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ABSTRACT This paper combines the extended Kalman filter (EKF), dual quantum-behaved particle swarm
optimization (DQPSO), and adaptive neuro-fuzzy inference system (ANFIS) to propose a novel robot
calibration method. Robot precision is influenced by kinematic and non-kinematic error sources. The EKF
algorithm is robust for the nonlinear system with Gaussian noise to identify kinematic parameter errors for
kinematic calibration. However, if inappropriate covariance matrices are selected, the EKF algorithm may
converge to an incorrect solution. To increase the effectiveness of the EKF algorithm, we propose a DQPSO
algorithm that consists of the QPSO-1 andQPSO-2 algorithms. The QPSO-1 algorithm adapts the covariance
matrices of measurement noise and process noise, while the QPSO-2 algorithm optimizes the kinematic
parameter errors estimated by the EKF algorithm. In addition, the used ANFIS predicts and compensates the
non-kinematic error for non-kinematic calibration. Experiments have been performed on a five-bar parallel
robot to confirm the effectiveness of the proposed method. The experimental results demonstrate that the
proposed method significantly improves the positional accuracy, and is better than the previous methods.

INDEX TERMS Adaptive neuro-fuzzy inference system, extended Kalman filter, dual quantum-behaved
particle swarm optimization, five-bar parallel robot.

I. INTRODUCTION
Nowadays, robots are widely used in the industry for many
applications that require high absolute positioning accu-
racy, such as the mounting, handling, and assembly of
parts. However, kinematic errors resulting from existing
manufacturing errors, assembly errors, and actuator errors,
as well as non-kinematic errors, such as joint clearance,
joint compliance, and temperature drift, cause the robot’s
actual position to deviate from the target position. Therefore,
the robot may not achieve high accuracy. Hence, kinematic
and non-kinematic calibrations are executed to improve the
positional accuracy.

The main procedures for kinematic calibration include
four steps: modeling, measurement, identification, and
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compensation. For modeling, the kinematic error model is
established based on different mathematical tools, such as the
derivative of the kinematicmodel [1], the product of exponen-
tial (PoE) [2], screw theory [3], bond graph theory [4], and the
vector loop method [5]- [7]. In the case of the parallel robot,
the vector loopmethod is widely utilized to establish the kine-
matic error model and is less complex than other methods.
It is suitable for error modeling of the five-bar parallel robot.
For measurement, data collection is carried out by various
measurement instruments: laser tracker [8], coordinate mea-
suring machine (CMM) [9], and FARO arm [10]. Although
these precision measuring devices provide high accuracy,
they are nevertheless high-cost, and relatively difficult to
set up and operate. The identification process of kinematic
calibration is executed by applying nonlinear optimization
algorithms to find the optimum value of the kinematic param-
eter error.Wu [11] presented an overview of the identification
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of the relevant parameters.Many algorithms have been imple-
mented to identify kinematic parameters, such as least-square
estimation (LSE) [12], [13], Levenberg-Marquardt (LM)
algorithm [14], maximum-likelihood estimation (MLE) [15],
and Tikhonov regularization [16]. Among them, the LSE
method is the most widely known and used. LSE usu-
ally presents fast convergence and lower computation costs.
However, it is sensitive to measurement noise, and the con-
vergence of this method is not always guaranteed. Intel-
ligent algorithms, such as the particle swarm optimization
(PSO) [17], genetic algorithm (GA) [18], and the quantum-
behaved particle swarm optimization (QPSO) [19], can
search for flexibility in multidimensional non-linear space.
Nevertheless, when handling high-dimensional parameter
identification problems, these algorithms would get stuck in a
local optimum. The hybrid method based on EKF and particle
filter (PF) [20] was used to identify the kinematic parameter
of a 6-axis robot. Its effects are compared with those of the
LSE algorithm; however, the PF algorithm requires complex
computation. Park et al. [21] proposed the EKF to estimate
the kinematic parameter error of robot manipulators. The
EKF algorithm is the most popular nonlinear filter, and has
been widely applied in system-state estimation for uncertain
measurements. It is also suitable for kinematic parameter
identification, because in a real robot, measurement and pro-
cess noises are inevitable. However, for a highly nonlinear
system with non-Gaussian noise, the EKF algorithm may
converge to an incorrect solution.

