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ABSTRACT Smart cities aim to make urban life more enjoyable and sustainable but their highly hetero-
geneous and distributed context creates unique operational challenges. In such an environment, multiple
companies work together with government on applications and data streams spanning several management
domains. Deploying these applications, each ofwhich consists of several connected services, andmaintaining
an overview of application topologies remains difficult. Even though cloud modelling languages have
been proposed to solve similar issues, they are not well fit for such a heterogeneous environment because
they often require an ‘‘all or nothing’’ approach. Moreover, cloud modelling languages add an additional
abstraction layer that rarely supports all features of the underlying platform and make it harder to reuse
existing knowledge and tools. This research defines service relationships as the key element to modelling
applications as topologies of services. We use this definition to pinpoint what is lacking in the state of the
art Kubernetes orchestration tools and provide a blueprint for how relationship support can be added to any
orchestrator. We present ‘‘orcon’’, a proof of concept orchestrator that extends the Kubernetes API to allow
managing relationships between services by adding metadata to service definitions. Our evaluation shows
this orchestrator enables lifecycle synchronization and configuration change propagation with an overhead
of only 0.44 seconds per service.

INDEX TERMS Cloud models container orchestration, cross-domain, kubernetes, microservices, service
composition, service dependencies, service orchestration, smart cities, topology models, TOSCA.

I. INTRODUCTION
Smart cities have the potential to make urban life more
enjoyable and sustainable by introducing deep integration
with Internet of Things (IoT) technology. The inherent het-
erogeneous and collaborative nature of cities creates unique
challenges for integrating IoT. Problems cannot be solved in
a vacuum: they often require collaboration between multiple
competing industry partners, governments, research institu-
tions and the public. A single end-to-end application can
have data streams crossing multiple management domains
and environments: it can contain components managed by
completely different teams on different networks, clouds and
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data centers. This unique environment acts as a multiplier
to operational complexity, making it hard for developers to
focus on the applications themselves.

One such smart city project is ‘‘City of Things’’ [1],
transforming the city of Antwerp, Belgium, to tackle a wide
variety of challenges such as prediction and detection of
flooding, improving traffic flows, creating a smart grid and
fine-grained monitoring of pollution. Since inter-disciplinary
research, citizen science and industry collaboration are key
here. The speed of innovation and the exploratory nature of
this project only exacerbates the operational challenges, mak-
ing it hard to get a clear picture of application topologies and
how services are connected. Furthermore, due to this nature,
individual services are changed often. Adapting related ser-
vices to these changes often requires manual effort and close
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collaboration between teams. This speeds down the rate of
innovation.

Cloud modelling languages such as the OASIS Topol-
ogy and Orchestration Specification for Cloud Applica-
tions (TOSCA) are a great way to model the full topology
of an application. Cloud orchestrators can then automatically
manage individual services and their relations to each other.
However, these languages often follow an all-or-nothing
approach in that the entire application needs to be modeled in
that language.Moreover, they create an additional abstraction
on top of the existing tools and platforms that developers use.
Since the goal of the City of Things project is to explore
what could be possible in a Smart City context, it is hard
to define requirements and commit to specific technology
choices early in the process. Container managers such as
Kubernetes (k8s) [2] provide very flexible APIs to manage
containerized services. However, dependency-management
and collaboration between services require ad-hoc solutions
that are prone to break. Service meshes can aid in this, but
they require putting additional components such as proxies
in the data path. This overhead is even more damning if
they are only used to solve operations issues. Given the
latency requirements of many IoT applications such as smart
grids, this is not a good fit for Smart Cities projects. Finally,
service meshes provide a general fabric for all services to
communicate with each other, instead of configuring specific
connections based on a topology model of the application.

Thus, given these limitations of the state of the art, the
contribution of this work is to answer the following research
questions.
RQ 1: On an abstract level, what concepts enable mod-

eling and automated management of dependencies between
services?
RQ 2: To what extend does the state of the art support

modeling and automated management of such dependencies
in Kubernetes?
RQ 3: How can existing platforms be extended in order to

support service relationships without hiding the underlying
API of the platform to users and without adding extra com-
ponents in the data path?
RQ 4: What is the orchestration overhead introduced by

adding support for such relationships?
Additionally, this research provides an open source proof

of concept prototype relations orchestrator for Kubernetes.
This paper starts off by exploring how related work addresses
some of the operational challenges of running complex inter-
connected applications and services in Section II. The smart
cities use-case is explained in detail in Section III. Section IV
provides a number of definitions concerning what it means
to have a relationship between two services and Section V
uses these definitions to pinpoint what is lacking in the
state of the art Kubernetes orchestration tools. We propose
‘‘orcon’’, a proof of concept orchestrator on top ofKubernetes
that manages relationships between services in section VI.
We evaluate whether this approach is viable by comparing the
proof of concept with the Juju orchestrator and native Kuber-

netes tools in Section VII. Finally, Section IX concludes this
paper and explains how future work will continue this line of
research.

II. RELATED WORK
Although cloud models are often presented as the solution
to many operational challenges, their creation requires con-
siderable technical and architectural expertise [3]. However,
some of this expertise is already being captured in the form
of cloud computing patterns. Fehling et al. [4] propose a
way to describe the deployment in an abstract way using
patterns, and to translate these patterns into the actual deploy-
ment models, with the goal of significantly reducing the
required knowledge to create cloud models. Martino et al.
use automated reasoning to map between cloud agnostic and
vendor dependent cloud patterns [5]. Unfortunately, these
approaches are not applicable to scenarios where full access
to the underlying cloud infrastructure is required because it
is hidden by the abstractions of the structural models. This
eliminates the possibility of a multilevel approach where
deployments can be modified using both higher-level and
lower-level concepts.

Container orchestration is another recent development
aiming to solve operational challenges. Topics such as
resource scheduling, load balancing, fault tolerance and
autoscaling are supported in most state-of-the art orchestra-
tors [6]. However, higher-level abstractions, and specifically,
the concept of relationships and dependencies is much less
widespread. As Burns et al. note, Google’s decade of experi-
ence with container orchestration has shown that dependency
management is an important issue but the perceived complex-
ity of dependency-aware systems has hampered the adoption
of such systems by mainstream container-management sys-
tems [7].

