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ABSTRACT Indoor localization has become one of the fundamental services that is required in a diverse
set of applications these days, such as patient monitoring and smart parking. Highly accurate localization
techniques impose high latency and high energy consumption on the underlying application system. Thus,
for such indoor location-based application, offloading the computation of the localization process to a remote
server with high resource capability has been recently introduced as an avenue to address such a challenge.
In this paper, a computation offloading problem is formulated to find the optimal decision with regard to the
operation of the localization process. This decision includes: a)Where to compute the localization task, either
locally on the end device or on the edge server or on the cloud server, b) Which localization technique should
be used, and finally, c)Which transmission technology is recommended to be chosen in combination with the
localization technique. All these decisions are constrained by the device, and the servers resource capabilities
load. They are also constrained by the fact that the localization algorithm has to satisfy a certain application
QoS requirement. Within such context, three algorithms are proposed for task offload decision making. First,
the Indoor Localization Latency Optimal Offloading algorithm, which finds the optimal offloading decision
that minimizes the total latency of the system and is considered a benchmark for the other algorithms.
Second, Indoor Localization Latency Centralized Offloading algorithm that finds a sub optimal solution with
lower complexity. Third, Indoor Localization Latency Game-Theoretic Offloading decentralized algorithm
that converges after finite improvement steps and achieves Nash equilibrium. Altogether, the paper finds
the optimum localization strategy for all users with the minimum latency under mobile edge computing
environment.

INDEX TERMS Localization, computation offloading, game theory, latency, mobile edge computing.

I. INTRODUCTION
With the progress of Internet of Things (IoT) use cases,
the demand for indoor localization services is continuously
growing. Indoor localization can be crucial in many aspects
of smart automated systems such as smart parking [1], smart
home [2], smart factories [3], smart buildings [4], smart
e-health platform [5] and automated vehicles [6]. Although
Global Positioning System (GPS) has been widely used
for outdoor localization, it fails indoors, due to the effect
of ubiquitous multi-path propagation and the existence of
some obstacles that hinder the spread of electromagnetic
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signals [7], [8]. Different indoor positioning techniques
can be used to find user’s location, such as Fingerprint-
ing (FP) [9], Received Signal Strength Indicator (RSSI-
based) [10], Time of Arrival (ToA) [11], Time Difference of
Arrival (TDoA) [12], Angle of Arrival (AoA) [13], and Chan-
nel State Information (CSI-based) [14]. In this paper, two
indoor localization techniques are evaluated: FP and RSSI.
FP is conducted into two phases: offline phase and online
phase. In the offline phase, user devices of known locations
collect features from anchors and then they send them to
remote servers. These features are trained by the servers using
machine learning techniques. In the online phase, the user
devices repeat the preparation process of FPs, and then the
servers compare the new collected data with the previously
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trained model. RSSI is one of the widely used indoor local-
ization techniques due to its simplicity and the low hard-
ware requirements. The actual received signal strength is
used to estimate the distance between the transmitter and the
receiver. This leads to poor localization accuracy due to addi-
tional signal attenuation resulting from transmission through
walls and large obstacles [7]. These indoor localization tech-
niques can be applied at different transmission technolo-
gies such as WiFi [15], Bluetooth Low Energy (BLE) [16],
RFID [17], Ultra-wideband (UWB) [18], IEEE 802.15.4 [19],
Infrared [20], Ultrasonic [21], and Zigbee [22]. In this paper,
three types of transmission technologies are examined. The
first one is WiFi, as most of the current IoT devices are
enabled with it. Thus, it is considered as a part of the commu-
nication infrastructure. This reduces the deployment time and
cost. Second, IEEE 802.15.4, which is a widespread standard
for short-range and low-power communication. Finally, BLE
is characterized by low energy consumption, but it suffers
from low localization accuracy [16].

Each user has his own requirements for example maxi-
mum tolerable latency, battery lifetime and accuracy require-
ment. On the other hand, there are diverse metrics that
are associated with the indoor localization problem, such
as accuracy, precision, latency, energy consumption, cost,
complexity and coverage [23]. In this work, we focus on
the study of three performance metrics. First, the accuracy
defines the Euclidean distance between the exact location and
the one estimated by each indoor localization algorithm [24].
Second, the latency is the total time taken by the device to
find its location [23]. Finally, power consumption is the rate
of energy per unit time that is consumed by the device in
order to find its estimated location [25]. Different indoor
localization algorithms have been widely proposed in recent
years [26]. The existing indoor localization techniques that
provide high accuracy [27]–[29], require more data col-
lection with more complex localization algorithms, which
imposemore processing time and power consumption. On the
other hand, decreasing the latency requires eliminating some
extensive tasks and time-consuming techniques in order to
estimate the location of the user with the minimum delay
[30]–[32]. Accordingly, this will affect the localization accu-
racy. Finally, in order to avoid draining the battery of the
devices, the energy consumption of the localization system
must be minimized by using a less complex localization
algorithm that will also affect the accuracy of the system
[33], [34]. This creates a fundamental trade off between
latency, power consumption and localization accuracy.

Choosing the right combination of localization technique
and transmission technology can exploit the variation in user
requirements. Thus, according to the requirements of the
users and the metrics of the localization model, the solution
should choose the best localization combination. Meeting
these extreme demands with all users requirements remains a
challenging issue in indoor localization problems.