Non-kinematic calibration compensates for the non-
kinematic error source. The radial basis function neural net-
work (RBFNN) [22] was used to predict and compensate for
the positional error of the industrial robot. RBFNN is suitable
for function approximation, but requires good coverage of the
input space. Artificial neural network (ANN) [23]- [26], using
the back-propagation algorithm to train the neural network,
established a nonlinear relationship between the joint vari-
ables and the robot’s positional error. The back-propagation
neural network (BPNN) [24], trained using the gradient
descent method, predicted the leg length error of the parallel
robot. BPNN [26] was used to compensate for the effect of the
non-kinematic error of a PUMA robot. However, the BPNN
has disadvantages such as long training time, slow conver-
gence, and it can fall into local minima. The genetic algorithm
and deep neural network (GA-DNN) [27] was developed to
achieve high accuracy positioning performance of the robot
under any external payload. The teaching learning-based
optimization neural network (TLBO-NN) [28] predicted the
nonlinear positional error of the robot manipulator.While this
method is easy to implement, it can become trapped in local
minima.

To overcome the disadvantages of the existing research,
we propose a new calibration method. The novelty of this
paper is the proposal of a new method that is a combina-
tion of EKF, DQPSO, and ANFIS, to improve the absolute
position accuracy of the robot’s end-effector. The DQPSO
algorithm includes the QPSO-1 and QPSO-2 algorithms.

FIGURE 1. Schematic of the 2-DOF five-bar parallel robot.

The main contribution of this paper can be summarized as
follows:

1) The QPSO-1 algorithm was used to optimize the
covariance matrices Q and R of the process noise
and measurement noise of EKF algorithm. In addition,
EKF algorithm estimates the preliminary kinematic
parameter error of the robot for kinematic calibration.

2) The QPSO-2 algorithm was proposed to optimize the
estimated kinematic parameter errors. The QPSO algo-
rithm has a good search ability to solve the optimization
problem.

3) ANFIS was proposed to compensate for the non-
kinematic error for non-kinematic calibration. ANFIS
establishes the nonlinear regression model that rep-
resents the relationship between the joint vari-
ables and the positional error after kinematic
calibration.

The rest of the paper is organized as follows: Section II
describes the kinematic model, the kinematic error model,
and the proposed approach to robot calibration. Section III
explains the EKF-DQPSO algorithm that determines the
kinematic parameter errors for kinematic calibration.
Section IV presents ANFIS to compensate for the non-
kinematic error. Section V presents the experimental results.
Finally, Section VI concludes the paper.

II. KINEMATIC ERROR MODEL AND THE PROPOSED
APPROACH
A. KINEMATIC MODEL
Fig. 1(b) shows a schematic of the five-bar parallel
robot, which has four links with link lengths l11, l12, l21,
and l22. Fig. 1(a) introduces the two reference frames,
the world-coordinate system (WCS) that is fixed on the work-
ing platform, and the base-coordinate system (BCS) that is
fixed on the base platform. The original position of the BCS
is located at the point that is the midpoint of O1O2. The
distance between the axes of the actuated joint (O1, O2) is
denoted by d . The position and the orientation of BCS with
respect to WCS in the two-dimensional coordinate system
XY are denoted by WCSPBCS = [x0, y0]T and WCSRBCS =[
cos (α) − sin (α)
sin (α) cos (α)

]
, respectively, where α is the rotation

angle of the BCS about the OWZW axis. The position of the
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end-effector E with respect to the WCS is calculated as:

PE = WCSPBCS + WCSRBCSBCSPE

=

[
x0 + xE cos (α)− yE sin (α)
y0 + xE sin (α)+ yE cos (α)

]
(1)

where BCSPE = [xE , yE ]T is the position of the end-effector
with respect to the BCS and is also presented by vector
−→u OBE = [xE , yE ]T . The point E is the intersection of the
vector −→u O3E and −→u O4E :{∥∥−→u O3E

∥∥2 = (xE − x3)2 + (yE − y3)2 = l212∥∥−→u O4E
∥∥2 = (xE − x4)2 + (yE − y4)2 = l222

(2)

From Eq. (2), the end-effector position with respect to the
BCS is represented as follows:

−→u OBE =

(
l212 − l

2
22

2D2 +
2βσ
D2

[
0 −1
1 0

]) (−→u OBO4 −
−→u OBO3

)
+
1
2

(−→u OBO4 +
−→u OBO3

)
(3)

where β = ±1, which is the index that defines the robot’s
assembly configuration; and

−→u OBO3 = [x3, y3]T =
[
l11 cos θ1 − d

/
2, l11 sin θ1

]T (4)
−→u OBO4 = [x4, y4]T =

[
l21 cos θ2 + d

/
2, l21 sin θ2

]T (5)

D =
∥∥−→u O3O4

∥∥ = √(x4 − x3)2 + (y4 − y3)2 (6)

σ =
1
4

√[
(D+ l12)2 − l222

] [
−(D− l12)2 + l222

]
(7)

From Eq. (1), there are 10 kinematic parameters[
l11, l12, l21, l22, d, x0, y0, α, θ1, θ2

]T that affect the end-
effector’s position.

B. KINEMATIC ERROR MODEL
The objective of kinematic calibration is to determine the
actual kinematic parameter v∗ defined as follows:

v∗ = v+ δv (8)

where v = [l11, l12, l21, l22, d, x0, y0, α, θ1, θ2]T and δv =[
δl11, δl12, δl21, δl22, δd, δx0, δy0, δα, δθ1, δθ2

]T
are the no-

minal parameter and kinematic parameter error, respectively.
The end-effector position can bewritten in the general form

as follows:

PE = f
(
v∗
)

(9)

where f (v∗) =
[
fx (v∗), fy (v∗)

]T is determined by Eq. (1).
The kinematic model presented by Eq. (9) is linearized

as the first-order terms of a Taylor expansion of a nonlinear
function, as follows:

f
(
v∗
)
= f (v)+

∂f
∂v

(
v∗ − v

)
= f (v)+

∂f
∂v
δv (10)

where
∂f
∂v
δv =

∂f
∂l11

δl11 +
∂f
∂l12

δl12 +
∂f
∂l21

δl21 +
∂f
∂l22

δl22

+
∂f
∂d
δd +

∂f
∂x0

δx0 +
∂f
∂y0

δy0 +
∂f
∂α
δα

+
∂f
∂θ1

δθ1 +
∂f
∂θ2

δθ2

The kinematic error model is presented as follows:

Y = JX (11)

Y =
[
δx
δy

]
=

[
xm − fx (v)
ym − fy (v)

]
(12)

J =


∂fx
∂l11

∂fx
∂l12
· · ·

∂fx
∂θ1

∂fx
∂θ2

∂fy
∂l11

∂fy
∂l12
· · ·

∂fy
∂θ1

∂fy
∂θ2

 (13)

X = δv =
[
δl11 δl12 · · · δθ1 δθ2

]T (14)

where Y is the positional error of the end-effector, J is a
Jacobian matrix, and X is the kinematic parameter error. The
target position f (v) =

[
fx (v), fy (v)

]T can be obtained by
Eq. (1), and Pm = [xm, ym]T is the measured position.

C. THE PROPOSED APPROACH
1) ROBOT ERROR ANALYSIS
The robot’s positional error, which includes the kinematic
error δPk , non-kinematic error δPnk , and measurement
noise δPnoise, can be expressed as follows:

Pm = Pt + δPk + δPnk + δPnoise (15)

where Pm and Pt are the measured position and target
position of the robot’s end-effector, respectively. The kine-
matic calibration is used to estimate the kinematic parameter
error and compensate for the kinematic error. In addition,
the non-kinematic calibration predicts and compensates for
the non-kinematic error.

2) THE PROPOSED APPROACH
In kinematic calibration, the kinematic parameter error repre-
sented in Eq. (11) can be determined by many methods [12]-
[16]. Among them, the LSEmethod is most often applied and
can be expressed as follows:

δv = X =
(
JT J

)−1
JTY (16)

where Y = Pm − Pt = δPk + δPnk + δPnoise. However, it is
sensitive tomeasurement noise and non-kinematic error in the
positional error. The EKF algorithm has proven to be effective
for a nonlinear system that has Gaussian noise. However,
this algorithm may converge to an incorrect solution, because
linearization of the observationmodel can induce errors in the
estimation of state. The QPSO, that is an intelligence opti-
mization algorithm, has been used to solve various optimiza-
tion problems in robotics, including robot calibration and
path planning [29]. However, the performance of the QPSO
algorithm heavily depends on the initialization of the swarm,
especially the initialization position. In non-kinematic cal-
ibration, BPNN was applied to approximate the complex
mapping between pose error and robot’s joint length and
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FIGURE 2. The identification procedure of the proposed method.

compensate for pose error. However, BPNN can fall into local
minima [30]. This paper proposes a new calibration method
to overcome these drawbacks and improve the calibration
performance. The EKF-DQPSO, based on the combination
of the EKF algorithm and DQPSO algorithm, is used for
kinematic calibration, and the ANFIS model is used for
non-kinematic calibration.