A. CLOUD MODELS AS AN ABSTRACTION
Cloud models have also been proposed as a way to decrease
the complexity of managing complex cloud applications by
using it as a simpler abstract representation. This has had
some success in the area of big data processing, for exam-
ple [8]. Bhattacharjee et al. continue on this line of thinking
and propose CloudCAMP [9] for domain-specific modelling
so that cloud applications and their dependencies can be
modeled without the need for domain expertise. The authors
show that providing a higher-level abstraction to model cloud
applications indeed reduces the complexity and enhances
the ease of use. However, it requires pre-made building
blocks to provide the higher-level abstractions. TOSCA is a
front-runner in the field of cloud modelling languages and
is used in many domains to simplify operations, however,
because of its versatility and popularity, the risk exists of
proliferation of incompatible TOSCA dialects [10].

B. MUTATING CLOUD MODELS
Finding effective ways to mutate cloud models is impor-
tant in order to enable customization and day-2 operations
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such as maintenance and patching of applications man-
aged with models. Managing dependencies, configuring and
re-configuring services all require changing and updating
cloud models. Palesandro et al. propose Mantus [11] as
an aspect-oriented approach for modifying TOSCA models.
They introduce the TOSCA Manipulation Language as an
‘‘XSLT for TOSCA models’’, making it possible to model
day-2 operations as changes to a cloud model. Some of the
solutions in this space come from the industry, with Kus-
tomize [12] as a prominent example of a language to modify
Kubernetes models. Some tools such as Helm [13] go one
step further by adding features such as package manage-
ment, lifecycle management and dependencies to Kubernetes
models. However, these are heavily criticized even within
the Kubernetes community for conflating too many concerns
in one tool and solving none of the challenges particularly
well [14].

C. RELATIONSHIPS IN MODELS
In order to make it easier to modify and reuse cloud models,
the majority of cloud modelling languages supports creating
topologies, where a cloud application is composed of a num-
ber of self-contained entities connected by relationships [15].
This is particularly relevant in NFV environments. Chaining
of heterogeneous functions is important to both NFV and
IoT platforms, although it is still an open research challenge
in 2019 according to Vaquero et al. [16]. The Juju cloudmod-
elling language, for example, is being used to orchestrate
5G Virtual Network Function (VNF) services [17]. These
relationships are also useful for more data flow-based work-
loads [18], [19].

An important advantage of topology-based cloud mod-
elling languages comes from their ability to reuse compo-
nents by turning a monolithic cloud model into a set of
loosely-connected interchangeable components [18], [20],
[21]. This also supports enhanced collaboration between
multiple parties, for example by function shipping [22] and
can even support a ‘‘marketplace’’-like ecosystem with off-
the-shelf components. Furthermore, these topologies can be
used in order to analyze application topologies, find common
microservice architectural smells, and suggest refactorings,
as shown by Brogi et al. [23].

D. SMART CITY SERVICE ORCHESTRATION
Service orchestration in smart cities is a complex multi-
faceted issue. Sivrikaya et al. tackle cross-domain service
composition by proposing the ISCO framework [24], a multi-
agent-based middleware framework, which builds on top
of the JIAC agent platform [25]. Not addressed by ISCO,
however, is the issue of composition of existing polyglot
services running in container orchestration platforms such as
Kubernetes. The bIoTope project aims to build an ecosystem
to create ad hoc and loosely coupled information flows in
a smart cities context [26]. It introduces several building
blocks in order to enable standards-based open communica-
tion and proof of concept implementations of this framework

as an alternative to the traditionally proprietary and vertically-
oriented ecosystems. The lower-level concerns of modeling,
deployment and reconfiguration of containerized services
based on compositions are not in the scope of the bIoTope
project, however. The SWITCHworkbench [27] offers a solu-
tion for managing the entire life cycle of time-critical appli-
cations in general. Using TOSCA as a modeling language,
it supportsmanagement of applications consisting of complex
topologies of microservices. Although it supports deploying
applications to Kubernetes, it hides the entire Kubernetes API
behind the TOSCA abstractions, making it hard to integrate
with the wider Kubernetes ecosystem.

III. THE USE-CASE
As explained in the introduction, the City of Things
project [1] is a collaboration between industry, academia and
government with the goal of using IoT to make urban life
more enjoyable and sustainable. As with any smart cities
project, this creates a complex environment spanning multi-
ple management domains that has to support multiple tenants
with varying levels of collaboration between them. At the
core of this setup, shown in Figure 1, sits Obelisk [28],
[29]; a platform for building scalable applications on IoT
centric time series data. Obelisk is specifically built to support
the heterogeneous nature of smart cities. Heterogeneity in
protocols and sensors is supported by using a flexible REST
interface and an integration layer capable of translating awide
variety of IoT protocols. Smart cities also introduce a second
form of heterogeneity however, namely in terms of autho-
rization, data access and data ownership. Since smart cities
require collaboration between multiple parties who are direct
competitors to each other, there are very stringent require-
ments on which data gets shared to which exact parties.
Obelisk supports this using deeply integrated multi-tenant
isolation with granular access controls in the entire architec-
ture. The Obelisk and City of Things projects are explained
in much more detail in previous work [1], [28].