Mobile devices are characterized by low battery power
and limited capability constraints [35]. Thus, the approach

of offloading the localization technique to be processed on a
remote server that is characterized by high processing capa-
bility and continuous power supply is a promising alternative
to local processing [26], as it enhances the latency and the
energy consumption of the systemwithout affecting the accu-
racy. Computation offloading is the transfer of specific com-
puting tasks to an external platform such as a cluster, a grid,
or a cloud [36]. In this paper, offloading the indoor localiza-
tion task to the cloud and Mobile Edge Computing (MEC)
servers is examined. Traditional cloud computing provides
unlimited capability services such as storage, memory, and
computing capabilities to IoT devices. However, it suffers
from high latency and weak system reliability caused by the
long distance. Due to the centralized nature of the cloud
servers, the system suffers from a single point of failure and
network congestion [37]. To address these challenges, Cisco
delivered the concept of MEC. It is a promising solution
that extends the computation resources of the cloud at the
edge of the network. Thus, by deploying MEC infrastructure,
the system can support real-time and latency-sensitive appli-
cations. It proves to provide the mobile devices with swift
and powerful computing, energy efficiency, storage capacity,
mobility, location, and context awareness support [38].

Accordingly, the main contributions of this paper are sum-
marized as follows:

1) A localization mathematical model is designed with dif-
ferent localization techniques and transmission technologies
under MEC environment.

2) Indoor localization computation offloading problem is
formulated to minimize the total latency of the system, taking
into consideration the limited resources of MEC servers,
the battery lifetime of the end devices and the accuracy
requirement of each user.

3) The optimal solution is obtained by selecting the deci-
sion of the localization technique and transmission technol-
ogy. It decides whether each user device should process the
localization task locally on the mobile device, offload it to the
edge server or run it on the cloud.

4) An approximated centralized offloading greedy algo-
rithm is proposed to handle a large number of devices and
to overcome the high complexity of the optimal offloading
algorithm.

5) A decentralized offloading potential game is proposed
in order to avoid the problem of a single point of failure and
reduce the burden on the single center station.

The structure of the paper is organized as follows.
In Section II, the related work is presented. In Section III,
the system model is introduced. Section IV presents the for-
mulation of the problem and the proposed algorithms. Sim-
ulation parameters and the analysis of the numerical results
are conducted in Section V. Finally, conclusion and the future
work are demonstrated in Section VI.

II. RELATED WORK
MEC servers suffer from a limited number of resources
compared to cloud servers. These limited edge resources can
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only handle a limited number of service requests. Exceed-
ing edge resources may lead to severe QoS degradation
and may at some point cause service outage [39], [40].
Accordingly, despite the crucial role of deployment MEC
platform to enhance QoS requirement of users. The prob-
lem of computation offloading introduces several critical
challenges that still need to be addressed and studied [41].
The work in [42] presents a mathematical model to calcu-
late the computational offloading latency and energy con-
sumption for different mobile application models such as
image processing and antivirus applications. The work in [43]
highlights the significance of edge computing by provid-
ing real-life scenarios that have low application response
time. Authors in [44] introduces the key issues through the
offloading process, such as whether, where, and what to
offload. Authors in [45] analyze and compare the existing
computing offloading algorithms from the perspective of the
minimum latency, energy consumption and trade off between
both of them. The work in [41] gives an overview on offload-
ing classification, the factors that influences it and offload-
ing management. Authors in [46] present a framework for
pre-compiled vector instruction offloading, their experimen-
tal results demonstrated that for smaller workloads, the edge
server provided higher time and energy efficiency as com-
pared to the cloud server. However, for larger workloads,
the cloud server yields higher efficiency. The work in [47]
studies the state-of-the-art of applying game theoretic frame-
work, which is the same technique that is used in this paper
for computation offloading to overcome the edge computing
challenges.

Some recent studies have integrated MEC in indoor local-
ization platforms. The work in [7] offloaded the localization
process from the devices with low remaining battery to the
edge nodes only. The results showed the improvement of the
total energy consumption by 80% when they are compared
with local computing. However, only FP localization tech-
nique is employed in this model which may not be acceptable
for latency sensitive applications.

Authors in [8] proposed a cooperative localization model
that improved both accuracy, reliability and location rate in
the coverage area. The location information is processed on
the edge nodes. In addition, this information is uploaded and
stored on the cloud server. Moreover, the work was evaluated
by constructing a real tunnel environment emulating a coal
mining scenario. However, the authors did not tackle the
trade-off between the MEC and the cloud servers. This may
affect the latency due to offloading all the information to the
cloud servers.

Authors in [48] proposed a new lookup algorithm based
on chord protocol that finds the accurate location of an end
device with the minimum latency and computational cost.
The localization workload is distributed using a set of edge
servers that are placed in different zones inside the building.
However, the processing time to compute the localization
process is neglected which may give misleading results for
the total latency of the system.

The work in [49] proposed low cost indoor localization
algorithm over a MEC system. Authors used both Blue-
tooth Low Energy (BLE) as it is easily accessible and IEEE
802.15.4 a compliant Ultra-wide band (UWB) for its high
accuracy ranging. However, the algorithm did not take into
account the energy and limited resources restrictions, where
exceeding servers resources may cause service outage and
affect the total performance of the system.

The work in [50] studies the problem formulation of min-
imizing the total energy consumption of the system. They
focus only on choosing the best offloading decision for the
indoor localization task, neglecting the type of the localiza-
tion technique and the transmission technology.

To the best of our knowledge, this is the first paper that
strives to find the optimal strategy of choosing indoor local-
ization technique, transmission technology, where to compute
the localization task with the minimum latency using compu-
tation offloading technique under MEC environment.

