
Received July 21, 2021, accepted September 17, 2021, date of publication September 23, 2021, date of current version October 5, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3115343

Efficient Certification of Endpoint
Control on Blockchain
DIEGO PENNINO 1, MAURIZIO PIZZONIA 1, ANDREA VITALETTI 2,
AND MARCO ZECCHINI 2
1Dipartimento di Ingegneria, Sezione di Informatica e Automazione, Università degli Studi Roma Tre, 00146 Rome, Italy
2Dipartimento di Ingegneria Informatica, Automatica e Gestionale, Università di Roma ‘‘La Sapienza,’’ 00185 Rome, Italy

Corresponding author: Diego Pennino (pennino@ing.uniroma3.it)

This work was supported in part by POR FESR LAZIO 2014–2020, call for ‘‘Gruppi di ricerca 2020’’ Det. n. G04052 of April 4, 2019,
under the ‘‘LazioChain’’ Project (CUP F85F21001550009—POR project code A0375E0116) and in part by the Sapienza Project
‘‘La disintermediazione della Pubblica Amministrazione: il ruolo della tecnologia blockchain e le sue implicazioni nei processi e nei
ruoli della PA.’’

ABSTRACT Proving that an endpoint (e.g. URL, telephone number, etc.) is controlled by a subject is crucial
in many applications. In the web, this is witnessed by the widespread adoption of HTTPS. In centralized
architectures, this task is usually carried out by trusted certification authorities (CAs). In decentralized
applications, for example based on blockchains, or for self-sovereign identity management (SSI), it would
be desirable to perform these checks in a decentralized way, relying on the collective behavior of a society of
individuals rather than on a single trusted entity. In any case, the result should be a widely usable certificate,
as in the centralized CA case. In this paper, we show two blockchain-based methods to prove the association
between a subject and an endpoint in a decentralizedmanner. Ourmethods are compatible with a wide variety
of endpoints and contribute to fill the gap of the current SSI approaches with respect to decentralization.
We analyze the security of our proposal and provide a proof-of-concept implementation. We also evaluate
performances, costs, and compatibility with current standardization efforts about SSI.

INDEX TERMS Endpoint, digital certificate, decentralized certification authority, blockchain, identity
management, self-sovereign identity, decentralized blockchain oracle.

I. INTRODUCTION
A subject, for example a person, can be contacted on a number
of channels, like telephone, email, postal mail, etc. We call
endpoint the one end of a communication channel that have
to be known by the other party to initiate a communication
with that subject (or with a service or device acting on behalf
of the subject). Examples of endpoints include phone num-
bers, e-mail addresses, IP addresses, web URLs, postal mail
addresses, etc.

We say that a subject controls, an endpoint E if it can send
data fromE and/or receive data atE . Proving the control of an
endpoint is crucial inmodern internet. This is the fundamental
property that is guaranteed by digital certificates employed in
HTTPS and certified e-mail, just to mention two prominent
examples. However, digital certificates rely on centralised
architectures and entail the trust into aCertification Authority
(CA) that checks that the subject indeed controls that endpoint
and unequivocally proves this fact signing a certificate. Who-
ever trusts the CA and sees the certificate can easily believe
that the subject controls the endpoint.

The associate editor coordinating the review of this manuscript and

approving it for publication was Rakesh Matam .

While this solution is absolutely consistent with the dom-
inant centralized approach (e.g. for cloud services), it is
not adequate for decentralized permissionless blockchains.
Indeed, in these P2P architectures peers are mutually
untrusted and it is not desirable to introduce a trusted entity,
since this would reduce the benefit of adopting decentral-
ization in the first place. The first challenge addressed by
our paper is the following: Can we design a fully decen-
tralised method to certify the endpoint control on blockchain?
A formal statement is provided in Section III.

In our vision, the ability of proving the control of an
endpoint in the blockchain is crucial, because it is a natural
place where the controller of an endpoint can publicly specify
its willingness of being contacted on that endpoint and for
what purpose. A prominent example for this use case is a
Robinson list [24], where users can specify whether they
accept to be contacted on their mobile phone (i.e. an endpoint)
for advertising purposes. We consider it in our experimental
evaluation.

Regarding how to tackle our problem, we can easily envi-
sion a simple and fully decentralized technique to prove the
control of endpoints. For simplicity, we focus on proving the
control of a mobile phone number, but the same approach can

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 133309

https://orcid.org/0000-0001-5339-4531
https://orcid.org/0000-0001-8758-3437
https://orcid.org/0000-0003-1074-5068
https://orcid.org/0000-0002-2280-9543
https://orcid.org/0000-0002-1825-2914


D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

be easily generalized to other contexts. The entity needing
the proof sends a suitable code by SMS to the subject, which
provides it back over the Web (i.e. a different channel),
thus proving its ability to receive that code at its phone
number. However, that technique requires that each entity
must independently perform the verification process and this
might be unpractical, costly, slow, or unreliable, depending on
the specific kind of endpoint and on the application context
(see also Sections II, III, and X). Hence, we also consider the
following challenge: Can we design a decentralized endpoint
certification method that is comparable in terms of efficiency
and costs with state-of-the-art centralized approaches?
Contribution of the Paper: In this paper, we show how

to perform an efficient decentralized check that a subject
controls an endpoint and how to publicly certifying it, with-
out relying on a central authority. Further, our approach is
compatible with many kinds of endpoints, which makes it
applicable in many different application contexts.