It became clear early in the project that there is a need
for low-latency processing and transformation of the data
captured by Obelisk. For this reason, the solution includes a
multi-tenant Kubernetes-based Platform as a Service (PaaS)
co-located with the Obelisk core. This allows customers
to run event-based containerized applications that ingest
event-based data streams from Obelisk using a Server-Sent
Events (SSE) API, process them, and load them into either
Obelisk or external platforms. Model-based management of
these applications and their connections is the main focus of
this paper. Figure 2 shows a simplified and zoomed-in view of
the use-case where a number of different applications running
inside of the Kubernetes PaaS connect to the SSE server. The
core team develops and manages the Obelisk core, a number
of different app teams develop applications using Obelisk’s
SSE API, and the platform team manages the Kubernetes
cluster where the applications run. None of these parties has
full knowledge and access to all the parts of the entire end-
to-end application.
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Automated model-based deployment and management of
the applications is key here for a few reasons. First of all,
it allows app teams to get started with the data as soon
as possible and in an independent manner. Secondly, if the
automation system propagates changes without human inter-
action, then all teams have the freedom to modify and iterate
on their part of the software without coordination with other
teams. Finally, because of the complexity of interconnections
between different components, model-based management is
key for its ability to retain a global view of the complete
topology. This requirement is partly fulfilled by Kubernetes
itself. It falls short, however, in modeling and managing the
relationships between individual components. For example,
it is not possible for Kubernetes to define that one service
has a relationship to another, automatically configure the
services depending on that relationship, and reconfigure the
services when the service on the other end of the relationship
changes. Moreover, the heterogeneity of stakeholders in a
smart cities context adds additional challenges to service
orchestration. First of all, it is very hard to standardize on
a single methodology and toolset to deploy and manage
applications. Although each application has components run-
ning in Kubernetes, these are often deployed and managed
differently, depending on the stakeholder. Secondly, it is not
possible to have a single stakeholder deploy and manage the
entire end-to-end application as a single model because each
application crosses multiple management domains.

Due to the technically challenging nature of this project,
developers often use advanced features of Kubernetes in
order to fine-tune how the applications are managed, scaled
and upgraded. This includes integration with many tools in
the Kubernetes ecosystem such as service meshes, custom
resources and operators. Many of these tools either extend the
Kubernetes API with new functionality or use the Kubernetes
API to manage and update the application models. As such,
using these tools requires direct access to the Kubernetes API
and the model of the application. It is thus vital that any
solution does not impede the developer’s access to the API
so they can continue benefiting from the wider Kubernetes
ecosystem. Similarly, the solution itself should also integrate
into Kubernetes itself in such a way that existingmanagement
tools and workflows seamlessly integrate, showing the need
for a Kubernetes-native solution.

IV. CONCEPTS OF A SERVICE RELATIONSHIP
This section provides a definition and an extensive expla-
nation of a service relationship and related concepts. The
purpose of this is two-fold. Firstly, this explanation is used
throughout this research to evaluate the state of the art. Sec-
ondly, this chapter forms a blueprint for how to fully sup-
port service relationships in orchestration systems, answering
RQ 1. The section starts with the definition and proceeds to
explain each part of the definition in detail. The terms in bold
are used further in this work to refer back to specific parts of
the definition.

Definition 1: A service relationship is an explicit typed
connection between isolated and independent service models
that enables exchange of configuration information, synchro-
nization of lifecycles and runtime communication.

In the most simple sense, a relationship means that two
services are connected with each other. This connection can
have up to three distinct components.

1) The communication component refers to the inter-
action of the services at run-time. Example: The SSE
client communicates with the server using the HTTP
SSE protocol.

2) The lifecycle component refers to how the lifecycles of
related services are dependent on each other. Example:
The SSE client can only start after the SSE server has
started.

3) The configuration component refers to how the con-
figuration of one service uses information from another
service. Example: the SSE client app is configured with
the URL of the SSE server.

Each relationship has one or more of these components.
The relationship between a web service using an SSL cer-
tificate and the certificate authority (CA), for example, has a
lifecycle and a configuration component: the web service can
only start after the CA is available and the web service is con-
figured to use a certificate signed by the CA. This relationship
does not have a communication component, however, since
there is no communication between the webserver and the CA
at runtime.

Relationships are explicit in the sense that they are defined
in the model, rather than inferred from service configuration
or runtime behavior. This important property makes sure
operators have a clear view on the topology of their appli-
cation, and automation tools have a straightforward way to
reason about it.
Definition 2: An interface is the directional type of a

service relationship, describing the supported exchange of
information and coordination between services.

The interface specifies which components a relationship
has andwhat each component entails. It defines the following.

• How the lifecycles of the two services are connected.
• The protocol used for runtime communication between
the services.

• What configuration information is shared between the
services.

• How configuration information is presented to each ser-
vice.

An interface is directional in the sense that the service on
each end of a relationship acts differently. As a result of this,
an interface can be broken down into two sides: one for each
service.

The type of a relationship is defined in an interface: it
specifies which components a relationship has and what each
component entails. It defines the following.
Definition 3: A role is the part of an interface describing

the supported relationship behavior of a single service.
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TABLE 1. Comparison of relationship support in Kubernetes solutions.
Although TOSCA-based solutions like Juju provide the full functionality of
service relationships, they fall short in allowing users access to the full
functionality of Kubernetes.

Two roles exist in each relationship: the provider and the
consumer. One service provides the interface while the other
service consumes it. A relationship is only possible between
a service that supports the provides role and one that supports
the consumes role of the same interface.

Relationships are created between isolated services in the
sense that model and state are service-scoped. By default,
information in the service scope is not available to other ser-
vices and cannot be referenced in their models. Information
can only be made available to related services by including it
in a role. This behavior ensures all service relationships are
explicit and completely described by the interface.

Furthermore, each related service is independent, mean-
ing each service model can be managed as an independent
entity, by an independent entity. This makes it possible for
service relationships to cross administrative boundaries form-
ing the basis for collaboration between independent parties.

V. RELATIONSHIP SUPPORT IN KUBERNETES
This section evaluates the current support for relationships in
Kubernetes based on the definitions of the previous section.
Table 1 shows a summary of this evaluation, presenting the
answer to RQ 2.

A. NATIVE KUBERNETES
In Kubernetes, the desired state of a cloud application is
modeled using object specs. Although it is possible for two
services to communicate with each other, these connections
are not explicit in the object specs. The object spec speci-
fies a unique name for each service. All containers in the
same namespace as the service can use this name to estab-
lish runtime communication. In order to know which ser-
vices will actually establish this communication, an operator
would have to trace network traffic and/or inspect the code
and declarations of every single service to see which ones
initiate communication, as proposed by Muntoni et al. [30].
Although this functionality enables the communication com-
ponent of a relationship, it does not support a lifecycle
component nor a configuration component. Moreover, rela-
tionships are not explicit in the model and there is no notion
of interfaces or relationship scope.

