+1
dτ

where n−1 < q < n and 0 (•) is the gamma function, which
is defined as

0 (z) =
∫
∞

0
tz−1e−1dt

In particular, when 0 < q < 1,

C
0 D

q
t f (x) =

1
0 (1− q)

∫ t

0

f ′ (τ )
(t − τ)q

dτ

To analyze the dynamic behavior of the memris-
tive synapse-coupled fractional-order neuronal network,
the fractional-order HR model is adopted for the single
neuronal model. The fractional-order HR model is described
as follows [32]:

Dqt x = y− ax3 + bx2 − z+ I
Dqt y = c− dx2 − y
Dqt z = r [s (x − x̄)− z]

(1)

where x is the membrane action potential, y is a recovery
variable, z is a slow adaptation current, Dqt is the differential
operator defined by Caputo, and q is the fractional-order. I is
the external stimulus current. In this paper, other constants are
fixed as a = 1, b = 3, c = 1, d = 5, r = 0.006, x̄ = −1.56
and s = 4.

In this paper, from the integer-order memristive synapse-
coupled neuronal network proposed in [21] and the
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fractional-order HR model proposed in [28], the memris-
tive synapse-coupled fractional-order neuronal network con-
structed by two neurons can be described as follows:

Dqt x1 = y1 − ax31 + bx
2
1 − z1 + I + k1ω (ϕ) (x2 − x1)

Dqt y1 = c− dx21 − y1
Dqt z1 = r [s (x1 − x̄)− z1]
Dqt x2 = y2 − ax32 + bx

2
2 − z2 + I + k1ω (ϕ) (x1 − x2)

Dqt y2 = c− dx22 − y2
Dqt z2 = r [s (x2 − x̄)− z2]
Dqt ϕ = x1 − x2 − k2ϕ

(2)

The cubic flux-controlled memristor model ω (ϕ) =
dq (ϕ)

/
dϕ = α + 3βϕ2 is introduced in this

model [17], [18], [21], [31], [32]. Here, ω (ϕ) and ϕ represent
memductance and magnetic flux, respectively. The param-
eters α and β describe the memory-conductance, and they
vary with the environment and their own conditions. The
two fractional-order neurons are coupled with a memristive
synapse, as shown in Fig. 1. In this paper, the parameters are
set as α = 0.2, β = 0.02, and k2 = 0.2.

FIGURE 1. Diagram of two fractional-order neurons coupled with a
memristive synapse.

A ring network is constructed by some subnetworks that
are the abovementioned memristor synapse-coupled net-
works, and the ring networks involve N subnetworks. Here,
[x1i, y1i, z1i, x2i, y2i, z2i, ϕi] are the variables of the ith sub-
network. The model can be described as (3), shown at the
bottom of the page, where i = 1, 2, . . . ,N and where D is
the coupling strength of the ring network. Each memristor
synapse-coupled neuronal subnetwork is symmetrically cou-
pled to its P nearest neighbors. In our simulation, N is set
as 100, and P is set as 20. The ring connection pattern is
presented in Fig. 2. Note that j = −m, (m = 1, 2, . . .) implies
that sub-network j is coupled with subnetwork (101− m).

III. TWO FRACTIONAL-ORDER NEURONS COUPLED WITH
A MEMRISTIVE SYNAPSE
As the simplest neuronal network, the synchronization behav-
iors of two coupled fractional-order neuronal models is
researched first.

Before considering the diverse synchronization behaviors,
we prove the synchronization of two coupled fractional-order
neuronal models theoretically. The Mittag-Leffler function is
defined by

Eα,β (z) :=
∞∑
i=0

zi

0 (αi+ β)

Lemma 1 [42]: Let x (t) ∈ Cm be a real continuous
and differentiable vector function. Then for all t ≥ t0 and
0 < q < 1, the following inequality holds:

Dq
(
xH (t)Px (t)

)
≤ xH (t)P

(
Dqx (t)

)
+

(
DqxH (t)

)
Px (t)