We assume each subject to be uniquely associated with
its public/private key pair. Our result can be viewed as a
decentralized and automated certification authority for cer-
tifying on a public/permissionless blockchain that the subject
associated with a public key controls an endpoint. Our main
idea is to randomly select a limited number of other subjects,
that already participate in the blockchain, to form a commit-
tee. Each committee member uses the endpoint to interact
(automatically, for most kinds of endpoints) with the subject
and check its endpoint control, also exploiting cryptographic
challenges. If a sufficiently high number of committee mem-
bers can autonomously and independently check the endpoint
control, a certificate is stored in the blockchain, immediately
proving the control to all the other users.

To meet our challenges, we have to design protocols
to (1) allow a subject to request an endpoint control certifi-
cation, (2) select a committee, (3) allow committee members
to assess that the subject requesting certification actually con-
trols the endpoint, (4) allow committee members to express
the result of their assessment, and (5) turns the assessment
results into a unique certification. Further, for these proto-
cols, we have to prove (a) security against an attacker that
can collude with a bounded number of potential committee
members, (b) ease of realization using current blockchain
technology, (c) efficiency (cost and time) comparable with
current centralized approach.

While, in principle, our approachmight be realized without
any blockchain, this would be unpractical since we lever-
age a number of blockchain-related features: reliable mul-
ticast, history records, cryptographic integrity proofs, smart
contracts, etc.

Our results are very well suited to be used in conjunction
with blockchain-based applications, however, they also com-
plement current self-sovereign identity management (SSI).
ISO/IEC standards [6] defines an identity as a ‘‘set of
attributes related to an entity’’, as a consequence, a controlled
endpoint can be a component of the identity of a subject.
SSI manages the identities in blockchain, but attribute

certifications, still relies on issuers that should be trusted by
relying parties. Our contribution enables SSI systems to avoid
relying on trusted centralized issuers for the certification of
control for several kinds of endpoints.

Our proposal is somehow similar to a decentralized ora-
cle, with some notable differences with respect to other
works [15], [16], [27], [30]. Actually, endpoint control is
very specific and we can take advantage of this specificity.
The relation between an endpoint with a subject is usually
quite stable over time and the endpoint can be involved in
a cryptographic protocol. For this reasons, our committee
members just act as independent executors of a cryptographic
certification protocol. The protocol is designed to effectively
prove the control of an endpoint. The only possibility to
prove a fake control requires the subject to collude with a
fair number of committee members. Since the committee is
randomly selected, this event can be made highly unlikely.

We developed a proof-of-concept which not simply shows
the feasibility of the proposed approach, but also allow us
to prove that it is efficient, because both the incurred costs
and verification times are comparable with those of central-
ized certification authorities. We also address specificities
of several kinds of endpoints, and conformity to W3C SSI
standards.
Main Contributions: The main contributions of this paper

are the following.
• We present two blockchain-based methods to certify
endpoint control in a decentralized manner.

• We formally prove the security of our approaches
against miscertification and denial of service attacks.

• We evaluate the practicality of our approach on the basis
of an Ethereum-based proof-of-concept realization.

Structure of the Paper: The structure of the paper is the
following. In Section II we discuss the spectrum of applica-
tion of endpoint control certification with respect to several
kinds of endpoints. In Section III, we introduce notation and
formalize our problem and naive decentralized verification
protocols. In Section IV, we states the assumptions of our
work. In Section V, we formally describe our two certifica-
tion methods. In Section VI, we describe two approaches to
securely select the committee members and we discuss how
to motivate their participation. In Section VII, we define our
threat model and, we formally analyze the security of our
methods. In Section VIII, we discuss revocation and other
aspects related to certificate management. In Section IX,
we evaluate our approach from several points of view and
show a proof-of-concept realization. In Section X, we discuss
technical aspects related to the applicability of our methods
for several kinds of endpoints and discuss endpoint-specific
security issues. In Section XI, we review the related work
about blockchain oracles and SSI and compare our approach
against it.

II. EXAMPLES OF APPLICATION CONTEXTS
The results shown in this paper can be applied in many
application contexts for different kinds of endpoints and for

133310 VOLUME 9, 2021



D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

TABLE 1. Notable examples of endpoints. In the selected sample applications, endpoint certification can provide substantial added value.

different purposes. In this section, we introduce examples to
show this diversity.