B. HELM
Helm is a package manager for Kubernetes. The desired state
of an application is modeled in a Helm chart; a combination
of templated Kubernetes object specs. Helm provides tools
to fill in these templates, deploy the resulting objects and
manage their lifecycle. Because these templates are based on
Kubernetes object specs, Helm users can take full advantage
of the Kubernetes API. Despite that, Helm itself is not part
of the Kubernetes API. As a result, tools built to manage
Kubernetes applications cannot take advantage of Helm.

Helm makes it possible for a chart to explicitly define its
dependencies by specifying subcharts. As the name implies,
this is an inherently hierarchical relationship requiring the
subchart to be deployed as part of its parent, breaking the
independence requirement stated in the previous chapter. As a
result, this approach requires an operator who has complete
authority over the entire model spanning all connected ser-
vices. This does not allow creating services that span admin-
istrative boundaries as explained in Section III.
Even though relationships in Helm are explicit, they are not

typed. Although the model explicitly states which services
are connected, it does not specify how they are connected.
An operator needs to ‘‘reverse-engineer’’ this information by
inspecting the template and checking whether services are
configured to communicate with each other, and inspecting
the services themselves to see if they have a hard-coded
connection to another service. Furthermore, Helm dependen-
cies only provide one-directional isolation: a parent chart can
override any values of the subchart while a subchart has no
access to the parent chart. Lastly, these dependencies do not
influence the lifecycles of the services. When Helm deploys a
service, it does not wait until the dependencies of that service
are running.

C. SERVICE MESHES
A service mesh is a relatively new concept that seeks
to improve communication between services by providing
observability, increased security and failure recovery for
requests between services. Istio [31], for example, imple-
ments a service mesh to connect containers running in Kuber-
netes. Conceptually speaking, service meshes aim to solve
problems of the communication component of relationships,
but they themselves cannot cover other aspects of a rela-
tionship between services because they provide no way to
influence the lifecycle of connected services nor can they
change the configuration of different services. Although ser-
vice meshes can be useful to discover the topology of a
microservice application, they infer this from the runtime
behavior of services, instead of any explicit relationship defi-
nition. Furthermore, it is up to the administrator to make sure
that connected services are actually compatible since service
meshes do not have a way to declare and check the type of
relationships.

A number of distributed tracing and observability solu-
tions, such as Dynatrace [32], exist for Kubernetes. Much
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like service meshes, these applications make it possible to
intelligently infer dependencies from the runtime behavior
of microservice applications and present this dependency
information to users as a topology model. Much like service
meshes, however, these also suffer from the same issues: they
provide no way to manage the lifecycle and configuration of
services based on a topologymodel. In a sense, it’s the reverse
of our goal: instead of changing run-time behavior to conform
with a model, it creates a model based on run-time behavior.

Another, more practical issue specific to service meshes
is that these are often implemented using sidecar proxies.
These add latency and increase the resulting complexity of
a deployment. Moreover, these proxies often only support a
limited number of communication protocols.

Although service meshes and distributed tracing solutions
are a useful development, they do not provide any additional
features over Kubernetes in terms of service relationships as
defined in Section IV. For this reason, we see them as com-
plementary to service relationships. Thus, the remainder of
this research does not regard these as an alternative solutions
but evaluates whether different solutions can integrate with
them by determining whether the model allows direct access
to the Kubernetes API.

D. TOSCA-RELATED SOLUTIONS
A number of different initiatives are working towards
TOSCA-based solutions to manage applications running on
top of Kubernetes. Projects with an industry background such
as Juju and Cloudify provide full-featured orchestrators with
Kubernetes support. This integration also has considerable
interest from academia with a number of recent publications
such as Chareonsuk et al., proposing a TOSCA to Kuber-
netes translator [33], Bogo et al. introducing a toolchain for
deploying multicomponent applications using TOSCA [34],
and Borisova et al. examining how to adapt TOSCA for
Kubernetes deployment [35].

Because of TOSCA’s exhaustive support for relationships,
all these tools support explicit and typed modelling of com-
munication [36], lifecycle [37] and configuration components
of a service relationship. Moreover, individual components
in TOSCA are isolated and a number of TOSCA implemen-
tations, such as Juju, support creating relationships between
completely independent models. As a result, it is possible in
Juju to create relationships crossing administrative bound-
aries, as required by the use-case explained in Section III.
Even though most of these TOSCA-based solutions have
complete support for service relationships as defined in
Section IV, there are two issues that make them unsuitable
for our use-case. The first one is that it is often an all-or-
nothing approach: taking full advantage of this relationship
functionality is only possible if the entire application is mod-
eled using the TOSCA-based platform. But this is not always
feasible, as our use-case shows: many collaborators use their
own tools and methodologies to manage their infrastructure
and are hesitant to change. The second issue is that TOSCA
adds an additional abstraction on top of Kubernetes, which

hides Kubernetes itself. Such abstractions, when done well,
can simplify complex platforms but they have the downside
that they often do not support all the features of Kubernetes
itself and that they make it hard to reuse existing Kubernetes
tools and expertise. Next to this, it also makes migrating
to the new abstraction more difficult because there is no a
clear migration path available and it is difficult to gradually
transition to the new abstraction. For the remainder of this
paper, we will use Juju as a representative TOSCA-based
solution.

VI. IMPLEMENTATION
This section presents the open source orcon orchestrator [38]
developed as part of this research. The motivation behind the
development is three-fold. First of all, this implementation
allows us to check the validity of the concepts and definition
of service relationships presented in Section IV and deter-
mine whether these are a sufficient answer to RQ 1. Secondly,
this implementation shows how to extend an existing platform
to support service relationships without hiding the underlying
platform API, answering RQ 3. Finally, this implementation
is used to answer RQ 4 by evaluating its performance in
Section VII.
The orcon orchestrator injects the concepts of relation-

ships, interfaces and roles into the Kubernetes API. By using
injection, orcon avoids creating an additional layer of indi-
rection and enables users to keep working with the same tools
and techniques they are used to.