Figure 2 shows the calibration process of the proposed
method. After collecting the positional error, the calibration
procedure that includes two steps is carried out to compensate
for the robot’s positional error. First, the EKF-based QPSO-1
algorithm identifies the preliminary kinematic parameter
errors, while the QPSO-2 algorithm optimizes the estimated
kinematic parameter errors. Once the kinematic calibration is
accomplished, the actual kinematic parameters are calculated
by adding the parameter errors to the nominal kinematic
parameters. Second, ANFIS establishes the complex relation-
ship between the joint’s rotational angle and the positional
error. After that, the trained neural network compensates for
the non-kinematic error.

The EKF algorithm is the robust optimization algorithm
to solving the nonlinear system with measurement noise.
It has some advantages such as reliability, fast convergence,
and good estimation performance. In addition, the DQPSO
algorithm has advantages such as few parameters, easy imple-
mentation, and good search ability to solve optimization
problems. The ANFIS integrates the advantages of both arti-
ficial neural networks and fuzzy inference systems, to com-
pensate for the non-kinematic error. As a result, ANFIS is
an effective method to predict and modeling complex
systems [31]–[33]. It presents a much better learning ability
than the BPNN algorithm and can achieve highly nonlinear
mapping.

III. KINEMATIC CALIBRATION
A. EXTENDED KALMAN FILTER
Because of the influence of measurement noise, EKF is used
to estimate the kinematic parameter error by using the posi-
tional error and Jacobian matrix. To apply EKF, the nonlinear
system is linearized, and presented as Eq. (11). The EKF algo-
rithm includes time update step andmeasurement update step.
In the time update step of EKF, the linear differential equation
of the constant process X̂ can be expressed as follows:

X̂k|k−1 = X̂k−1|k−1 (17)

where X̂k|k−1 ∈ <
10×1 is a vector representing the robot

kinematic parameter errors, k|k−1 means a prior estimate at

the k th iteration. The predicted covariance matrix P ∈ <10×10

is calculated as follows:

Pk|k−1 = Pk−1|k−1 + Qk−1 (18)

whereQk−1 ∈ <
10×10 is the covariance matrix of the process

noise.
The positional error can be presented by the measurement

equation of EKF algorithm:

Y k = Jk X̂k +Hk (19)

where Y k ∈ <2×1 is the positional error vector at the k th

iteration; Jk ∈ <2×10 is a Jacobian matrix; and Hk ∈ <
2×1

is a vector that contains the sequence of the measurement
noise with zero mean. Rk is the covariance matrix of the
measurement noise, Rk = E

(
HkHT

k

)
∈ <

2×2.
In the measurement update step, the Kalman gain Kk is

computed as follows:

Kk = Pk|k−1JTk
(
JkPk|k−1JTk + Rk

)−1
(20)

The state vector X̂k|k and the updated covariance matrix
Pk|k of the estimation error are calculated as follow:

X̂k|k = X̂k|k−1 + Kk

(
Y k − Jk X̂k|k−1

)
(21)

Pk|k = (I − KkJk)Pk|k−1 (22)

where I ∈ <10×10 is an identity matrix.
An important issue of EKF is to select the correct

matrices Q, R. Unsuitable choice of these matrices will
create a large estimation error or even lead to divergence;
consequently, tuning of Q and R is necessary. The covari-
ance matrix can be obtained by experimental trial-and-error
method. Although Bavdekar et al. [34] described a method
to estimate Q and R, it requires complex computation. The
next subsection describes QPSO algorithm that optimizes the
covariance matrices of EKF algorithm.