Example of reasons for adopting decentralized solutions
(e.g., blockchain-based ones) are avoiding intermediaries to
reduce costs, improve transparency, avoiding drift toward
market monopoly or oligopoly, avoid interference from
improper behavior of central authorities (e.g., censorship),
etc. In decentralized applications, endpoints are used to pro-
vide services, information, goods or money to users, which
usually implies some form of legal liability. Generally, a mali-
cious third party M may want to trick a subject A to use the
endpoint of a subject B with the intent to cause some damage
or legal problems to A or B. This makes endpoint certification
a relevant problem for many decentralized applications.

We give a few examples.

• Suppose to have a decentralized system to buy and sell
remote web security assessment. Let A be a cyberse-
curity firm. Subject M might pretend to control a web
service of B and ask A to perform a vulnerability assess-
ment on that service, and obtain its results. To avoid this,
A asks B to prove the control of its web service before
performing the assessment. This can take time. Can B
obtain a certificate to be shown to any cybersecurity firm
in a decentralized manner?

• Suppose B is the owner of a sensible website, A is any
website visitor, and M may want to impersonate B to
steal the password of A. B is afraid that regular CAs
may revoke certificates at any time under government
pressure. Can B obtain a certification of owning the
website to show to any visitor without relying on a
centralized CA?

• Suppose to a have a decentralized daily fresh milk mar-
ket. IfA is a supplier that asks for weekly payments using
bank direct debit, a malicious subject M might order
milk delivery at address of B and ask for debiting current
account of a third subjectC . To avoid this, A needs certi-
fication that the address and the current account actually
belong to the person who ordered the milk (C). Direct
certification by A can be done but it is boring, costly
and slow. This reduces the freedom of buyers to switch
different milk suppliers each week. Can certifications be
obtained in a decentralized manner once and for all?

In general, we expect that for many decentralized appli-
cations relations between subjects need to be rapidly created.

In this setting, autonomous verification may be too costly and
too slow, to be useful.
Table 1 lists several examples of endpoints that can be

certified with the methods described in this paper, where our
approach can provide a substantial value added. In the sample
application(s) column, we give some examples of sensible
services for each of the listed endpoints. The sample channels
column puts in evidence the fact that the same endpoint can be
used in several different ways. For example, a telephone num-
ber can be used with voice calls or with SMS, an IP address
can be used with a number of different protocols, an URL
can be used with HTTP or HTTPS protocols, etc. Clearly,
when an endpoint is certified making use of one channel, this
certification can be used also with other channels.
For our methods to work, the endpoint must allow the

user to exchange a small cyptographically signed string.
A channel should not necessarily be designed to exchange
general data for this. For example, for bank money transfers,
we can exploit their purpose annotation and, for domain
names, we can exploit the TXT DNS record. It may be
worth to note that, when the endpoint is especially designed
for communication, certifying the association of a public
key with the endpoint provides a mean to authenticate the
other party, hence, providing a functionality that is similar
to that provided by common website certificates used in
HTTPS communications.
More technical aspects related to the application of our

certification methods to the endpoints listed in Table 1 are
discussed at the end of the paper, in Section X.

III. NOTATION, BASIC PROTOCOLS, AND PROBLEM
STATEMENT
In our setting, each subject S is associated with at least one
pair 〈p, s〉, where p is a public key and s is the corresponding
secret key. We denote by [m]s or [m]S the signature of a string
m performed by S using s. Subject S can easily prove its
association with p by considering a publicly known random
string r (a challenge), never used before, whose generation
is not controlled by S, and providing [r]s. In interactive
protocols with two parties, r can be generated by the party
that needs the proof. In the blockchain context, r can be a
cryptographic hash of some new, unpredictable, piece of data.
For example, r can be the cryptographic hash of a suitably
chosen block.

VOLUME 9, 2021 133311



D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

We now formally introduce our verification problem.
Definition 1 (Endpoint-Control Verification Problem): In

the endpoint-control verification problem, a subject V , called
verifier, intends to assess that a subject S, called prover,
controls an endpoint E .

The vastmajority of techniques to solve the endpoint-control
verification problem, in a decentralizedmanner, can be traced
back to the following two protocols, that assume that V and
S can securely communicate through a connection c (that
does not involve E).
Protocol 1:
1) V chooses a random stringQ and sends it to endpoint E .
2) S receives Q at endpoint E and sends back Q to V by c.
Protocol 2:
1) V chooses a random string Q and sends it to S by c.
2) S sends back Q to V from endpoint E .
These protocols prove that who can communicate through

c also controls E , under the hypothesis that no attacker can
impersonate S or eavesdrop messages sent to S on c and E .

These protocols can be adapted to bind the fact that
S controls E with a key pair 〈p, s〉 of S. In the adapted
protocols, S sends back to V a signed version of Q ([Q]s),
actually proving that the subject that knows s also controls E .
In this variation,Q is essentially a challenge. In the rest of this
paper, we refer to the adapted versions of Protocols 1 and 2
as basic protocols.