Lemma 2 [43]: Let V (t) be a continuous function on
[t0,+∞) that satisfies

DqV (t) ≤ θV (t) ,

where 0 < q < 1 and θ are constants, then

V (t) ≤ V (t0)Eα
(
θ (t − t0)α

)
Lemma 3 [44]: For 0 < q < 1, t ∈ R, t > 0, we have

lim
t→∞

Eq (t) ≤ lim
t→∞

1
q
et

1
q

Let X = (x1, y1, z1), Y = (x2, y2, z2), and K1 =

(k1, 0, 0). The error system is e = X − Y . According to (2),
the error system can be described as

e = f (X)− f (Y)− 2K1ω(ϕ) (X − Y)

where

f (X) =

 y1 − ax31 + bx21 − z1 + Iexc + k1ω(ϕ) (x2 − x1)c− dx21 − y1
r [s (x1 − x̄)− z1]


f (Y) =

 y2 − ax32 + bx22 − z2 + Iexc + k1ω(ϕ) (x1 − x2)c− dx22 − y2
r [s (x2 − x̄)− z2]




Dqt x1i = y1i − ax31i + bx
2
1i − z1i + I + k1ω (ϕ) (x2i − x1i)+

D
2P

i+p∑
j=i−p

(
x1j − x1i

)
Dqt y1i = c− dx21i − y1i
Dqt z1i = r [s (x1i − x̄)− z1i]
Dqt x2i = y2i − ax32i + bx

2
2i − z2i + I + k1ω (ϕ) (x1i − x2i)

Dqt y2i = c− dx22i − y2i
Dqt z2i = r [s (x2i − x̄)− z2i]
Dqt ϕi = x1i − x2i − k2ϕi

(3)

131846 VOLUME 9, 2021



Y. Xin, Z. Guangjun: Synchronization Behaviors of Memristive Synapse-Coupled Fractional-Order Neuronal Networks

FIGURE 2. Structure of the ring network.

FIGURE 3. Phase diagrams of
(
x1, x2

)
for (a) q = 0.56, k1 = 1.7, (c) q = 0.9, k1 = 1.7, (e) q = 0.56, k1 = 2, and (g) q = 0.9, k1 = 2.

Corresponding time series of x for (b) q = 0.56, k1 = 1.7, (d) q = 0.9, k1 = 1.7, (f) q = 0.56, k1 = 2, and (h) q = 0.9, k1 = 2.

Theorem 1: f (•) satisfy the Lipschitz condition
‖f (X)− f (Y )‖ ≤ L ‖X − Y‖ [20]; if

L − 2k1ω(ϕ) < 0,

then the two neuronal models can achieve globally exponen-
tially synchronization.

Proof: Construct the Lyapunov function as V = eT e.
From Lemma 1, the Lyapunov function can be reduced to

DqV (t) ≤ eTDqe+
(
DqeT

)
e

= eT (f (X)− f (Y)− 2K1ω(ϕ) (X − Y))
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+ (f (X)− f (Y)− 2K1ω(ϕ) (X − Y))T e

= eT (f (X)− f (Y))− 2eTK1ω(ϕ) (X − Y)

+ (f (X)− f (Y))T e− 2 (K1ω(ϕ) (X − Y))T e

≤ eT (L ‖X − Y‖)− 2k1ω(ϕ)eT e

+ (L ‖X − Y‖)T e− 2k1ω(ϕ)eT e

≤ 2L ‖e‖2 − 4k1ω(ϕ) ‖e‖2

= (2L − 4k1ω(ϕ))V (t)

FromLemma2,V (t)≤V (t0)Eq ((2L − 4k1ω(ϕ)) (t−t0)q),
according to Lemma 3,

limt→∞ Eq
(
(2L − 4k1ω(ϕ)) (t − t0)q

)
≤ limt→∞

1
q
e(t−t0)(2L−4k1ω(ϕ))

1
q

Thus, V (t) ≤ V (t0) 1
qe
(t−t0)(2L−4k1ω(ϕ))

1
q as t → ∞.

When L − 2k1ω(ϕ) < 0, we can conclude that the two
neuronal models can be globally exponentially synchronized
when under the appropriate k1. This completes the proof.