Kubernetes works based on the desired state principle:
users declaratively describe the desired state of the system
by adding and changing object specs in the Kubernetes API
server. Kubernetes services then take appropriate action to
get the system into that state and reflect the current state
in the object status. The object status thus describes what
is actually set up in the cluster in order to meet the needs
described in the object spec. Orcon allows users to describe
desired relationships between objects by adding additional
information to the object specs. Two orcon services monitor
the API server for these descriptions and take the appropriate
actions to establish the desired relationships. Sincemodifying
object specs is already supported by means of the Kubernetes
API, all Kubernetes tools that support this API automatically
support orcon too.

The next subsection explains how the conceptual model of
a relationship from Section IV is implemented in the existing
Kubernetes API in order to allow users to describe desired
relationships between objects. The remaining subsections
explain how the orcon services extend the Kubernetes control
plane in order to establish those relationships.

A. REPRESENTING RELATIONSHIPS, INTERFACES AND
ROLES IN KUBERNETES OBJECTS
Orcon adds a number of extensions to the schema of Kuber-
netes object specs that are directly mapped to the con-
ceptual model of a relationship detailed in Section IV.
For these extensions, orcon uses Annotations, which allow
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adding arbitrary complex metadata to any object, andCustom
Resources, which allows adding new types of objects to the
Kubernetes API.

The roles and interfaces supported by an object are
described using the orcon.dev/provides and orcon.dev/
consumes annotations. Each annotation contains a comma-
separated list of interface names of which the object sup-
ports that specific role. These annotations are used by
orcon in order to type-check relationships and in order
to figure out the interface of a relationship between two
objects.

The relationships themselves are described by adding the
annotation orcon.dev/relationship to the consumer end of a
relationship. It supports a comma-separated list of object
names so that a single object can have multiple relationships.
Each object name in this list specifies the request for an
individual relationship between the object in question and the
named object. Note that in the Kubernetes model of ‘‘desired
state’’, these annotations denote the desire for a relationship
between two objects, not necessarily an established rela-
tionship. Establishing a relationship is only possible if the
specifying object supports the consumer role of an interface
that the named object provides.
These three annotations are enough to describe the intent

for a basic relationship between a Kubernetes Deployment
and a Kubernetes Service. Below is an example of a Deploy-
ment consuming the sse and mysql interface, which has a
relationship to an object named sse-endpoint and an object
named mysql-db.

In such a basic relationship, the interface is inferred implic-
itly based on the default orcon relationship template and the
name of the interface. The default interface template is as
follows.

• The lifecycles of the two objects are connected in such a
way that the Deployment starts after the service becomes
available.

• Orcon assumes both objects use the same protocol for
communication.

• The providing Service shares its URL.
• The service URL is presented to the consuming Deploy-
ment as an environment variable with the same name as
the interface itself.

Since such an interface is very limited in its usefulness
and provides only rudimentary type-checking, orcon allows
users to explicitly define interfaces by specifying both roles
of an interface using two custom resources: ProviderConfig
and ConsumerConfig.
The ProviderConfig explains how to enact the provider

role of an interface. It defines which values should be

FIGURE 1. High level overview of the Obelisk city of things architecture.
Obelisk provides uniform and secure access to heterogeneous IoT data to
multiple tenants with varying levels of cooperation. An in-house PaaS
allows tenants to add additional processing functionality close to the
data.

extracted from the providing object. The valueLocationsmap
in a ProviderConfig object describes for each relationship
key, where to extract the associated value from. These values
can come from the object spec, from the object state, a Secret
or a ConfigMap.

Below is an example of a ProviderConfig mapping three
relationship keys to a field in the object spec and two secrets.

Important to note here is that, using this method, a pro-
viding service does not actually have to run inside of the
Kubernetes cluster itself. The only requirements is that a
representation of the service is present in the API server
in the form of an object. The above example uses the
externalName functionality of Kubernetes Service objects,
which allows representing external services in Kubernetes
objects.

TheConsumerConfig explains how to enact the consumer
role of the relationship. It defines how the relationship values
should be injected into the consuming object and what kind
of lifecycle dependency the consuming object has on the
providing object.

• The lifecycledep key describes the lifecycle dependency
between the provider and the consumer of a relationship.
At the moment, the only supported lifecycle dependency
is start, denoting that the consuming service needs to
start after the providing service. This field also accepts
the string none, denoting there is no lifecycle depen-
dency.
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FIGURE 2. Different parts of the application run in different
administrative domains, shown in the figure using dashed lines. Each
third party team is a different tenant on the Kubernetes cluster. The
platform team manages the cluster and its connection to external
infrastructure. The core team manages an external SSE server.

• The keyconfig map describes for each relationship
key, how to inject this key into the consuming object
using injectionMethod. Orcon currently supports inject-
ing relationship values using environment variables and
mounted volumes.

Below is an example of a ConsumerConfig mapping three
relationship keys to two environment variables and a volume.
It also describes that the object should only start after the
related object has started.

Finally, objects specify which configuration they use for a
certain interface with the optional orcon.dev/config annota-
tion.

B. INJECTING RELATION DATA
Figure 3 shows the architecture of the orcon services respon-
sible for taking the appropriate actions to establish and man-
age relationships. The extraction and injection of relation data
is managed by the Relations Controller. This service imple-
ments the Kubernetes Controller pattern [39], [40] in order
to plug into the Kubernetes management plane. Controllers
are Docker containers running inside of the Kubernetes clus-
ter that use the Kubernetes API to observe and modify
resources.

The relations controller consists of three parts: A Deploy-
ment Watcher, a Service Watcher and a Relations Cache.
The Relations Cache maps the names of providing objects
to objects that request a relationship to them. The sequence

FIGURE 3. Architectural overview of orcon. The relations mutating
Webhook injects lifecycle dependencies before the objects are persisted
in the API server. The relations controller modifies deployments and
services in order to establish and update requested relationships.