The basic protocols have the following drawbacks that
are especially relevant in decentralized applications in which
verifiers might be many and may need to perform endpoint
control verification very often.
Specificity. The verification performed by each verifier is

specific to that verifier and cannot be leveraged by other
verifiers, since there is no trust among verfiers in a
decentralized setting. This means that each time a new
verifier V intends to assess if a subject S controls a
certain endpoint E , a new verification procedure should
be performed by V and S. This might be a serious
problem for S and/or V if verifications are many and
have a non-negligible cost for S and/or V .

Interactivity. Each verification requires to set up an inter-
active protocol. This means that either S should always
be ready for the verification or V should be willing to
wait for S to complete the verification. Even if S is
ready for the verification, communication on E can be
slow or even unreliable. Thismight be incompatible with
requirements of specific applications.

As mentioned in the introduction, the endpoint-control
verification problem can be solved in a centralized manner
by resorting to a certification authority. Centralized certifi-
cations have the notable advantage that are non-specific and
non-interactive, but require trust in a central authority, which
is not desirable for blockchain-based applications, decen-
tralized peer-to-peer applications, and self-sovereign identity
management. In this paper, we aim at solving the following
problem

Definition 2 (Decentralized Endpoint-Control Certifica-
tion Problem): In the decentralized endpoint-control certifi-
cation problem, a prover S intends to obtain a certificate
• stating that S controls endpoint E and
• verifiable by any verifier without interacting with S and
without trusting any specific subject.

IV. MAIN CONCEPTS AND ASSUMPTIONS
In this section, we describe the high-level architecture of
our system and the roles of the actors. We also clearly
states our assumptions about subjects capabilities and their
behavior, endpoint technology, and blockchain technology.
While, some of these assumptions are discussed and formally
described further in the paper (see Sections V, VI and VII),
this first informal description clarifies the context in which
the results are shown.

A. ARCHITECTURE AND ROLES
In the rest of the paper, we refer to the high-level architecture
shown in Figure 1.

FIGURE 1. High-level reference architecture. Notation is as follows: S is a
prover, V is a verifier, each CMi is a committee member, E is an endpoint.
For simplicity, only one prover, one verifier, one endpoint, and one
committee are shown. Certificates can be expressed as blockchain
transactions or as independent documents (see Section V).

Our results assume the presence of a multiplicity of sub-
jects and of a blockchain network whose infrastructure is
made of a number of nodes. A subject might operate a
node but in general this is not true and we do not assume
it. We assume devices owned by subjects and nodes of
the blockchain to be interconnected with standard internet
telecommunication networks. The only interaction among
subjects outside the blockchain is through the endpointE (and
its associated channel).

Each subject can have one or more of the following three
roles.

Prover. A prover, denoted S in the figure, intends to obtain
a certification that it controls an endpoint E to be shown
to verifiers.

133312 VOLUME 9, 2021



D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

Verifier. A verifier (or relaying party), denoted V , is inter-
ested in ascertain if S controls E . To do that it can obtain
(and check) the certificate of endpoint control from the
blockchain (for certificates expressed as transactions,
see Sections V-A and V-B) or from S (for independent
certificates, see Section V-C).

Committee member. A committee member contributes to
the process of creating the endpoint-control certificate
that was requested by S.

How each subject performs each of these roles is detailed
in Section V.

B. ENDPOINTS
An endpoint is one end of a communication channel. Some
notable families of endpoints are described in Section II.
In Section V, we only require the channel of an endpoint E to
be usable to send or receive some general short data (our pro-
tocols need only to send the signature of a challenge). Since
E may not support bidirectional communication, we define
two certification methods. In each method, E is used in only
one direction. Other aspects related to endpoints are discussed
in Section X.
For simplicity, the reader can assume the endpoint chan-

nel to be reliable. Committee members with an unreliable
channel are easily dealt with by considering them as non-
cooperating (see also Section VII).
Concerning security, our protocols do not require confi-

dentiality of communication through the blockchain. On the
contrary, our protocols relies on the fact that it is hard for
an attacker to send messages from E (spoofing) or receiv-
ing (eavesdropping) a message at E , in place of the subject
that controls E . A formal security analysis of the protocols
is provided in Section VII, while a discussion of security
concerns regarding some families of endpoints is provided
in Section X.

C. BLOCKCHAIN
In our protocols, we use a blockchain as a reliable bus in
which subjects can broadcast messages as transactions. From
the adoption of a blockchain, we obtain several advantages
beyond reliability. A blockchain stores all transactions, with
their ordering, in a tamper-proof way and natively provides
cryptographic proofs of the existence of those transactions.
We use these proofs in Section V-C to create certificates
that are easy to verify without knowing the blockchain state.
It also provides smart contracts that we use to shorten certifi-
cates. Finally, it provides an easy mean to create a shared and
unpredictable seed for pseudo-random number generation
(see Section VI).
Each transaction that is accepted by the blockchain net-

work ends up to be recorded in a block of the blockchain.
Each block is identified with its block number. Each accepted
transaction has an identifier which uniquely identifies it.
The history of the accepted transactions is supposed to be
totally ordered and immutable. We treat the blockchain as a

completely independent system and we assume its reliability,
security, and liveness.