The parameter I is now set as I = 3. Numerical simulation
is provided for model (2) by utilizing the ADMmethod. Fig. 3
displays the phase diagrams, and the corresponding time
series of x. As shown in Fig 3(a)(b), when q = 0.56, k1 =
1.7, the system is in perfect synchronization which indicates
that variable x1 is the same as x2 over sufficient time. The
system is in imperfect synchronization when q = 0.9, k1 =
1.7( Fig. 3(c)(d)). As shown in Fig. 3(e)-(h), when q =
0.56, k1 = 2 and q = 0.9, k1 = 2, the system is in perfect
synchronization. Through the above analysis, different syn-
chronization behaviors arise when the fractional-order and k1
change.

To further illustrate the effects of the fractional-order and
k1 on the synchronization of the memristive synapse-coupled
neuron, in this paper, the similarity function [31] is introduced
to measure the synchronization degree of the system. This
function can be described as follows:

S =

〈(x1 (t)− x2 (t))2〉(〈
x21 (t)

〉 〈
x22 (t)

〉) 1
2

 1
2

(4)

where 〈•〉 stands for the temporal average. Perfect synchro-
nization can be observed when S is equal to 0, and the greater
S is, the worse the synchronization.

When the system is not in perfect synchronization, it may
be in phase synchronization. The phase information can
be calculated by detecting the time of sampled time series
(t1, t2, . . . , tn) across the Poincare section, and the phase is
calculated by [40]

ϕ = 2π
t − ti
ti+1 − ti

+ 2π i, ti < t < ti+1 (5)

The phase difference between two neurons is defined by

1ϕ = |ϕ1 − ϕ2|

When the phase difference is approximately 0, the coupled
neuronal models are in phase synchronization.

To analyze the different synchronization behaviors,
the bursting phase difference is introduced in this paper. The
phase information can be calculated by detecting the time
of variable z time series (t1, t2, . . . , tn) across the Poincare
section, and the bursting phase is calculated by:

ϕz = 2π
t − ti
ti+1 − ti

+ 2π i, ti < t < ti+1 (6)

The bursting phase difference is defined as:

1ϕz = |ϕz1 − ϕz2|

When the bursting phase difference is approximately 0,
the coupled neuronal models are in bursting phase synchro-
nization.

A. SYNCHRONIZATION BEHAVIORS UNDER DIFFERENT
FRACTIONAL-ORDERS AND MEMRISTOR SYNAPSES
When the fractional-order q and parameter k1 are varied in
the ranges [0.55, 1] and [1, 2.5], respectively, the similarity
function is shown in Fig. 4, where the blue regionwith S equal
to 0 denotes that the system is in perfect synchronization.
Regions of other colors imply that the system is not in perfect
synchronization. At some fractional-orders, the synchroniza-
tion is enhanced when k1 increases. The threshold of k1 when
the system is in perfect synchronization changes greatly with
a change in the fractional-order. When q = 0.55, the system
is in perfect synchronization when k1 > 1.42, but when q =
0.7, the system is in perfect synchronization when k1 > 2.2.

Tomore intuitively observe the effect of the fractional-order
on the system synchronization, the thresholds of k1 for
each fractional-order when the system is in perfect synchro-
nization are plotted in Fig. 5. When 0.55 < q < 0.73,
the threshold of k1 increases with increasing fractional-order.
When 0.73 < q < 1, the threshold first decreases and then
fluctuates in the vicinity of 2 with increasing fractional-order.
Therefore, when 0.73 < q < 1, there is not much change in
the threshold.

B. SYNCHRONIZATION TRANSITIONS INDUCED BY
DIFFERENT FRACTIONAL-ORDERS AND MEMRISTOR
SYNAPSES
Fig. 5 shows that the threshold changes greatly from 1.48 to
1.7 near q = 0.6. As shown in Fig. 4, near 0.6, there is a
smaller k1 that makes the system be in perfect synchroniza-
tion, but a larger k1 does not cause the system to be in perfect
synchronization. Fig. 6 shows the curve of S ∼ k1 when q is
0.604. The system is in perfect synchronization when 1.55 <
k1 < 1.6, but when 1.6 < k1 < 1.8, the synchronization
degree is weakened. The phase diagrams of (x1, x2) are shown
in Fig. 7 when k1 = 1.3, 1.58, 1.7, 2.0. These phase diagrams
show the transitions of the system synchronization with k1.
When k1 = 1.3, 1.7, the corresponding time series of x
are shown in Fig. 7(e)(f), indicating that the system is in
imperfect synchronization.