III. SYSTEM MODEL
This Section describes the network and the computationmod-
els. Three offloading schemes are considered: local comput-
ing, MEC offloading and cloud offloading, where l,M and C
indicate that the task is computed on the local device, MEC
and cloud servers respectively.

A. NETWORK MODEL
Figure.1 represents the architecture of the system which con-
sists of three layers. The first layer consists of multiple user
devices N = {1, 2 . . .N }. We denote by i the ith user device.
There are multiple anchors G = {1, 2 . . .G} that can be
any type of the three corresponding transmission technolo-
gies that are considered in this paper. We denote g the gth

anchor. The second layer consists of multiple edge servers
K = {1, 2 . . .K }. We denote by j the jth MEC server. Finally,
the third layer which consists of a single cloud server. The
aim of the problem is to find an accurate location for each
user device iwith theminimum latency. The system computes
the localization process of the user device that receives more
than three beacons from different anchors. There are multiple
localization models Q = {1, 2 . . .Q} for the localization
process. We denote by q the qth localization model.

B. COMPUTATION MODEL
The problem does not only choose the best localization tech-
nique and transmission technology, but also it selects the
best offloading decision for processing this localization task.
There are three cases, either to process the localization task
locally on the user device or to offload it to remote servers
(MEC or cloud servers).

1) LOCAL COMPUTING
In this case the user device calculates its estimated location
without offloading the localization request to any remote
server. For each device, the latency Ll(i, q), energy consump-
tion El(i, q) and accuracy 3l(i, q) is obtained for all possible
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FIGURE 1. System architecture.

FIGURE 2. MEC offloading structure.

localization models, where these values will be defined in the
simulation parameters.

2) MEC OFFLOADING
In this case the user device cannot calculate its location
itself due to battery constraints or latency requirements. Thus,
a localization request is sent to the MEC server as shown
in Figure. 2. The localization process is conducted on the
MEC server that has enough capacity and will obtain an
accurate location with the minimum latency. The total latency
to find the accurate location on MEC server LM (i, j, q) is
presented by (1). It depends on: a) propagation time between
the user device and the MEC server LM ,d as defined in (2)
where ωl,M is the distance between the MEC server and the
device, and c is the speed of light, wemultiply the propagation
time by 2 as there is a propagation time due to sending
the localization request and the other due to receiving the
localization result, as shown from Figure. 2, b) transmission

time to send the localization request LM ,s as described in (3)
where % is the size of the localization request and 0l,M is the
transmission rate between the user device and MEC server,
c) transmission time to receive the localization response LM ,r
in (4) where υ is the size of the localization result, d) process-
ing time of the localization request on theMEC server LM ,p(j)
as presented in (5) where ρM is the number of CPU cycles
that are needed to process one bit on a given MEC server j
and fM (j) is the computational capability of the MEC server j,
e) processing time of the localization result on the user device
Ll,p(i) as shown in (6) where ρl is the number of CPU cycles
that are needed to process one bit on the user device i and fl(i)
is the computational capability of the user device i, f) time for
localization process LM ,z(j, q) as shown in (7) where κ(q) is
the total data required for computing a localization process
q. The data required for each localization κ(q) is defined in
(8) where δ is a constant value that represents the average
workload of the localization process and Ll(q).

LM (i, j, q) = 2LM ,d + LM ,s + LM ,r
+LM ,p(j)+ Ll,p(i)+ LM ,z(j, q) (1)

where:

LM ,d = ωl,M/c (2)

LM ,s = %/0l,M (3)

LM ,r = υ/0l,M (4)

LM ,p(j) = %ρM/fM (j) (5)

Ll,p(i) = υρl/fl(i) (6)

LM ,z(j, q) = κ(q)ρM/fM (j) (7)

κ(q) = δLl(q) (8)

The total energy consumption EM (i, j, q) demonstrated by
(9) depends on: a) energy consumed due to sending local-
ization request EM ,s(i) as presented in (10) where χs(i) is
the power consumed by each user device i for sending, b)
energy consumed due to receiving localization result EM ,r (i)
as shown in (11), where χr (i) is the power consumed by
each user device i for receiving, c) energy consumed due to
processing localization request on the MEC server EM ,p(i, j)
as defined in (12) where χo(i) is the power consumed by
each user device i when being idle, d) energy consumed due
to processing localization result on the user device El,p(i) as
described in (13) where χp(i) is the power consumed by each
user device i for computing, e) energy consumed for process-
ing localization process on the MEC server EM ,z(i, j, q) as
found in (14).

EM (i, j, q) = EM ,s(i)+ EM ,r (i)

+EM ,p(i, j)+ El,p(i)+ EM ,z(i, j, q) (9)

where:

EM ,s(i) = χs(i)LM ,s (10)

EM ,r (i) = χr (i)LM ,r (11)

EM ,p(i, j) = χo(i)LM ,p(j) (12)

133864 VOLUME 9, 2021



M. Zamzam et al.: Minimized Latency Collaborative Computation Offloading Game

FIGURE 3. Cloud offloading structure.