Each subject is identified in the blockchain by its public
key with which anyone can check the correctness of trans-
actions stored in the blockchain or submitted for acceptance.
In principle, for a single subject, it is possible to have two dis-
tinct public keys: one to be associated with the endpoint and
one that serves as identifier in the blockchain. For simplicity,
we assume that one single public key serves both roles. This
means that with the subject private key it should be possible
to sign both transactions and generic data.

For the methods described in Sections V-A and V-B,
it is not strictly needed for the blockchain to support
smart contracts. However, for the developments described in
Sections V-C, and VI-B, we assume the blockchain technol-
ogy supports smart contracts with the capability to change
a state persisted in the blockchain itself. In Section IX-C,
we describe a proof-of-concept based on the Ethereum [20]
technology, which supports this kind of smart contracts.

To participate in our protocols, each subject should be able
to send transactions to the blockchain network and to observe
new transactions accepted by the blockchain network. To do
that, a subject not necessarilymust operate a blockchain node.
In fact, a subject can just have a light client that leverages
a connection to an untrusted full blockchain node to send
transactions, get new blocks, and get a past transaction start-
ing from its identifier, with guarantee of integrity. The light
client does not need to store the whole new blocks, but only
their headers. Light clients technology is well established and
described, for example, in [19] and [20].

It is useful to point out that our approach is independent
from the kind of consensus algorithm the blockchain is based
on and it is also independent from the choice of permissioned
or unpermissioned technologies, provided that data can be
publicly accessible by light clients.

Finally, we point out that decentralized certification is nat-
urally needed for decentralized applications (see Section II)
and in conjunction with self-sovereign identity manage-
ment systems. In both cases, blockchain-based architec-
tures are common and the need for a blockchain does not
imply additional architectural complexity and cost, in those
cases.

V. TWO BLOCKCHAIN-BASED METHODS TO CERTIFY
ENDPOINT CONTROL
In this section, we describe two methods called
prover-receives and prover-sends, to solve the
decentralized endpoint-control certification problem. Each
method comprises a blockchain-based certification protocol
(or certificate creation protocol), to compute a certificate in
a decentralized manner, and its corresponding verification
algorithm, to be run by the verifier to check the certificate.
Methods presented in this section, produce certificates that
are in the form of one or more transactions in the blockchain.
In Section V-C, we show how to derive a certificate that is a
single document that depends only from the hash of one of

VOLUME 9, 2021 133313



D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

the blocks and do not need any access to blockchain content
to be verified, but just to block headers.

In the prover-receives method, the certification is
a proof that a prover S can receive at endpoint E a chal-
lenge from a number of other subjects. Vice-versa, in the
prover-sends method, the certification is a proof that
S can send from E a signed challenge to a number of other
subjects.

By writing the pair 〈S,E〉, we intend the statement
‘‘S controls E’’, which may or may not be true, or may be
proved by a certificate. If p is the public key of S, we can
also write 〈p,E〉 with the same meaning. When S obtains the
certification for 〈S,E〉, we say that E is certified (for S) and
also that S is certified (for E).
The methods we show exploit the collaboration of a num-

ber of subjects. We say that a subject is on-line if it can
1) send transactions to the blockchain,
2) monitor the transactions accepted in the blockchain and

react to them,
3) access the transactions that are contained in past blocks

of the blockchain, and
4) receive messages at E or send messages from E , where

E is an endpoint controlled by S.
Our blockchain-based certification protocols involves a

committee C of (approximately) k subjects, called com-
mittee members, that are asked to interact with S through
the endpoint that S is supposed to control. Committee C
is pseudo-randomly selected, for each certification request,
according to one of the procedures described in Section VI.
The selection procedures have to respect a number of require-
ments that we discuss in the following. For now, we just
state that the committee selection is implicit, in the sense
that the committee depends on a random seed that is not
under the control of any subject (in Section VI, we adopt the
hash of a yet-to-create block), but any subject can check if
a certain other subject is part of the committee, for a given
certification request. Since it is unlikely that all members
of a randomly selected committee are on-line and willing to
cooperate, we suppose that only k̄ members of the committee,
out of (approximately) k , are on-line and cooperating, with
1 ≤ k̄ ≤ k . Situations in which a large fraction of potential
committee members are non-cooperating can be handled by
rising k . In general, we envision application of our methods
when the number of potential committee members N is large
and k can be easily risen. Parameters k and k̄ are independent
from the certification request frequency, since each request is
independently dealt with and generally has a distinct commit-
tee. These parameters are also independent from the number
of nodes participating in the underlying blockchain. Finally,
k and k̄ affect security, but when N increases they do not
need to be increased. Actually, in Section VII, we show the
contrary, i.e., the security of our approach increases (and
tends to be ideal) for large N , whatever the values of k and
k̄ are.

To simplify the description of our certification protocols,
we assume that no previous certification involves S and E

(we discuss these cases in Section VIII). Now, we introduce
our two methods.