B. DUAL QUANTUM-BEHAVED PARTICLE SWARM
OPTIMIZATION
The QPSO algorithm has many advantages on a few parame-
ters, with good global search ability, to solve the optimization
problems. QPSO algorithm consists of N particles moving
in a m-dimension search space. Each particle is a potential
solution and is characterized by its position vector:

X t
i =

[
xti1 xti2 · · · x

t
im

]
(23)
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where i = 1, 2, . . . ,N . The particle’s position is updated
according to the following equation:

xt+1ij = ptij ± α
t
∣∣∣mbtj − xtij

∣∣∣ ln( 1
utij

)
(24)

where utij is a uniformly distributed random number within
the range (0,1), j = 1, 2, . . . ,m; and αt is called the
contraction-expansion factor, which can be used to control
the convergence speed of the algorithm.
ptij is the local attractor of i

th particle, and is presented as:

ptij = ϕ
t
ijP

t
ij +

(
1− ϕtij

)
Pgtj (25)

where ϕtij is a uniformly distributed random number within
the range (0,1), P tij is the j

th component of the personal best
position P ti of the i

th particle, and Pgtj is the j
th component of

the global best position Pgt of all particles in the swarm.
The personal best position can be computed by:

P ti =

P
t−1
i if fobj

(
P t−1i

)
< fobj

(
X t
i

)
X t
i if fobj

(
P t−1i

)
≥ fobj

(
X t
i

) (26)

where fobj
(
P t−1i

)
and fobj

(
X t
i

)
are object functions.

The global best position Pgt is expressed as:

Pgt = min
{
P t1 P

t
2 · · · P

t
N

}
(27)

The mean best position (mb) is defined as the center of the
personal best position P ti and is updated by:

mbt =
1
N

[
N∑
i=1

P ti1,
N∑
i=1

P ti2, . . . ,
N∑
i=1

P tim

]
(28)

The optimization process is continuously updated accord-
ing to Eq. (24). In this paper, DQPSO includes the
QPSO-1 and QPSO-2 algorithm.

1) OPTIMIZING THE COVARIANCE MATRICES Q AND R
The object function of the QPSO-1 algorithm is designed as
the root mean square error (RMSE) between the measured
position [xm, ym]T and the estimated position [xEKF , yEKF ]T ,
and is represented as follows:

fobj (Q,R) =

√√√√√ n∑
i=1

[(
x im − x

i
EKF

)2
+
(
yim − y

i
EKF

)2]
n

(29)

where n is the number of measurement points. The estimated
position is calculated as follows:

[xEKF , yEKF ]T = f
(
v+ δvEKF(Q,R)

)
(30)

where f is the forward kinematic function, v is the nominal
kinematic parameter, δvEKF(Q,R) is the kinematic parameter
error estimated by the EKF algorithm with covariance matri-
ces Q and R.

The QPSO-1 algorithm optimizes the covariance matri-
ces Q and R to minimize the object function fobj (Q,R).

FIGURE 3. Flow chart of the EKF-based QPSO-1 algorithm.

Furthermore, the EKF-based QPSO-1 algorithm identifies
the preliminary kinematic parameter errors X̂E based on the
positional error Y and Jacobian matrix J . Fig. 3 shows the
flow chart of the EKF-based QPSO-1 algorithm.

2) OPTIMIZING THE KINEMATIC PARAMETER ERRORS
The object function of the QPSO-2 algorithm is the RMSE
between the measured position [xm, ym]T and the estimated
position [xe, ye]T , and is represented as follows:

fobj
(
δvQPSO−2

)
=

√√√√√ n∑
i=1

[(
x im − x ie

)2
+
(
yim − yie

)2]
n

(31)

where n is the number of measurement points. The estimated
position is calculated as follows:

[xe, ye]T = f
(
v+ δvQPSO−2

)
(32)

where f is the forward kinematic function, v is the nominal
kinematic parameter, δvQPSO−2 is the kinematic parameter
error estimated by the QPSO-2 algorithm.

The QPSO-2 algorithm optimizes the kinematic parameter
error δv to minimize the object function fobj

(
δvQPSO−2

)
.

The initial position vector of the QPSO-2 algorithm is the
kinematic parameter errors X̂E estimated by the EKF-based
QPSO-1 algorithm.
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FIGURE 4. Structure of the ANFIS model.