El,p(i) = χp(i)Ll,p(i) (13)

EM ,z(i, j, q) = χo(i)LM ,z(j, q) (14)

3) CLOUD OFFLOADING
In this case, the user device cannot compute the localiza-
tion task due to battery constraints or latency requirements,
or the MEC servers reached their maximum capacity. Thus,
the localization request is sent to the cloud server as shown
in Figure. 3. The total latency LC (i, q) taken to find the accu-
rate location using the cloud server is demonstrated by (15).
It depends on: a) propagation time between the user device
and the MEC server LC,d1 as shown in (16), b) propagation
time between the MEC server and the cloud server LC,d2 as
defined in (17) where ωM ,C is the distance betweenMEC and
cloud servers, c) propagation time between the cloud server
and the user device LC,d3 as presented in (18) where ωl,C is
the distance between the cloud server and the user device,
d) transmission time to send the localization request LC,s as
found in (19) where0M ,C is the transmission rate between the
MEC server and cloud server, e) transmission time to receive
the localization response LC,r as shown in (20) where 0l,C is
the transmission rate between the cloud server and the user
device, f) processing time of the localization request on the
MEC and the cloud server LC,p as defined in (21) where ρC
is the number of CPU cycles that are needed to process one bit
on the cloud server and fC is the computational capability of
the cloud server, g) processing time of the localization result
on the user device Ll,p(i), h) time for localization process on
the cloud server LC,z(q) as presented in (22).

LC (i, q) = LC,d1 + LC,d2 + LC,d3
+LC,s + LC,r + LC,p + Ll,p(i)+ LC,z(q) (15)

where:

LC,d1 = ωl,M/c (16)

LC,d2 = ωM ,C/c (17)

LC,d3 = ωl,C/c (18)

LC,s = LM ,s + %/0M ,C (19)

LC,r = υ/0l,C (20)

LC,p = LM ,p + %ρC/fC (21)

LC,z(q) = κ(q)ρC/fC (22)

The total energy consumption EC (i, q) demonstrated by
(23) depends on: a) energy consumed due to sending local-
ization request EC,s(i) defined in (24), b) energy consumed
due to receiving localization result EC,r (i) as shown in (25),
c) energy consumed due to processing energy on the MEC
and the cloud servers EC,p(i) as presented in (26), d) process-
ing energy for the localization result on the user deviceEl,p(i),
e) energy consumed for processing localization process on the
cloud server EC,z(i, q) as described in (27).

EC (i, q) = EC,s(i)+ EC,r (i)

+EC,p(i)+ El,p(i)+ EC,z(i, q) (23)

where:

EC,s(i) = χo(i)LC,s (24)

EC,r (i) = χo(i)LC,r (25)

EC,p(i) = χo(i)LC,p (26)

EC,z(i, q) = χo(i)LC,z(q) (27)

IV. OPTIMAL CHOICE OF LOCALIZATION TECHNIQUE
AND TRANSMISSION TECHNOLOGY OFFLOADING
PROBLEM FORMULATION AND PROPOSED SOLUTIONS
In this Section, first, the problem is formulated stating
the decision variables, objective function and constraints.
Second, the proposed solutions are presented, i.e., optimal
solution, centralized algorithm and decentralized game the-
ory schemes.

A. PROBLEM FORMULATION
In order to formulate the optimization problem, the decision
variables must be defined first. These decision variables are
the output of the problem. In our problem, they indicate
whether the task will be computed locally α(i, q) or on the
MEC server µ(i, j, q) or on the cloud server β(i, q). They are
defined as follows:

α(i, q) =


1, if user i chooses localization model q

and computes it locally
0, otherwise

µ(i, j, q) =


1, if user i chooses localization model q

and computes it on MEC server j
0, otherwise

β(i, q) =


1, if user i chooses localization model q

and computes it on cloud server
0, otherwise
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min L = (
Q∑
q=1

N∑
i=1

α(i, q)Ll(i, q)+
Q∑
q=1

N∑
i=1

β(i, q)LC (i, q)

+

Q∑
q=1

N∑
i=1

k∑
j=1

µ(i, j, q)LM (i, j, q)) (28)

subject to

C1:
Q∑
q=1

N∑
i=1

µ(i, j, q) ≤ R(j), ∀j ∈ K (29)

C2: α(i, q)Ll(i, q) ≤ ϒ(i) ∀q ∈ Q, ∀i ∈ N
(30)

k∑
j=1

µ(i, j, q)LM (i, j, q) ≤ ϒ(i) ∀q ∈ Q,

∀i ∈ N (31)

β(i, q)LC (i, q) ≤ ϒ(i) ∀q ∈ Q, ∀i ∈ N
(32)

C3: α(i, q)3l(i, q) ≤ H (i) ∀q ∈ Q, ∀i ∈ N
(33)

k∑
j=1

µ(i, j, q)3M (i, j, q) ≤ H (i) ∀q ∈ Q,

∀i ∈ N (34)

β(i, q)3C (i, q) ≤ H (i) ∀q ∈ Q, ∀i ∈ N
(35)

C4: (
Q∑
q=1

α(i, q)El(i, q)+
Q∑
q=1

β(i, q)EC (i, q))

+

Q∑
q=1

k∑
j=1

µ(i, j, q)EM (i, j, q) ≤ ∃(i)

∀i ∈ N (36)

C5:
Q∑
q=1

α(i, q)+
Q∑
q=1

k∑
j=1

µ(i, j, q)

+

Q∑
q=1

β(i, q) ≤ ψ, ∀i ∈ N (37)

C6: α(i, q) ∈ {0, 1}, ∀q ∈ Q, ∀i ∈ N (38)

µ(i, j, q) ∈ {0, 1}, ∀q ∈ Q, ∀i ∈ N,
∀j ∈ K (39)

β(i, q) ∈ {0, 1}, ∀q ∈ Q, ∀i ∈ N (40)