FIGURE 4. The relations mutating Webhook injects lifecycle
dependencies before the objects are persisted in the API server. The
relations controller modifies deployments and services in order to
establish and update requested relationships.

diagram in Figure 4 shows that the Deployment Watcher
updates the Relations Cache every time a Deployment gets
added. The Relations Cache is then used by the Service
Watcher to figure out which Deployments to update when a
Service changes. The ProviderConfig and ConsumerConfig
are used to determine which specific actions to take and
how to update related objects. These watchers perform very
similar functionality when Deployments and Services change
after creation.
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C. INJECTING LIFECYCLE DEPENDENCIES
The orcon Relations Mutating Webhook is responsible for
injecting lifecycle dependencies into Deployments as shown
in Figure 3. This service implements theMutating Admission
Controller pattern [39], [41] in order to have the ability to
change Deployments before they are persisted in the API
server. Thus, the lifecycle dependencies are injected before
the Kubernetes services responsible for deploying Pods can
view them. This avoids a race condition where Kubernetes
deploys Pods before the lifecycle dependencies are injected.

The lifecycle dependencies themselves take the form of
Kubernetes init containers that wait until they receive a signal
that the dependent object has started. Since themain container
of a Pod will only run after all init containers have exited,
adding such an init container effectively halts the execution
of the main container until the lifecycle dependency is met.
This way, orcon makes sure that all objects start in the correct
order.

Figure 4 shows the sequence of the orcon admission con-
troller when a new Deployment is created. The controller
checks if the Deployment consumes an interface. If so,
the controller injects the orcon Init Container into the pod
template of the Deployment and configures it according to
the requirements of the interface. As a result, the application
containers of that Deployment will only start after the relation
information is added by the relations controller. Important to
note here is that the relations controller will only spring into
action when a valid relationship is requested and is possible
between two objects. The admission controller, however, will
inject the lifecycle dependencies immediately, even if the
requested relationship is not possible. This ensures that, in the
event the providing object is not yet present in the API server,
the consuming object will not start. If an object has a lifecycle
dependency on another object, it should not start if that other
object is not present.

Although it is technically possible for the Admission Con-
troller to inject relationship data, orcon avoids it to reduce
latency because Admission Controllers block the acceptance
of an object until they are finished. Regular controllers, on the
other hand, work concurrently with other operations on those
objects thanks to Kubernetes’ optimistic concurrency con-
trol [7], [42].

D. OPTIMIZATION
As explained in Section VI-A, orcon heavily uses Kuber-
netes object annotations to store metadata. Since annotation
contents are not indexed by the Kubernetes API, it is not
possible to select objects based on them. In order to find all
objects which consume a certain relationship, orcon needs
to request all objects having any relationship and manually
search through the annotations itself.

The first step in reducing the overhead of this process is to
cache information of related objects locally in the controller
so the Kubernetes API doesn’t have to be contacted in order
to retrieve information. For this, orcon uses the SharedIndex-

Informer of the Kubernetes controller SDK. By accessing this
eventually-consistent cache directly, orcon avoids expensive
calls to theKubernetes API. Since theKubernetes API itself is
also an eventually-consistent system, orcon natively supports
this paradigm without modifications.

The second step in reducing the overhead of object annota-
tions is the RelationsCache. This orcon-specific data structure
maps the names of providing objects to cached versions of all
objects which consume a relationship with them. This way,
when a providing object is updated, finding all objects to
whom the change needs to be propagated is an O(1) operation
which happens in the controller itself without contacting the
Kubernetes API. Every time a relationship changes, orcon
updates the RelationsCache to reflect those changes.

The controller itself currently does not support any par-
allelism. All updates to Kubernetes objects are processed
sequentially, one by one.

VII. EVALUATION
This evaluation compares the performance of the orcon
orchestrator presented in the previous section to regular
Kubernetes and to Juju on Kubernetes, in order to answer
RQ 4.

The leftmost part of Figure 5 shows the evaluated con-
ceptual topology. This test case is based on the use-case
described in Section III: a number of separate app teams
each provide a single application that runs on the Kubernetes
cluster managed by the platform team and connects to a single
eternal SSE server managed by the core team. The grey and
dotted parts of Figure 5 show which components are added
with each additional app team.

The sse relationship in this topology has the following
components:

• Communication: The SSE client connects to the SSE
server to receive and process events.

• Lifecycle: The SSE client can only start after the SSE
server has started.

• Configuration: The SSE client receives the DNS name
of the SSE server.

Although orcon supports much more complex relation-
ships and topologies, this evaluated use-case is intentionally
simplified for clarity purposes.

A. SETUP
All performance benchmarks are executed on a vanilla
Kubernetes cluster from the Charmed Distribution of Kuber-
netes (CDK) version 1.14.1 [43] connected to a Ceph cluster
for persistent storage. All software is deployed in virtual
machines on a VMWare ESXI cluster [44] and managed
by Juju 2.5.4 [45]. Each solution is tested with an increas-
ing number of consumers, from 5 to 55 with an increment
of 5. Each combination is tested 20 times. The graphs show
all measurements as individual dots and crosses. The full
source code for the different implementations, the evaluation
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FIGURE 5. Overview of the conceptual topology of the evaluated use-case and the resulting topologies of its implementation using each evaluated
solution. The dotted graphics show the components needed to add an additional consumer.

and the full specification of the test cluster is available on
GitHub [46].

B. EVALUATED SOLUTIONS
These evaluations compare four different solutions to the
use-case described in Section III.

1) The ‘‘orcon’’ solution deploys the consumers as
described in Section VI.

2) The ‘‘pure k8s’’ solution deploys the consumer con-
tainers by submitting a deployment.yaml using the
kubectl command-line client. The URL is specified
using a ConfigMap. The URL is updated by submitting
a new deployment.yaml file with the updated URL.

3) The ‘‘Helm’’ solution deploys the same setup as the
‘‘pure k8s’’ solution but the Deployment is templated
so that the number of consumers and the URL are
specified using Values.