A. CERTIFYING THAT A SUBJECT CAN RECEIVE A
MESSAGE AT AN ENDPOINT
In the prover-receives method, S proves its control of
endpoint E by showing that it was able to receive messages
at E from the members of a randomly selected committee.
This idea is formalized in the protocol described in

Algorithm 1 and in the corresponding interaction diagram
depicted in Figure 2. At the end of the protocol, the certificate
is published by S in the blockchain in the form of a certifi-
cate transaction P that contains the messages received by S.
Algorithm 2, shows the details of the checks that a verifier
should carry out to accept the certificate.

The certification protocol is started by S, publishing on the
blockchain a transaction containing the certification request
for 〈S,E〉. We denote by tR the (accepted) transaction con-
taining it and by R its identifier.We denote byC the randomly
selected committee forR. The committee selection adopted in
this protocol is probabilistic and described in Section VI-A.
When the block containing R is published, each subject c,
that is on-line, recognizes the new certification request tR
and autonomously check if it is part of the committee C for
that request. If this is the case, c generates a new random
bit string Qc and cryptographically links it to R by signing
hash(Qc|R). The result is the challenge 5c. Then, c sends
5c to S through E . When S has received at least k̄ cor-
rect challenges, it publishes in the blockchain the certificate
transaction P containing all received challenges, with the
indication of the corresponding committee member.

A verifier can check P by executing the verification pro-
cedure formalized in Algorithm 2, which essentially checks
signatures and correctness of all the challenges.

About correctness, we expect that, if a prover S actually
controls an endpoint E , the certificate creation protocol for
〈S,E〉 successfully terminates producing the certificate P and
P is successfully verified by the verification procedure. The
latter statement is trivially true, since verification just checks
the result of each creation step. The critical aspect about
the first statement is that enough members (at least k̄) of
the selected committee should conclude the protocol. The
fraction of committee members that concludes the protocol
depends on how many potential committee members are on-
line, reachable, and willing to cooperate, and clearly depends
on the application context. However, the probability to have
at least k̄ members concluding the protocol can be risen by
properly tuning the selection process (i.e., rising parameter k
in Section VI-A).
About security, we refer the reader to Theorems 2 and 3,

and to their proofs.

B. CERTIFYING THAT A SUBJECT CAN SEND A MESSAGE
FROM AN ENDPOINT
In our second method, called prover-sends, prover S
proves its control of endpoint E by showing that it was able to

133314 VOLUME 9, 2021



D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

Algorithm 1Method Prover-Receives: Protocol for Certificate Creation
Require: Prover S, with public key p, is not certified for any endpoint. Endpoint E is not certified for any subject.
Ensure: The blockchain contains a certificate transaction P containing all challenges received from committee members,

proving that S controls E , in the sense that S can receive messages at E .
1: S creates a certification request for the pair 〈p,E〉 and publishes it as transaction tR in the blockchain, with identifier R.
2: Let b be the hash of the block containing transaction tR.
F C is a committee randomly selected (on the basis of R and b) according to the probabilistic method described in
Section VI-A.

3: G← ∅ F G is the set of received ‘‘good’’ challenges.
4: concurrently each subject c upon observing tR do
5: c checks if it belongs to C according to the probabilistic method described in Section VI-A.
6: if c ∈ C then
7: Qc← a random bit string privately generated by c
8: 5c← Qc|[hash(Qc|R)]c
9: c sends 5c to E
10: end if
11: end concurrently
12: concurrently S upon receiving 5 = Qc|[hash(Qc|R)]c do
13: If |G| < k̄ , continue below, otherwise do nothing.
14: S checks the correctness of the signature in5.
15: S checks if c ∈ C according to the probabilistic method described in Section VI-A.
16: If the above checks are successful, G← G ∪ (5, pc)
17: If |G| = k̄ , S publishes certificate transaction P = [G,R]S on the blockchain.
18: end concurrently

FIGURE 2. Sequence diagram for the certificate creation protocol of the prover-receives method shown in Algorithm 1.

send messages from E to the members of a pseudo-randomly
selected committee.

This idea is formalized in the protocol described in
Algorithm 3 and in the corresponding interaction diagram

depicted in Figure 3. At the end of the protocol, the certificate
is published in the blockchain in the form of k̄ acceptance
transactions. Each of them is denoted Ac and is sent by
member c of the committee, stating that c has received the

VOLUME 9, 2021 133315



D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

Algorithm 2Method Prover-Receives: Algorithm for Certificate Verification
Require: The identifier R of a certification request. A certificate P published in the blockchain.
Ensure: Success, if S proved that it can receive data at E , fail otherwise.
1: If P occurs before R in the blockchain history, return fail
2: Let 〈p,E〉 be the request identified by R, where p is the public key of the prover S.
3: If P is not in the form [G,R]S , return fail
4: If P is not correctly signed by S, return fail
5: If |G| < k̄ , return fail.
6: for each (5, pc) ∈ G do
7: If 5 does not match the form Qc|[hash(Qc|R)]c, return fail
8: If c is not part of the committee according to the probabilistic approach described in Section VI-A, return fail
9: If 5 is not correctly signed by c, return fail