The objective function of the proposed problem that is
presented in (28) is to minimize the total time L that all
devices will take in order to find their accurate location.
It is divided into three terms: the first term represents the
latency of the user device if the localization is done locally,
the second term represents the total latency if the localiza-
tion process is computed on any MEC server and finally,
the last term represents the total time when the localiza-
tion is done on the cloud server. Each device will choose

to compute the localization process locally or in remote
servers according to capacity, latency, energy and accuracy
constraints.
Constraint C1 in (29) limits the number of requests that

can be served by a given MEC j to maximum ofR(j). Where
R(j) is the maximum number of user devices that can offload
their localization process to be computed on theMEC server j.
Constraints C2 in (30-32) guarantee that the total delay taken
for finding the location of a given user device i does not
exceed the latency requirements of this user device i, where
ϒ(i) denotes the maximum tolerable latency for user device i.
Constraints C3 in (33-35) are for satisfying the accuracy
constraints of each user device i. 3l(i, q), 3M (i, j, q) and
3C (i, q) are the accuracy calculated for local, MEC and
cloud computing respectively. The localization process that
will be applied must deliver accuracy that is smaller than
or equal to the maximum accuracy that each user device i
can tolerate H (i). Constraint C4 in (36) guarantees that the
user device i will not compute the localization process if it
does not have enough battery, where ∃(i) denotes the battery
lifetime for each user device i. Constraint C5 in (37) ensures
that the localization process will be done either locally or
on the MEC server or on the cloud server. ψ is a binary
vector that indicates whether the user device i can calculate
its localization or not, i.e. the user device i receives more than
three beacons from different anchors. Finally, Constraints
C6 in (38-40) ensure the binary value of the offloading
decision variables.

B. COLLABORATIVE COMPUTATION OFFLOADING
SOLUTION OVER MEC
1) INDOOR LOCALIZATION LATENCY OPTIMAL
OFFLOADING (ILLOO)
In ILLOO as shown in Algorithm 1, a unique optimal solu-
tion is obtained by checking on all possible combinations of
offloading decisions for all devices and then choosing the
solution that delivers the least latency for the whole network
while satisfying the system constraints (C1 - C6) as well.
Although, this algorithm is very effective as it guarantees that
there is no better solution than the delivered one, but it has a
very high computational complexity O((2 + K )M )N due to
enumerating on all possible offloading decisions. Therefore,
this algorithm is used only as a benchmark when the number
of devices is not very large.

2) INDOOR LOCALIZATION LATENCY CENTRALIZED
OFFLOADING (ILLCO)
The main aim of proposing this algorithm is to handle a large
number of users to overcome the high complexity of ILLOO.
In ILLCO as shown in Algorithm 2, a sub optimal solution
is obtained. The algorithm iterates over all N devices, for
each user device i the latency is computed for all combina-
tion of localization techniques and transmission technologies
three times: locally Ll(i, q), on MEC servers LM (i, j, q) and
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Algorithm 1 Indoor Localization Latency Optimal Offload-
ing (ILLOO)
Input: Q,N ,K ,G, ϒ(i),3(i), ∃(i), ωl,M , ωM ,C , ωl,C ,
%, 0l,M , 0l,C , 0M ,C , υ, ρM , ρl, ρC , fl,
fM (j), fC , χr (g), c, χo(i), χp(i), χs(i)
Output: a) optimal offloading decision for each user device i
α(i, q), µ(i, j, q), β(i, q). b) Total Latency of the system L
1. Find all possible combination of α(i, q), µ(i, j, q), β(i, q).
2. Discard all the solutions that do not satisfy the constraints.
3. Calculate the total latency for all applicable solutions.
4. Choose the solution that gives the least latency L.
5. Output α(i, q), µ(i, j, q), β(i, q) and L.

on cloud server LC (i, q). The solution that satisfies all the
system constraints (C1 - C6) and has the least latency will
be chosen. Thus, the computational complexity of ILLCO
algorithm is O(NMK ), as it is still an exhaustive search but
with respect to a given user at a given network condition.
It can be noticed that this is a greedy algorithm as each user
device i decides the best offloading decision according to its
minimum latency. Hence, it neglects minimizing the overall
latency of the network. In this algorithm, the center station
is the cloud server. The cloud server collects all the local
parameters of all devices in order to be able to make the
best offloading decision for each user device i. As a result,
no privacy is preserved and all computational burden is done
on the central controller which may lead to the problem of a
single point of failure.

Algorithm 2 Indoor Localization Latency Centralized
Offloading (ILLCO)
Input: Q,N ,K ,G, ϒ(i),3(i), ∃(i), ωl,M , ωM ,C , ωl,C ,
%, 0l,M , 0l,C , 0M ,C , υ, ρM , ρl, ρC , fl, fM (j),
fC , χr (g), c, χo(i), χp(i), χs(i)
Output: a) sub optimal offloading decision for each user
device i
α(i, q), µ(i, j, q), β(i, q). b) Total Latency of the system L
1. for i ∈ N do
2. for q ∈ Q do
3. compute Ll(i, q),LC (i, q).
4. for j ∈ K do
5. compute LM (i, j, q).
6. end for
7. end for
8. end for
9. for i ∈ N do
10. choose min (Ll(i, q),LM (i, j, q),LC (i, q)) that satisfies
all system constraints.
11. update α(i, q), µ(i, j, q), β(i, q) according to the mini-
mum latency.
12. update the system parameters according to the offloading
decisions.
13. end for
14. Output α(i, q), µ(i, j, q), β(i, q) and L.