As shown in Fig. 8(a)(b), the two neurons are not in
phase synchronization when k1 = 1.3 because the phase
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FIGURE 4. Distribution of the similarity function in the q− k1 plane.

FIGURE 5. Curve of k1cr ∼ q.

difference is large, but the neurons can reach bursting
phase synchronization because the bursting phase differ-
ence is small (approximately 0). From Fig. 8(c), it is con-
cluded that the neurons are in phase synchronization when
k1 = 1.7. The synchronization transition is as follows:
asynchronization→ bursting phase synchronization→ per-
fect synchronization→ phase synchronization → perfect
synchronization.

From the above analysis, it can be found that the effect of
the fractional-order on the memristive synapse-coupled neu-
ronal network is complex. Under different fractional-orders,
the synchronization behaviors of the systemwith changing k1
are different. The system does not strictly follow the transi-
tion from phase synchronization to perfect synchronization;
perfect synchronization occurs before phase synchroniza-
tion. In [21], for an integer-order model, the synchronization
degree is strengthened with increasing k1, but in this paper,
an exception can be found when the fractional-order is in the
range [0.59, 0.64].

C. TRANSITION BETWEEN PERFECT CHAOTIC
SYNCHRONIZATION AND PERFECT PERIODIC
SYNCHRONIZATION INDUCED BY THE
FRACTIONAL-ORDER
As shown in Fig. 3, when q = 0.56 and q = 0.9, the system is
in perfect synchronization, but the firing modes are different.

FIGURE 6. Curve of S ∼ k1 for q = 0.604.

When q = 0.56, the neurons display periodic bursting firing.
When q = 0.9, the neurons display chaotic firing. In Fig. 9,
the left and middle panels display the phase diagrams of
(z1,2, x1,2) and (x1,2, y1,2), respectively, when I = 3, k1 =
0.3, and the right panel displays the bifurcation for the integer
spike interval (ISI) in one neuronwith a bifurcation parameter
of k1 when I = 3. As shown in Fig. 9(a)(b)(c), when q =
0.56, the neurons display periodic-4 bursting. When q = 0.9,
the neurons display chaotic firing, as shown in Fig. 9(d)(e)(f).

As shown in Fig. 4, when k1 = 2.5, the system is in
perfect synchronization, and when k1 = 3, the system is
still in perfect synchronization. The bifurcation for ISI in
one neuron to fractional-order q when k1 = 3 is shown
in Fig. 10. From Fig. 10, when 0.55 < q < 0.73, the neu-
rons display periodic bursting, so the system is in perfect
periodic synchronization. When 0.73 < q < 1, the neurons
display chaotic bursting, so the system is in perfect chaotic
synchronization. The perfect chaotic synchronization range
is more extensive than that without memristive synapse-
coupling [31].When the fractional-order changes, a transition
between periodic synchronization (periodic-4 synchroniza-
tion) and perfect chaotic synchronization can be observed.
The above analysis shows that the fractional-order not only
changes the threshold of k1 when the system reaches syn-
chronization but also changes the synchronization mode.
Memristive synapse-coupling can extend the chaotic syn-
chronization range. Compared with [21], the integer-order
coupled neurons are in chaotic synchronization only when the
external stimulation current I = 3, but the fractional-order
coupled neurons can be in periodic synchronization when the
fractional-order lies within [0.55, 0.73].
The above discussion concerns the influences of parame-

ter k1 on the synchronization and the phenomenon of syn-
chronization transition induced by the fractional-order when
the external stimulation current I = 3. Fig. 11 shows the
relevant images when I takes different values and k1 is set
as 3. When I = 3.5 and the system is in perfect periodic-
5 bursting synchronization and perfect spiking synchroniza-
tion, the phase diagrams of q = 0.56 and q = 0.9 are
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FIGURE 7. Phase diagrams of
(
x1, x2

)
for q = 0.6 (a) k1 = 1.3, (c) k1 = 1.58, (e) k1 = 1.7, and (g) k1 = 2. Corresponding time series of x for

(e) k1 = 1.3, and (f) k1 = 1.7.