4) The ‘‘Juju’’ solution deploys the consumers using
Kubernetes Charms. Each Consumer is a k8s charm
that deploys the consumer container and the SSE ser-
vice is represented by a proxy charm that contains the
URL to the SSE service. This URL is transferred to the
consumer charms using a Juju relationship. The URL
is updated by changing the configuration of the SSE
service charm, which then sends the updated URL to
all the consumer charms, which in their turn update the
PodSpec.

Figure 5 shows the evaluated conceptual topology and
the resulting implementation in each solution. The specific
models and implementations of each solution are available
on GitHub [46].

Note: even though Juju is used to manage the Kubernetes
cluster itself, only the ‘‘Juju’’ solution uses Juju for the
deployment of the consumers. The other solutions simply
deploy on top of the Juju-managed Kubernetes clusters.

C. FUNCTIONAL EVALUATION
With the goal of comparing the functionality of orcon to
the state of the art, we used BPMN 2.0 choreography dia-

grams to model the interactions required to deploy and update
the aforementioned setups. For clarity purposes, interactions
where at least one party is a person have a solid border,
interactions where both parties are people have an icon in the
description, and interactions solely between software systems
have a dashed border. We will mainly focus this evaluation
on interactions involving humans since those have a signif-
icant penalty in terms of latency and potential for mistakes.
The performance of the machine-to-machine interactions are
benchmarked in Section VII-D.

Figure 6 shows the processes required to create a new
app in each solution. These processes assume the appropriate
actions have already been taken to add the SSE server to
the setup. Helm has the significant downside that it requires
the platform team to submit the application on behalf of the
app team. Due to Helm’s lack of independence in relation-
ships, the entire setup, including the service and existing
applications from other teams, needs to be managed as a
single entity and only the platform team has the permissions
to do this.

Juju has the downside that the app team cannot interact
with Kubernetes directly, Juju serves as an intermediary. This
shows the advantage of the more integrated approach of
orcon: it adds additional abstractions without an additional
abstraction layer. Although the Juju solution requires three
manual interactions instead of two, this is simply due to
Juju’s mandatory security concerning relationships that cross
management domains. This difference would not exist if all
solutions provided the same level of security.

Figure 7 shows the processes required to update an existing
app. Here too, Helm suffers from its lack of independence: the
app team needs to ask the platform team to update the app on
their behalf. Not only does this prevent the app team from
interacting with Kubernetes directly, it adds an additional
manual step in the process. Juju also has the same downside
that its additional abstraction layer prevents the app team
from interacting with Kubernetes directly.

Figure 8 shows the role relationships can play in automated
response to changes. In orcon and Juju, only the core team has
to perform a manual interaction to update the service. The
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FIGURE 6. Like any TOSCA-based solution, Juju has the downside that
users cannot interact with Kubernetes directly, Juju serves as an
intermediary.

FIGURE 7. The Helm setup requires the platform team to change an
App because it manages the entire setup as a single entity.

system then automatically propagates changes to the related
Deployments.While Helm dependencies could offer a similar
function, it still requires an additional manual action because
only the platform team has the permissions required to use
it. Juju still has the same downside that the Kubernetes API
is hidden from the users. The Pure Kubernetes setup requires
the most manual actions due to having no automated way to
propagate changes.

D. PERFORMANCE EVALUATION
With the goal of investigating the overhead of orcon,
we benchmarked the time it takes, after a service is updated,
to propagate that change to all Deployments. Note, however,
that this benchmark does not take into account steps that

FIGURE 8. With the orcon and Juju setup, the relationship causes the
service change to propagate automatically to connected apps without
human interaction. The yellow interactions in these diagrams are
benchmarked in the performance evaluation.

require human-to-human interaction, so for the ‘‘helm’’ and
‘‘pure k8s’’ solutions not all steps required to update a service
are benchmarked. The steps included in this benchmark are
highlighted in yellow in Figure 8.
The orcon solution proposed in this paper propagates

the URL change substantially quicker than Juju. As Fig-
ure 9 shows, orcon propagates the change to 55 consumers
in 48 seconds on average, while Juju requires 146 seconds.
The ‘‘Juju agents’’ plot in this graph shows how long it
takes for the Juju agents to become ready to process a new
change. There is a period of 100 seconds between when Juju
updates 55 consumers andwhen the agents are ready to accept
new changes. This is because, for stateless services, the Juju
management agent lifecycle is connected to the pod lifecycle.
This means that each time a management agent updates a
pod, both the pod and the management agent itself shut down
and are replaced. As a result, there is a long period after
the consumers are updated where the new Juju agent cannot
accept new changes because it is initializing. The pure k8s
and orcon solutions do not have such a cooldown period:
these immediately accept new changes after updating the
consumers.

Figure 10 dives deeper into the difference between our
orcon approach, Helm and pure k8s. Since the pure k8s and
Helm solutions do not have lifecycle management, the graph
also includes a plot of change propagation duration of
orconwithout lifecycle management labelled ‘‘orcon without
initc’’. This shows that for 55 consumers, the average addi-
tional overhead of lifecycle management using init containers
is nine seconds. Although it appears from this graph that the
Helm and ‘‘pure k8s’’ solutions are significantly faster than
orcon, this does not take into account the manual steps that
require human-to-human interactions. These interactions are
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FIGURE 9. The orcon orchestrator proposed in this paper is significantly
faster than Juju in propagating the new URL of the SSE server to the SSE
consumers. Moreover, after all consumers are updated, orcon is
immediately ready to accept new changes while Juju requires a cooldown
period during which it cannot propagate URL changes.

FIGURE 10. The init container used by orcon for lifecycle management,
adds on average an additional 9 seconds to the time for a URL change in
the SSE server to be propagated to all consumers.

error-prone and introduce a highly-variable latency that can
easily exceed the less than thirty seconds delay between orcon
and the state of the art.

Figure 10 also shows that Helm, on average, performs
slightly better than the ‘‘pure k8s’’ solution. There are a
number of possible explanation for this behavior. The ‘‘pure
k8s’’ solution uses a simple method to resubmit the entire
application, including all the components that did not change,
directly to the Kubernetes API. Helm, on the other hand, has
intimate knowledge about what exactly changed due to the
use of Helm Values. This might cause helm to interact with
the Kubernetes API in a smarter way so as to only change
the objects that are actually changed. This behavior was not
investigated further because the main focus on this paper is
on the performance of orcon compared to the state of the art.
Performance between the different state of the art solutions
themselves is of less significance to this research.