3) INDOOR LOCALIZATION LATENCY GAME-THEORETIC
OFFLOADING (ILLGO)
a: GAME FORMULATION
The main aim of using a decentralized algorithm is to
reduce the complexity of the system and to protect the
privacy of each user, where each user device i computes
for itself the total time taken to process the localization
model. This avoids the problem of a single point of failure
and reduces the burden on the single center station. For
simplification, we denote the computing offloading deci-
sion for user device i by a(i), on the other hand a(−i)
describes the offloading decision of all other devices except
user device i. Each user device i acts as a player that com-
petes with other players to compute the localization task
with its minimum latency. There are three offloading strate-
gies: local computing, MEC offloading and cloud offloading.
The payoff is the total time taken to find the location of
the user device i. The objective function is reformulated
in (41- 42) with the same system constraints (C1 - C6) as
follows:

min
a(i)={1,2,3}

u(a(i), a(−i)) (41)

u(a(i)) =


Ll(i, q), if a(i) = 1,∀q ∈ Q
LM (i, j, q), if a(i) = 2,∀q ∈ Q,∀j ∈ K
LC (i, q), if a(i) = 3,∀q ∈ Q,

(42)

b: EXISTENCE OF NASH EQUILIBRIUM
In order to prove that the problem will reach Nash Equilib-
rium (NE), we first prove that the problem is a potential game
with a potential function.
Definition 1: A game is called a potential game if it has

a potential function 2(a) and it is called an exact potential
game if:

u(a(i), a(−i))− u(a(i)′, a(−i)) = 2(a(i), a(−i))

−2(a(i)′, a(−i)) (43)

where a(i)′ is set to be an improvement step for user i if
u(a(i)′, a(−i)) ≤ u(a(i), a(−i)). Every ordinal potential game
with finite strategy sets owns at least one pure-strategy NE
and has a finite improvement step. So in order to prove that the
ILLGO is an exact potential game, a potential function must
be constructed and then (43) must be proved. The potential
function of the proposed game is defined in (44) as follows:

2(a) =
Q∑
q=1

N∑
i=1

Ll(i, q)I(a(i)=1) +
Q∑
q=1

N∑
i=1

K∑
j=1

(2.LM ,d

+LM ,s + LM ,r + LM ,p(j)+ Ll,p(i)

+LM ,z(j, q)I(a(i)=2))+
Q∑
q=1

N∑
i=1

(LC,d1+LC,d2+LC,d3

+LC,s + LC,r + LC,p + Ll,p(i)+ LC,z(q)I(a(i)=3))

(44)
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I(event) is an indicator function that represents the offload-
ing decision for each user device i, where I(a(i)=1) = 1,
if the user device i computes the localization process locally.
I(a(i)=2) = 1, if the user device i computes the localization
process on MEC servers. I(a(i)=3) = 1, if the user device i
computes the localization process on the cloud server. This
potential function must be applicable for every change in the
offloading decision the user device i may take. All possible
cases are justified as follows:
Case 1:User i changes the offloading decision from locally

to MEC server.

2(1, a(−i))−2(2, a(−i))

=

Q∑
q=1

N∑
i=1

Ll(i, q)− (
Q∑
q=1

N∑
i=1

K∑
j=1

(2.LM ,d + LM ,s

+LM ,r + LM ,p(j)+ Ll,p(i)+ LM ,z(j, q))

= u(1, a(−i))− u(2, a(−i))

Case 2:User i changes the offloading decision from locally
to cloud server.

2(1, a(−i))−2(3, a(−i))

=

Q∑
q=1

N∑
i=1

Ll(i, q)− (
Q∑
q=1

N∑
i=1

(LC,d1LC,d2 + LC,d3

+LC,s + LC,r + LC,p + Ll,p(i)+ LC,z(q))

= u(1, a(−i))− u(3, a(−i))

Case 3: User i changes the offloading decision from MEC
server to locally.

2(2, a(−i))−2(1, a(−i))

=

Q∑
q=1

N∑
i=1

K∑
j=1

(2.LM ,d + LM ,s + LM ,r + LM ,p(j)+ Ll,p(i)

+LM ,z(j, q)−
Q∑
q=1

N∑
i=1

Ll(i, q)

= u(2, a(−i))− u(1, a(−i))

Case 4: User i changes the offloading decision from MEC
server to cloud server.

2(2, a(−i))−2(3, a(−i))

=

Q∑
q=1

N∑
i=1

K∑
j=1

(2.LM ,d + LM ,s + LM ,r + LM ,p(j)+ Ll,p(i)

+LM ,z(j, q)− (
Q∑
q=1

N∑
i=1

(LC,d1 + LC,d2 + LC,d3 + LC,s

+LC,r + LC,p + Ll,p(i)+ LC,z(q))

= u(2, a(−i))− u(3, a(−i))

Case 5: User i changes the offloading decision from cloud
server to locally.

2(3, a(−i))−2(1, a(−i))

= (
Q∑
q=1

N∑
i=1

(LC,d1 + LC,d2 + LC,d3 + LC,s + LC,r + LC,p

+Ll,p(i)+ LC,z(q))−
Q∑
q=1

N∑
i=1

Ll(i, q)

= u(3, a(−i))− u(1, a(−i))

Case 6: User i changes the offloading decision from cloud
server to MEC.

2(3, a(−i))−2(2, a(−i))

= (
Q∑
q=1

N∑
i=1

(LC,d1 + LC,d2 + LC,d3 + LC,s + LC,r + LC,p

+Ll,p(i)+ LC,z(q))− (
Q∑
q=1

N∑
i=1

K∑
j=1

(2.LM ,d + LM ,s

+LM ,r + LM ,p(j)+ Ll,p(i)+ LM ,z(j, q))

= u(3, a(−i))− u(2, a(−i))

Accordingly, this means that the proposed problem is an
exact potential game and an equilibrium state will be reached
after finite number of iterations and all users’ requirements
will be satisfied.