FIGURE 8. Phase difference variations with time: (a) k1 = 1.3, and (c) k1 = 1.7; bursting phase difference variation with time for (b) k1 = 1.3.

as shown in Fig. 11(a)(b). When I = 2 and the system
is in perfect periodic-2 synchronization, the phase diagrams
of q = 0.56 and q = 0.9 are as shown in Fig. 11(c)(d).
Compared with the situation when I = 3, there are some
differences. It can be inferred that under the influence of
different external stimulus currents, the synchronization tran-
sition of the system changes.

From Fig. 11, when the system is in perfect synchroniza-
tion, the neurons are in periodic bursting under the selected
fractional-order, but the two neurons are in periodic-5 syn-
chronization when I = 3.5, q = 0.56 and is in spiking syn-
chronization when I = 3.5, q = 0.9. To further understand
the effect of fractional-order changes on the firing model of
coupled neurons under different external stimulation currents
when the system is in perfect synchronization, the bifurcation
diagrams of one neuron for ISI when I = 3.5, I = 2 and

I = 1.4 are plotted in Fig. 12. As shown in Fig. 12(a),
when I = 3.5 and 0.55 < q < 0.57, the system is
in periodic synchronization. Increasing the fractional-order,
when 0.57 < q < 0.67, two periodic windows appear around
q = 0.6 and q = 0.63, while the system is in chaotic
synchronization in other regions. When 0.67 < q < 1,
the system is in periodic synchronization. From Fig. 12(b)(c),
the system is in periodic synchronization when I = 2 and
I = 1.4.

In Fig. 13, the phase diagrams of (z1,2, x1,2) show the syn-
chronization transition of the system in detail with fractional-
order changes when I = 3.5, k1 = 3, and the neurons
are in perfect synchronization. As shown in Fig. 13(a), the
system is in periodic synchronization and the neurons display
periodic-5 bursting when q = 0.55. The system is in chaotic
synchronization when q = 0.56(Fig. 13(b)). The system is in
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FIGURE 9. Phase diagrams of
(

x1,2, z1,2
)

for k1 = 3: (a) q = 0.56, and (d) q = 0.9. Phase diagrams of
(

x1,2, y1,2
)

for k1 = 3: (a) q = 0.56, and
(d) q = 0.9. ISI bifurcation diagrams for k1 = 3: (a) q = 0.56, and (d) q = 0.9.

FIGURE 10. ISI bifurcation of the first neuron when I = 3, k1 = 3.

periodic synchronization and the neurons display periodic-4,
periodic-2 bursting and periodic spiking when q = 0.58, q =
0.67,q = 0.7, and q = 0.85 (Fig. 13(c)-(f)).
In conclusion, with a change in the fractional-order,

the threshold of k1 when the memristive synapse-coupled
neuronal network enters perfect synchronization changes.
Under different fractional-orders, the synchronization tran-
sition mode of coupled neurons differs with increasing k1.
At some fractional-orders, the synchronization transition
of the system does not strictly follow the transition [21]
from phase synchronization to perfect synchronization with
increasing k1, and perfect synchronization can occur before

phase synchronization when the fractional-order is in the
range [0.59, 0.64]. In addition, when I = 3, a change in
the fractional-order leads to the transition between perfect
periodic-4 synchronization and perfect chaotic synchroniza-
tion. If the external stimulation current I changes, the effect of
the fractional-order on the system synchronization mode also
changes. In this paper, the effect of the fractional-order on the
synchronization mode is analyzed by taking I = 3.5, I = 2,
and I = 1.4 as examples. The simulation results show that
no matter how the fractional-order changes, the system is in
periodic synchronization when I = 2 and I = 1.4. When
I = 3.5, a change in the fractional-order also leads to a
transition between perfect periodic synchronization (perfect
periodic-5 synchronization, perfect periodic-4 synchroniza-
tion, perfect periodic-2 synchronization, or perfect spiking
synchronization) and chaotic perfect synchronization, but the
regions of chaotic synchronization and periodic synchroniza-
tion are different from the regions when I = 3.