IV. NON-KINEMATIC CALIBRATION
The positional error after kinematic calibration is represented
as:

δP′ = δPnk + δP′k + δPnoise = P′m − Pt (33)

where P′m and P′k are the measured position and remain-
ing kinematic error after kinematic calibration The
non-kinematic calibration uses the adaptive neuro-fuzzy
inference systems to establish the complex nonlinear rela-
tionship between the joint angle and the positional error δP′,
and compensate the non-kinematic error.

Jang proposed the adaptive neuro-fuzzy inference system
(ANFIS), which is a combination of an artificial neural net-
work and a fuzzy inference system [35]. The ANFIS has
five layers. Fig. 4 shows the structure of the ANFIS model.
The input of the ANFIS model in this paper is two rotation
angles of two actuators. Layer 1 is the fuzzification layer and
represents the fuzzy membership grade of the inputs, which
is defined as:

O1
m = µAjk

(
xj
)

(34)

where O1
m and x are the output and input of node m, respec-

tively, m = {1, 2, 3, 4}, j = {1, 2}, k = {1, 2}, and µAj is the
membership functions of the linguistic label Aj. The mem-
bership function can be a triangular, trapezoidal, sigmoidal,
or Gaussian function. The parameters in layer 1 are called
the premise parameters. Layer 2 is the rule layer. Each node is
labeled5 and its output is the product of all the entry signals.
The output of the ith node represents the firing strength of a
rule and is represented as:

O2
i = wi =

2∏
j=1

µAjk
(
xj
)

(35)

where i = 1, 2, . . . , n. Layer 3 is a normalization layer. Each
node in this layer is a fixed node labeled N . The output of the
ith node is the ratio between the ith rules’ firing strength and
the sum of all the rule’s firing strengths, and can be expressed
as follows:

O3
i = w̄i =

wi
n∑

k=1
wk

(36)

Layer 4 is a defuzzification layer. In this layer, the output
of each node is the product of a first order Sugeno model and
the normalized firing strength, and is calculated as follows:

O4
i = w̄ifi = w̄i

 2∑
j=1

pijxj + ri

 (37)

where w̄i is the output of layer 3, and
{
pij, ri

}
is the parameter

set called consequent parameters. Layer 5 has a single node,
which is a fixed node labeled 6. The output computes the
overall output as the summation of all incoming signals:

O5
1 =

n∑
i=1

w̄ifi (38)

The output of ANFIS has only one node. Therefore, to train
the positional error (1x,1y), two ANFIS models have been
implemented. The first and second ANFIS models are used to
train the positional error 1x in the x direction and the posi-
tional error 1y in the y direction, respectively. The learning
algorithm of the ANFIS model is a hybrid algorithm, which
is a combination of least squares (LS) and back-propagation
(BP) algorithms. The hybrid algorithm has high efficiency
in training ANFIS with fast convergence [36]. LS and
BP algorithm are used to optimize the consequent parameters
and adjust the premise parameters, respectively.

V. EXPERIMENT
A. EXPERIMENTAL SETUP
Fig. 5(a) shows the experimental setup for robot calibration
that consists of an EtherCAT-based five-bar parallel robot and
a measurement system. Table 2 lists the nominal kinematic
parameters of the robot. The robot controller is made based
on Visual Studio and EtherCAT-WMX3 software. The cali-
bration process was implemented using the Matlab program.

In this paper, we introduce a low-cost two-dimensional
measurement system, using digital indicators to track the
robot’s absolute position. The measurement system includes
an aluminum cuboid that was attached to the end-effector
and 6 digital indicators that were fixed in a plane parallel
to the working platform of the robot. The working platform
plane OWXWYW is calibrated to be parallel to the base plat-
form plane OBXBYB. Fig. 5(b) shows the method to obtain
the end-effector coordinate. At each location in the robot
workspace, the displacements of only 3 digital indicators are
used to calculate the end-effector’s position in the XY plane.
The end-effector’s position is the center of the aluminum
cuboid that has the same width and length. The end-effector
coordinate is represented by the position of point E with
respect toWCS, and is computed as follows:[
xE
yE

]
=

l
2

[
(cos γ − sin γ )
(cos γ + sin γ )

]
+

[
δc− δd −xD + xC
xD − xC δc− δd

]−1
×

[
xC (yC − δd)− xD (yC − δc)

(xB − δb) (xD − xC )+ yB (δc− δd)

]
(39)

where δb, δc, δd are the displacements of the indicators;
and γ = atan2 (δc− δd, xD − xC ); [xB, yB]T , [xC , yC ]T ,
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FIGURE 5. (a) The experimental setup of the calibration system. (b) The
measurement system in two dimensions XY . (c) The calibration and
validation position in the workspace.

and [xD, yD]T represent the coordinates with respect to WCS
used to fix the indicators. The resolution and accuracy of the
digital indicators are 0.001mm and±0.006mm, respectively.
The accuracy of the measurement system is 0.011 mm. The
indicator data were transferred directly to the computer.