Algorithm 3 Indoor Localization Latency Game-Theoretic
Offloading (ILLGO)
Input: Q,N ,K ,G, ϒ(i),H (i), ∃(i), ωl,M , ωM ,C , ωl,C ,
%, 0l,M , 0l,C , 0M ,C , υ, ρM , ρl, ρC , fl,
fM (j), fC , χr (g), c, χo(i), χp(i), χs(i)
1. Initialization:
set the offloading decisions to all devices to be locally
the initial step σo = 0
2. for i ∈ N do
3. find the optimal offloading decision of each user device i
4. store the devices that want to update their current
offloading decision into V̄ .
5. end for
6. for each step σ do
7. if V̄ is not empty
8. choose one user device from V̄ to win the opportunity
to update the offloading decision.
9. update system parameters according to the new
offloading decision.
10. for i ∈ N do
11. find the optimal offloading decision of each device.
12. store the devices that want to update their current
offloading decision into V̄ .
13. end for
14. end if
15. end for
output: a) optimal offloading decision for each user device
a(i), b) total latency of the system L.
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c: INDOOR LOCALIZATION GAME-THEORETIC
COMPUTATION OFFLOADING (ILLGO)
ALGORITHM
The steps of the code are briefly illustrated in ILLGO as
shown inAlgorithm 3.We set a specific number that describes
the value of the finite improvement steps σmax . First, it is
assumed that all devices choose to compute the localization
task locally. Second, the optimal offloading decision for each
user device will be calculated, and then the devices that want
to update their decisions from locally to remote servers will
be stored in V̄ . Third, in each step σ , if vector V̄ is not empty,
one device from vector V̄ will win the opportunity to update
the offloading decision. Fourth, all system parameters will
be updated according to the new offloading decision. Fifth,
we will loop on all users, find the new optimal offloading
decisions of them and store only the devices that want to
change their offloading decisions in V̄ . Finally, after σmax
iterations, which it is called finite improvement steps, when
no device needs to update its offloading decision anymore,
the system reaches an equilibrium state which is the NE state.
The system outputs the offloading decisions of all devices
and the total latency of the system. The algorithm guaran-
tees sub optimum solution with lower complexity than the
previous algorithms where its computational complexity is
O(Nσmax).

V. PERFORMANCE EVALUATION
In this Section, the simulation setup and then the numerical
results of running the three proposed algorithms are demon-
strated.

A. SIMULATION SETUP
To evaluate the performance of the proposed techniques
by numerical studies, Matlab software is used. The opti-
mal solution of ILLOO algorithm is obtained using CVX
solver. We consider a multi-user multi-MEC heterogeneous
network with different number of devices, MEC servers,
anchors, and a remote cloud server. The simulation area was
defined within a range of 50m × 50m. Each user device
requests a single task. The indoor localization application
is considered as our computational task. The objective of
our proposed schemes is to find the optimum offloading
decision with the minimum latency without constraint vio-
lation. Table 1 summarizes all the simulation parameters
that are used in evaluating the proposed algorithms. Table 2
shows the comparison between three performance metrics of
processing all combinations of the localization techniques
and transmission technologies. These performance metrics
are total latency, power consumption and accuracy. The are
6 localization models, It is found that BLE has lower latency
than WiFi but higher latency than IEEE 802.15.4. Although,
BLE has the lowest energy consumption, its accuracy is worse
than the others. Thus, the solution should guarantee that
we choose the optimum localization model concerning the
requirements of each user. These results are obtained from
real-life experiments that are conducted in [51].

TABLE 1. Simulation parameters.

TABLE 2. Comparison between performance metrics of each combination
of localization technique and technology.

B. NUMERICAL RESULTS
1) AVERAGE LATENCY AND ENERGY CONSUMPTION OF
TWO CONVENTIONAL OFFLOADING SCHEMES
To evaluate the performance of the optimal offloading
scheme, ILLOO algorithm is compared with other two
schemes:
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FIGURE 4. Total latency versus different number of users for different
offloading schemes.

FIGURE 5. Total energy consumption versus different number of users for
different offloading schemes.

Local Computing (No Offloading): In this scheme, the user
always chooses to process the localization task on his
own device. In this case, the offloading decision variable
a(i) is always 1. The user always chooses the localization
model that gives minimum latency which in this case IEEE
802.15.4 RSSI where L = 0.5 s, due to the large tolerance of
accuracy and battery lifetime that is assumed in the simulation
parameters. Thus, the results of local computing are linear as
shown Figure.4 and Figure.5.
Random Offloading Scheme: In this scheme, each user

chooses randomly to compute the localization task on his
own device or on the MEC and the cloud servers. Thus,
a(i) = rand(1, 2, 3). In each case the constraints of the
problem must be satisfied, if not, another random selection
will be done on the remaining two choices. This algorithm
is done once for each user. The results in Figure.4 showed
the improvement of the total latency by 70.36% when it is
compared with local computing. This is due to the difference
of the computational capability of the user device and the
remote servers. Latency here depends on both processing the
task and offloading it. Thus, if a certain task is processed on
the user device, it will take much more time when compared
to if it is transmitted and processed on other remote servers
with a higher processing capability. Hence, users can reduce

FIGURE 6. Offloading decision of all users with different number of MEC
servers.

more latency and energy by the proposed offloading schemes
than by local computing and random offloading. Accordingly,
we can prove the necessity of the proposed computation
offloading algorithms.