IV. SYNCHRONIZATION AND SPATIOTEMPORAL
PATTERNS OF THE MEMRISTIVE SYNAPSE-COUPLED
FRACTIONAL-ORDER NEURONAL RING NETWORK
In this section, we analyze the influences of the fractional-
order on the synchronization of a coupled ring network, and
the chimera state induced by the fractional-order.

A. DESCRIPTIONS OF THE STRENGTH OF INCOHERENCE
AND THE SYNCHRONIZATION FACTOR
To depict the collective behaviors of the neuronal network,
the strength of incoherence (SI) was proposed in [23].
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FIGURE 11. Phase diagram of
(

y1,2, x1,2
)

for k1 = 3 (a) I = 3.5, q = 0.56, (b) I = 3.5, q = 0.9, (c) I = 2, q = 0.56, and
(d) I = 2, q = 0.9.

FIGURE 12. ISI bifurcation diagrams of the first neuron for k1 = 3: (a) I = 3.5, (b) I = 2, and (c) I = 1.4.
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FIGURE 13. Phase diagrams of
(

x1,2, z1,2
)

for I = 3.5, k1 = 0.3: (a) q = 0.55, (b) q = 0.57, (c) q = 0.6, (d) q = 0.67, (e) q = 0.7, and
(f) q = 0.85.

FIGURE 14. The curves of (a) SI ∼ q, and (b) R ∼ q.

The transformation variables are denoted wi = x1(i+1) − x1i,
and the number of neuronal subnetworks can be divided into

M bins of equal length n = N/
M . A local standard deviation

is defined as

σ (m) =

√√√√1
n

mn∑
j=n(m−1)+1

(
wj − 〈w〉

)2

in which m = 1, 2, . . . ,M is the mth bin, w = 1
N

N∑
i=1

wi,

and 〈•〉t stands for a temporal average. Thus, the SI can be
calculated by

SI = 1−

M∑
m=1

2(δ − σ (m))

M
(7)

where 2(•) and δ represent the Heaviside step function and
a preset threshold, respectively. The resulting values SI =
1 and 0 indicate incoherent and coherent states, respectively,
whereas 0 < SI < 1 corresponds to the chimera states.
The synchronization factorR can describe the synchroniza-

tion of the network. R is given by

R =

〈
F2
〉
− 〈F〉2

1
N

N∑
i=1

(〈
x2i
〉
− 〈xi〉2

) , F =
1
N

N∑
i=1

xi (8)

where 〈·〉 denotes temporal averaging. The value of R is
between 0 and 1 and increases with decreasing average mem-
brane potential errors. More precisely, perfect synchroniza-
tion of the neuronal network is expected when R is close to 1,
and a non-synchronization state may appear when R is close
to 0.
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FIGURE 15. Neuronal network’s spatiotemporal patterns and corresponding snapshots for (a)(b) q = 0.6, (c)(d) q = 0.675, (e)(f) q = 0.725,
(g)(h) q = 0.775, and (i)(j) q = 1.

B. SYNCHRONIZATION AND SPATIOTEMPORAL PATTERNS
UNDER THE INFLUENCE OF THE FRACTIONAL-ORDER
The coupling strength and parameter k1 are fixed as D =
0.8, k1 = 1, and the fractional-order is changing. The curves
of SI ∼ q and R ∼ q are presented in Fig. 14. When
the strength of the incoherence is 0, the neurons are in a
coherent state, but the synchronization factor is inverted.
From Fig. 14(a), when 0.6 < q < 0.615 and 0.62 <

q < 0.665, SI = 1, and the ring network is in an incoherent
state. The ring network then goes into the chimera state when

0.65 < q < 0.725. Then, the coherent state appears at
q = 0.725 and q = 0.83. A chimera state with 0 < SI < 1
appears when 0.75 < q < 0.83 and 0.84 < q < 0.1.
From a synchronization point of view, as shown in Fig. 14(b)
the ring network is in perfect synchronization at some
fractional-orders but not in synchronization at some other
fractional-orders.