Two experiments of the calibration experiment and the
validation experiment are performed to demonstrate the supe-
riority of the proposed method. In the calibration experiment,
a group of 100 positions is selected within the workspace, and
is called group G1. Fig. 6 shows a flow chart of the proposed
method that includes the EKF-based QPSO-1 algorithm,
the QPSO-2 algorithm, and the ANFIS model. In Fig. 6,
f −1 () is the inverse kinematic function. After the positional
errors are collected, the kinematic calibration is executed. The
nominal position and nominal orientation of the BCS with
respect to the WCS are [x0, y0]T = [0, 0]T and α = 0.
The covariance matrices Q and R are initialized by Q =
10−4I10×10 and R = 10−4I2×2, respectively. The initial
value of the kinematic parameter error for the EKF-based
QPSO-1 algorithm is 0. The initial position vector of the
QPSO-2 algorithm is the kinematic parameter error X̂E esti-
mated by the EKF-based QPSO-1 algorithm. Table 1 lists
the initial parameter of the QPSO-1 and QPSO-2 algorithm.
The contraction expansion factor α of QPSO algorithm is
initialized as 1 and reduces linearly to 0.5. Therefore, αt can
be calculated by the equation, αt = 0.5T−tT + 0.5, with
T being the maximum iteration. The object function of
the kinematic parameter identification fobj is the root mean
square error (RMSE) between the measured position and the
estimated position.

After finishing the kinematic calibration, the ANFIS is
trained to establish a nonlinear relationship between the joint

FIGURE 6. A flow chart of the proposed method.

TABLE 1. Initial parameters of the DQPSO algorithm.

variables (θ1, θ2) and the robot’s positional error (1x,1y).
In the ANFIS model, the Gaussian function is selected as a
membership function and is represented as:

µAi (x) = e
−

(
x−ci
ai

)2
(40)

The variables {ci, ai} are the premise parameters of
the ANFIS. The number of membership function and the
maximum number of epochs are 6 and 500, respectively.
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FIGURE 7. The validation process.

The training object function of the output layer is the mean
square error (MSE) between the actual output and the tar-
get output of the ANFIS. The target error of the training
object function was set to 1e-5. ANFIS is implemented in
Matlab program. The ANFIS and BPNN method used the
positional error data of group G1 to train the neural network
model. By using the hold-out method, this training dataset
that includes 100 samples of group G1 was divided into a
training set which contained 80% data and a testing set which
contained 20% data. Therefore, the number of training and
testing set was 80 and 20 samples, respectively. The trained
neural network is used to compensate for the non-kinematic
error. The BPNNmodel includes the input layer, hidden layer,
and output layer. The activation function of the hidden layer
and output layer are tan-sigmoid function and linear function,
respectively. The number of hidden node in the hidden layer
was calculated using the empirical formula [37]. It can be
expressed as h = a

√
m+ n, where n, m, h are the number

of nodes in the input layer, output layer, and hidden layer,
respectively, and a ∈ [1, 20]. In this paper, the hidden layer
consists of 40 nodes.

In the validation experiment, the group of 50 positions,
called group G2, is used to validate the absolute positioning
accuracy after calibration. Fig. 7 shows the validation process
of the proposedmethod. θc is the actual joint angle that is used
to control the robot. To demonstrate the superior performance
of the proposed method, the proposed method is compared to
EKF-DQPSO, LSE & BPNN [23], and EKF & BPNN [26].
Fig. 5(c) shows 100 calibration points of group G1 and
50 validation points of group G2 in the robot’s workspace.
The absolute positional error Ep is the Euclidean distance
between the measured position [xm, ym]T and the target
position [xt , yt ]T :

Ep =
√
(xm − xt)2 + (ym − yt)2 (41)