2) OFFLOADING DECISION OF ALL USERS WITH DIFFERENT
NUMBER OF MEC SERVERS
Figure.6 represents the optimal offloading decision that is
obtained from ILLOO algorithm. The simulation runs on
N = 30 and K ranges from 5 − 25. The capacity of each
MEC server is assumed to be 1. As shown in the figure,
there are three offloading decisions: Local Computing, MEC
offloading and Cloud offloading. According to our simulation
parameters, it is shown that at any number of MEC servers,
all MEC servers will be utilized. This proves the necessity of
MEC offloading.

3) AVERAGE LATENCY AND ENERGY CONSUMPTION OF
PROPOSED ALGORITHMS WITH DIFFERENT
NUMBER OF USERS
In order to evaluate the efficiency of ILLCO and ILLGO
algorithms, the total latency and the total energy consumption
of the system of each algorithm are compared to the optimal
solution obtained from the benchmark ILLOO algorithm.
As shown in Figure. 7 and Figure. 8 for different number of
devices, ILLCO and ILLGO can reach a sub optimal solution.
These results prove the effectiveness of the proposed algo-
rithm, as although the objective function is to minimize the
total latency of the system, this did not have an adverse impact
on the total energy consumption. It is found that at N = 30
ILLGO has an optimality gap equal to 17.18% in terms of
latency and equal to 16.68% in terms of energy consumption.
The optimality gap means the difference between the optimal
solution and the best possible obtained solution from a certain
algorithm.

4) AVERAGE LATENCY AND OF PROPOSED ALGORITHMS
WITH DIFFERENT MEC CAPACITY
Figure. 9 represents the impact of the MEC capacity on the
total latency. The simulation runs on N = 25 and k = 5.
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FIGURE 7. Comparison of total latency of the system for ILLOO, ILLCO and
ILLGO versus number of users.

FIGURE 8. Comparison of total energy consumption of the system for
ILLOO, ILLCO and ILLGO versus number of users.

As the capacity of the MEC servers increases, the total
latency decreases. Capacity here means the maximum num-
ber of tasks that each MEC server can process. It is assumed
that each user has a single task. It is shown that when the
capacity of the MEC server reaches 7, ILLGO succeeds in
reaching the optimal solution. The reason behind this that
we have only 25 users in our simulation, so having 5 MEC
servers and each with capacity 7 means that the total capacity
on MEC servers is 35. Accordingly, the optimal solution
of each user is to offload the task on MEC servers, thus
ILLGO succeeds to give same results as ILLOO with higher
capacity.

5) AVERAGE LATENCY OF PROPOSED ALGORITHMS WITH
DIFFERENT MEC CAPABILITY
Figure. 10 shows the effect of the computational capability
of MEC server on the total latency. Capability here means
the processing capability which is the number of CPU cycles
per second. The simulation runs on N = 25 and k = 5. The
capability of the MEC servers ranges from 2 to 12 GHz. It is
shown that as the MEC capability increases, the total latency
decreases. It is found that at fM (j) = 7 GHz ILLGO has an
optimality gap only equal to 9.09%. This gap remains nearly
constant with different MEC capabilities.

FIGURE 9. Comparison of total latency of the system for ILLOO, ILLCO and
ILLGO versus MEC capacity (number of tasks).

FIGURE 10. Comparison of total latency of the system for ILLOO, ILLCO
and ILLGO versus MEC capability (CPU cycles per second).

FIGURE 11. Comparison of total latency of the system for ILLOO, ILLCO
and ILLGO versus number of MEC servers.

6) AVERAGE LATENCY OF PROPOSED ALGORITHMS WITH
DIFFERENT NUMBER OF MEC SERVERS
Figure. 11 illustrates the effect of increasing the number of
MEC servers on the total latency. The simulation runs on
N = 25. As the number of MEC servers increases, the total
latency decreases. It is clear that the worst latency appears in
the case of a single MEC. Although the latency is improved
by deploying more MEC servers, this will increase the total
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FIGURE 12. Convergence behavior of ILLGO in terms of the latency.

cost of the system. Thus, a trade-off between the cost of the
system and the latency must be considered.

7) CONVERGENCE ANALYSIS OF ILLGO
The system is considered to be in an equilibrium state if the
offloading decisions of all users remain constant for more
than 1 iteration. The simulation runs on N = 21 and k = 3.
As shown in Figure. 12 the proposed ILLGO algorithm con-
verges to a stable point after 4 iterations. This point represents
the minimum value of the total latency of the system. Hence,
ILLGO proved to have the ability to reach NE after finite
improvement steps.

VI. CONCLUSION AND FUTURE WORK
In this paper, the problem of collaborative computation
offloading under the MEC environment is formulated to find
the accurate location of each user device with the minimum
latency. Each user device chooses to compute the localization
technique with the transmission technology locally or on a
remote server (the MEC server or the cloud server). Three
proposed algorithms are implemented. a) ILLOO: It acts as a
benchmark and delivers the optimal solution. b) ILLCO: it is
a heuristic centralized technique that delivers a sub optimal
solution with a lower complexity. c) ILLGO: it is a decentral-
ized game theory technique that guarantees an equilibrium
state for all devices and has the least complexity. Simula-
tion results proved that offloading the localization process
to remote servers improves the performance of the system
in terms of latency reduction and energy saving. Moreover,
it is shown that ILLGO can reach a sub optimal solution after
finite improvement steps. For future work, we may consider
more indoor localization techniques and different transmis-
sion technologies. We plan to study the impact of partial
offloading, where the computational task will be considered
as a group of sub-tasks, some of them can be processed locally
and the others are offloaded to remote servers with higher
computational capability.
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