10: end for
11: return success

Algorithm 3Method Prover-Sends: Protocol for Certificate Creation
Require: Prover S, with public key p, is not certified for any endpoint. Endpoint E is not certified for any subject.
Ensure: The blockchain contains one transaction Ac for each committee member c that has checked that S controls E , in the

sense that S can send messages from E .
1: S creates a certification request for the pair 〈p,E〉 and publishes it as a transaction tR in the blockchain, with identifier R.
2: Let b be the hash of the block containing transaction tR.
3: Let C be the committee whose members are randomly selected (on the basis of R and b) according to the deterministic

approach described in Section VI-B.
4: for each c ∈ C do
5: Let pc be the public key of c, and Ec an endpoint certified for c.
6: Qc← hash(b|pc)
7: S sends 5c = [Qc,R]S from E to c at Ec.
8: end for
9: concurrently each committee member c upon receiving 5c = [Qc,R]S at Ec do
10: It gets the transaction tR by means of its identifier R.
11: It gets p from tR and checks the signature of5c.
12: It gets E form tR and checks that 5c was sent from E .
13: It gets the hash b of the block containing tR and checks that Qc = hash(b|pc).
14: If the above checks are successful, it publishes on the blockchain its acceptance transaction Ac = [5c, pc]c.
15: end concurrently

message from S through E . Algorithm 4, shows the details of
the checks to be carried out to accept a certificate.

As in the prover-receives method, the certification
protocol is started by S, publishing on the blockchain a
certification request tR, for 〈S,E〉, identified by R. Again,
a pseudo-random committee C is selected for tR. The com-
mittee selection adopted in this protocol is deterministic and
it is described in Section VI-B. Note that, Algorithm 3 needs
to enumerate all committee members and, for each member c,
it needs to know its public key pc and a certified endpoint Ec.
The committee selection approach described in Section VI-B
has these features.

Each potential committee member c can continuously lis-
ten on Ec or start to listen only when a transaction tR (identi-
fied by R) is published, for which c is a committee member.
For each committee member c, prover S is supposed to send
from E a distinct message 5c to c (at Ec). Each 5c is so
that it is provably created by S and related to R. For further

security, it also contains a publicly known random string Qc,
that it is not under the control of S and it is different for
each c. The corresponding acceptance transaction Ac is sim-
ply the publication of 5c, signed by c, which proves that c
received 5c.
A verifier can execute Algorithm 4 to check that a set

of acceptance transactions are indeed a valid certificate for
〈S,E〉. That algorithm simply checks signatures and format
of the messages.

About correctness, the considerations at the end of
Section V-A, for the prover-receives method, also
applies to the prover-sends method. In particular,
it is possible to increase the probability that we got
at least k̄ acceptance transactions by rising the param-
eter k in the committee selection process described
in Section VI-B.
About security, we refer the reader to Theorems 4 and 5,

and to their proofs.

133316 VOLUME 9, 2021



D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

FIGURE 3. Sequence diagram for the certificate creation protocol of the prover-sends method
shown in Algorithm 3.

Algorithm 4Method Prover-Sends: Algorithm for Certificate Verification
Require: The identifier R of a certification request. A set A of identifiers of acceptance transactions.
Ensure: Success, if S proved that it can send data from E , fail otherwise.
1: If |A| < k̄ , return fail.
2: Check that R is a certification request transaction.
3: Let b the hash of the block containing tR and S the subject that sent tR.
4: for each A ∈ A do
5: If A occurs before R in the blockchain history, return fail
6: Let c be the subject that published A and pc its public key.
7: If A is not correctly signed by c, return fail.
8: If c is not part of the committee according to the deterministic approach described in Section VI-B, return fail.
9: Let (5, pc) be the signed message of A.

10: Qc← hash(b|pc)
11: If the signed message in 5 is not equal to (Qc,R), return fail.
12: If 5 is not correctly signed by S, return fail.
13: end for
14: return success

C. EXPRESSING CERTIFICATES AS INDEPENDENTLY
VERIFIABLE DOCUMENTS
The methods proposed in Sections V-A and V-B solve the
decentralized end-point control certification problem without
being interactive and specific (see Section III). However,
they publish their results in the blockchain. While this is
theoretically sound, it may be unhandy to use in practice,
since each certificate verification requires a lookup in the
state of the blockchain.

We now show how it is possible to build an indepen-
dent certificate, which is a document that can be used as a
certificate that only depends on the headers of the blocks
for its verification. This allows the verifier to complete the
verification without interacting with any blockchain node,
supposing that block headers are known. This is desirable
since distribution of block headers is a well-supported feature
in currently available blockchains, their size is small, and can
be easily kept by a verifier (as is for common blockchain

VOLUME 9, 2021 133317



D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

light clients). To explain how we can build an indepen-
dent certificate, we recall some design concepts about
blockchains.