B. EXPERIMENTAL RESULTS
The convergence of the kinematic calibration method is
demonstrated by the convergence of object function that is
shown in Fig. 8. The RMSE of the EKF-based QPSO-1 algo-
rithm and the QPSO-2 algorithm converges to 0.0349 after
52 iterations and 0.0233 after 261 iterations, respectively.
Fig. 9 shows the convergence of the 10 kinematic parameter
errors identified by using the EKF-DQPSO method. Table 2
summarizes the nominal and identified kinematic parameters
after kinematic calibration. In order to show how well the
proposed method outperforms the other methods, Fig. 10
compares the positional errors before and after the calibration

FIGURE 8. The evolution of the object function relative to (a) the
EKF-based QPSO-1 algorithm and (b) the QPSO-2 algorithm.

FIGURE 9. The kinematic parameter errors are identified through
the EKF-DQPSO.

TABLE 2. Identified kinematic parameters of the five-bar parallel robot.

TABLE 3. Model parameters and training performance of the BPNN.

by EKF-DQPSO, LSE & BPNN [23], EKF & BPNN [26],
and the proposed method. Fig. 10 (a) and Fig. 10 (b) show
the absolute positional error in the calibration experiment and
validation experiment, respectively.

Tables 3 and 4 show the model parameters and training
performance of the BPNN and ANFIS methods, respectively.
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FIGURE 10. The absolute positional error before and after calibration by EKF-DQPSO, LSE & BPNN, EKF & BPNN, and EKF-DQPSO & ANFIS method in
calibration experiment (a) and in validation experiment (b).

TABLE 4. Model parameters and training performance of the ANFIS.

TABLE 5. The computational time of the proposed method.

The BPNN using the gradient descent algorithm fell into the
local minimum and could not achieve the target training error.
On the other hand, the learning capacity of the ANFIS is
better than that of the BPNN. Therefore, the ANFIS could
obtain the target training error and required a shorter training
time than the BPNN method. Table 5 lists the computa-
tional time of the proposed method including the EKF-based
QPSO-1 algorithm, QPSO-2 algorithm, and ANFIS method.
Table 6 lists in detail the mean error, standard deviation, and
maximum error of the position of the end-effector in the
calibration and validation experiment. From Tables 5 and 6,
the computational time and accuracy of the proposed method
are suitable for the accuracy requirements of the offline robot
calibration applications.

In the validation experiment, the mean and maximum posi-
tional errors after calibration by the proposed method are
0.022 mm and 0.038 mm, respectively. The positional error
is reduced by 99 % by applying the proposed method (from
2.995 mm before calibration to 0.022 mm after calibration).

TABLE 6. Absolute position accuracy before and after calibration
(in milimeter).

The mean positional error after calibration by LSE & BPNN,
EKF & BPNN, EKF-DQPSO and the proposed method are
0.049mm, 0.039mm, 0.038mm, and 0.022mm, respectively.
The positional error in the proposed method is decreased
by 55 % compared to that of the LSE & BPNNmethod (from
0.049 mm to 0.022 mm), by 44 % compared to that of the
EKF & BPNN method (from 0.039 mm to 0.022 mm), and
by 42 % compared to that of the EKF-DQPSO method (from
0.038 mm to 0.022 mm). In addition, the proposed method
achieves the lowest maximum error and the lowest standard
deviation. Therefore, the validation results confirm that the
proposed method outperforms the other calibration methods.

VI. CONCLUSION
In this paper, a robot calibration method based on
EKF-DQPSO and ANFIS has been proposed. The results
of the experiment performed on the five-bar parallel robot
demonstrated the correctness and effectiveness of the pro-
posed calibration method. Absolute positioning accuracy was
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significantly improved. The EKF algorithm showed the effect
of solving the nonlinear system with measurement noise. The
DQPSO algorithm optimized the performance of the EKF
algorithm and the kinematic parameter errors. ANFIS estab-
lished the relationship between the joint angle and the posi-
tional error, and compensated for the non-kinematic error.
As a result, the mean error of the robot’s position was reduced
by 99 % (from 2.995 mm before calibration to 0.022 mm
after calibration). In the future work, the proposed calibration
algorithm will be applied to calibrate the other serial or
parallel robots. In addition, the proposed method will be
improved for online calibration.
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