E. SUMMARY
Table 2 shows a summarized comparison of orcon with the
state of the art. For every process, orcon and Juju have
the lowest number of human-to-human interactions required.
Although Helm succeeds in reducing the number of human-
to-human interactions needed to update a service, it still
requires one such interaction because of Helm’s monolithic
approach to dependencies.

TABLE 2. The evaluation shows orcon provides all the benefits of service
relationships on Kubernetes while completely integrating into the
Kubernetes ecosystem and providing much better performance than Juju.

Orcon has an order of magnitude less overhead compared
to Juju. Although orcon appears to have a slight overhead of
less than half a second per pod compared to Helm, this is
negated by the previously shown fact that helm still requires
a human-to-human interaction for this process.

Although Juju makes dependencies explicit and allows the
app team to update their service independently of other teams,
it adds an additional abstraction layer that makes it impossible
to use the full power of the Kubernetes API. Because Juju
and Helm objects are not modeled in the Kubernetes API
server itself, it is not possible to use other Kubernetes tools
to create and manage these objects. Orcon, on the other hand,
allows users to directly access the Kubernetes API server and
is completely implemented inside of it. The power of this
last feature is shown by the fact that other Kubernetes tools,
including Helm, can be used to interact with orcon. Orcon is
thus not strictly a competitor to Helm, since orcon can be used
to enrich a Helm-based approach with true relationship-based
dependencies.

VIII. DISCUSSION
RQ 1 asks ‘‘On an abstract level, what concepts enable mod-
eling and automated management of dependencies between
services’’

These concepts are laid out in Section IV, starting with
the definition of service relationships: ‘‘An explicit typed
connection between isolated and independent service models
that enables exchange of configuration information, synchro-
nization of lifecycles and runtime communication’’. Further-
more, the concepts ‘‘interface’’ and ‘‘role’’ described in that
section are required to model the full extent of both active
and possible dependencies between services in a way that
both humans and machines can easily understand and reason
with them. By implementing these concepts in orcon and
evaluating its functionality, we show these concepts indeed
make it possible to model a service relationship and take full
advantage of its benefits.

133398 VOLUME 9, 2021



M. Sebrechts et al.: Service Relationship Orchestration

RQ 2 asks ‘‘To what extend does the state of the art support
modeling and automated management of such dependencies
in Kubernetes?’’

Using the concepts of the previous answer, we evaluated
the state of the art in Section V and came to the conclusion
that, although TOSCA-based solutions offer full support for
service relationships on Kubernetes, they fail to allow users
access to the underlying orchestrator.

RQ 3 asks ‘‘How can existing platforms be extended in
order to support service relationships without hiding the
underlying API of the platform to users and without adding
extra components in the data path?’’

Section VI implements orcon shows how to use the intro-
duced concepts for implementing service relationship support
while maintaining user access to the underlying orchestrator.
The orchestrator does this by injecting additional abstrac-
tions into the Kubernetes API, instead of wrapping it. As a
result, orcon users can still take full advantage of the Kuber-
netes API, and existing Kubernetes ecosystem tools can be
used to drive orcon. The orcon framework actively resolves
dependencies between services and automatically propagates
changes in them. The evaluation in Section VII includes
a confirmation of this functionality and its advantages for
developer workflows.

RQ 4 asks ‘‘What is the orchestration overhead introduced
by adding support for such relationships’’

Section VII shows that, although adding these concepts
adds a slight orchestration overhead of 0.44 seconds per
consumer compared to manual configuration, it removes the
need for manual human-to-human interactions, ultimately
reducing the total time needed to update services. Moreover,
the overhead of orcon is an ten times smaller than that of Juju.
This evaluation also show that resolving lifecycle dependen-
cies at the container orchestration level also adds additional
overhead. It is thus advised to modify the services to resolve
their own lifecycle dependencies at runtime. This has the
added benefit that it makes the services more resilient to
dependencies breaking after the initial deployment.

Although Juju has much more overhead compared to
orcon, it’s important to note its much broader feature-set. Juju
supports automatic cross-cluster relationships, allows exten-
sive modeling and management of services in and beyond
Kubernetes and is network and storage-aware. In cases where
orcon’s deep integration within the Kubernetes ecosystem is
not needed and standardization on a single management tool
is possible, Juju can be considered a powerful alternative to
add relationship support to Kubernetes. Interesting to note is
that, according to our evaluation, about half of the overhead of
Juju is caused by a single design decision, namely replacing
management agents when the pods they manage restart. This
suggests the performance differences between Juju and orcon
might not be inherent to Juju’s expanded feature-set.

IX. CONCLUSION
This research proposes orcon, an orchestrator that adds native
support of relationships to Kubernetes. It is the first orches-

trator that does so without hiding the underlying API and
integrating in a way that supports the existing ecosystem
of kubernetes tools. Our evaluation shows orcon propagates
change at an average of 0.44 seconds per service, an order of
magnitude faster than the state of the art.

An interesting future research opportunity is to investigate
the overhead difference between orcon andHelm to shed light
on possible optimization routes. Another interesting route
to explore is to save historical relationship data in order
to support easy rollback to previous configurations. This is
not possible in the current version of orcon as relationship
updates are destructive in the sense that they overwrite previ-
ous values. A third opportunity lies in support for Federated
Kubernetes clusters. Although the current implementation
technically allows creating a relationship to a service in
another Kubernetes cluster using the externalName function-
ality explained in Section VI, this still requires manual mod-
ification of representative Service objects. An improvement
in this area would allow completely automated management
of application topologies spanning multiple Kubernetes clus-
ters, opening the door for full topology-based management
from the cloud to the edge. Finally, orcon currently only sup-
ports relationships between equal peers. Investigating support
for hierarchical relationships is an interesting path forward as
it could enable the creation of higher-level abstractions inside
of the Kubernetes API.
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