To observe the incoherent, coherent, and chimera states
when the fractional-order varies, the spatiotemporal patterns
and corresponding snapshots of the ring network are shown
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FIGURE 16. Phase diagram of
(

x1,2, z1,2
)

(first panel) and the corresponding time series of x (second panel) for (a)(b) q = 0.6, (c)(d)
q = 0.64, (e)(f) q = 0.8, and (g)(h) q = 0.75.

in Fig. 15. As shown in Fig. 15(a)(d), when q = 0.6, the net-
work is in an incoherent state, because all x1i are disorderly.
When q = 0.675, the network is in a chimera state because
the indices 1-10, 37-43, and 60-100 are incoherent with
the other subnetworks, as shown in Fig.15(b)(e). As shown
in Fig. 15(e)(f) and (i)(j), the network is in a coherent state
and x1i contains uniformly distributed values when q = 0.725
and q = 1. When q = 0.775,the network is in a chimera state
because the indices 1, 18, 30, 35 and 51-54 are disorderly.

It can be concluded from the above analysis that the
collective behaviors of the neuronal network change if the
fractional-order changes. A change in the fractional-order
induces the synchronization to become asynchronized. The
fractional-order can induce an incoherent state, chimera state
and coherent state. In addition, the transitions between the
collective behaviors are complex. Therefore, the fractional-
order is also an important parameter that can change the
collective behaviors of the neuronal network.

To determine the synchronization transition of the neu-
ronal network, k1 is set as 2, so the network is in perfect
synchronization. The corresponding time series of x1i and the

phase diagrams of (z1i, x1i) are plotted in Fig. 16. When the
fractional-order is small, the neurons in the network display
bursting, but the neurons display spiking for other fractional-
orders. As shown in Fig. 16(a)(b), when q = 0.6, the neu-
rons display bursting, and there are two spikes. When q =
0.64, the neurons display spiking, as shown in Fig. 16(c)(d),
As shown in Fig. 16(e)-(h), the neurons of the network display
periodic spiking when q = 0.8 and q = 0.75.
In conclusion, when the coupling strength and k1 are

fixed, different fractional-orders can induce different collec-
tive behaviors, such as the coherent, incoherent and chimera
states. The neuronal network is in perfect synchronization
at some fractional-orders. Synchronization transitions can
also be induced by the fractional-order because the firing
modes of neurons in the network can be changed by the
fractional-order.

V. CONCLUSION
This paper focuses on the synchronization collective
behaviors and synchronization transitions of memristive
synapse-coupled fractional-order neuronal networks. First, a
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fractional-order HRmodel coupled with memristive synapses
and ring network coupled subnetworks are constructed.
Then, the synchronization and synchronization transition of
twomemristive synapse-coupled fractional-order neurons are
investigated by using the similarity function, phase difference
and numerical simulation. Finally, the synchronization and
spatiotemporal patterns of the ring network coupled with
subnetworks are studied by the SI and the synchronization
factor. For the two memristive synapse-coupled neurons,
the results show that the fractional-order can change the
threshold of k1 when the system is in perfect synchronization.
In [21], the two coupled neurons’ degree of synchronization
was found to increase with increasing k1. However, in this
paper, an exception can be found when the fractional-order
is in the range [0.59, 0.64]; the numerical results show that
some fractional-orders can induce perfect synchronization
before phase synchronization. At different fractional-orders,
the firing mode of the system changes when the system is
in synchronization. When I = 3 and the two neurons are
in perfect synchronization, the fractional-order can induce a
synchronization transition of perfect periodic synchroniza-
tion (periodic-4 synchronization) and perfect chaotic syn-
chronization. In addition, for different I , the effect of the
fractional-order is different. When I = 3.5, the fractional-
order can also induce a synchronization transition of perfect
periodic synchronization (periodic-5,4,2 synchronization and
spiking synchronization) and chaotic synchronization. When
I = 2, 1.4, the two neurons are only in perfect periodic-
2 synchronization for all fractional-orders in [0.55, 1]. For the
ring network coupled subnetworks, the result of the numer-
ical simulation shows that the fractional-order can induce
a coherent state, an incoherent state and a chimera state.
In other words, the network is in perfect synchronization
at some fractional-orders but asynchronized in some other
fractional-orders. The fractional-order can induce the syn-
chronization transition because the firing model is different.
In short, the fractional-order is an important parameter that
can induce different synchronization behaviors of neuronal
networks, and memristive synapse-coupling can make the
synchronization behaviors more complex.
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