A common blockchain design is to organize transactions
into a Merkle tree [39] (but in principle other authenticated
data structures can be adopted as well [38], [44]). This data
structure is a balanced tree that stores at each leaf the cryp-
tographic hash of the content of the leaf, and at each internal
node the hash of its children. This ends up having the root
storing, essentially, a hash of all leafs, which is called root-
hash. This is the only thing stored in a block header about
the transactions of the block. A cryptographic proof that a
transaction t is in a block b can be given by considering the
path from t to the root of the Merkle tree for b and providing
the sibling of all nodes in the path. This proof can be checked
against the root-hash in the header of b, efficiently and with
no further access to the network.

An independent certificate contains, for each transaction
that is needed to certify the control of the endpoint, a triple
〈t, i, p〉, where t is the transaction, i is the block number of
the transaction, and p is the Merkle proof of t with respect to
the root-hash contained in the i-th block.
For the prover-receives method, only one transac-

tion of sizeO(k̄) is needed. For theprover-sendsmethod,
O(k̄) transactions of constant size are needed. Depending on
the actual magnitude of k̄ , the cost for transmitting, stor-
ing and verifying independent certificates can be too high.
We now introduce a succint form of independent certificates.
We introduce a smart contract called summarizer.

We assume this smart contract has a state (as, for example,
in Ethereum). The idea is that the certificate transaction
(for prover-receives) or the acceptance transactions
(for prover-sends) should be directed to the summarizer,
which checks them and, if they are recognized as a valid
certificate, can set a variable of its state to assert that the
certification process is valid. This variable can simply store
a Boolean value or an integer expressing the number of
committee members that was positively involved in the certi-
fication. This state can be considered trusted by verifiers since
blockchain itself is considered trusted in our context. For
blockchains that explicitly represent state, this is represented
in each block by a distinct Merkle tree whose root-hash is
stored in the header, hence, the same techniques that we
suggested for transactions can be used for the state. A succinct
independent certificate contains a triple 〈s, i, p〉, where s is the
piece of the state that expresses the validity of the certificate
and p is the Merkle proof of s with respect to the root-hash
contained in the i-th block.

Independent certificates (either succinct or not) can be
provided by the prover to a verifier when needed, like tra-
ditional certificates are provided by a server to its clients in
the TLS [10] protocol. They can also be stored in a public
repository (e.g., a blockchain or a self sovereign identity
management system) so that any subject can play the verifier
role when it needs to assess the control of an endpoint by
another subject, without interacting with it by any means.

VI. COMMITTEE SELECTION PROCEDURES AND
MOTIVATING THE PARTICIPATION
In this section, we describe the procedures to select the com-
mittee that are needed by certification protocols shown as
Algorithms 1 and 3. To properly serve its purpose, a commit-
tee selection procedure should fulfill the following require-
ments.

Verifiability. Given a certification request, anyone should be
able to determine whether a certain subject is member of
the committee related to that request.

Unpredictability. Suppose the committee can be predicted
on the basis of only the certification request, before
publishing it on the blockchain. In this case, a mali-
cious prover could try many request (off-line, without
submitting them) until if finds a request with a favor-
able committee with many members under its control,
making easy a miscertification attack (see Section VII).
An unpredictable procedure entails that the commit-
tee is known only once the request is accepted by the
blockchain. In this case, a brute force attack would be
extremely slow and publicly logged.

Uniformity. The probability for a subject to be selected as a
committee member should be uniform across all poten-
tial committee members. Otherwise, an attacker could
try to control the subjects that have more probability
to be part of a committee invalidating the proofs of
Lemmas 1 and 2.

Robustness. The desired committee size k should be a
parameter given to the procedure. The actual size k ′

of the selected committee should be ideally equal to k .
If this is the case, we say that the selection procedure
is deterministically robust. However, there are cases in
which this is hard to achieve. A selection procedure
is probabilistically robust if k ′ ∈ [k, αk] with high
probability, for increasing α and α > 1. Having k ′ > k
does not affect security (see Section VII), but a large k ′

may affect efficiency. Tuning α can help us to strike a
good trade-off.

Efficiency. The prover should ideally execute its part of the
procedure in time O(k) and the committee members in
time O(1). However, if we take advantage of blockchain
facilities (e.g., smart contracts) to store data, we admit
a further logarithmic factor in the size of the blockchain
state.

First, we note that, to achieve unpredictability, we need
a source of randomness to seed our selection procedure.
We use as seed s = hash(b|R), where b is the hash of the
block where the certification request is recorded and R is the
identifier of the certification request itself. If we base our
pseudo-randomgeneration of the committee on s, wemeet the
unpredictability requirement, since the prover cannot predict
or control b.
We devised two distinct approaches, each one suitable

for each of the two methods described in Section V. They
are supposed to be applied by the prover or by other

133318 VOLUME 9, 2021



D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

subjects right after the certification request is accepted in
the blockchain, i.e., when seed s is available. Section VI-A
describes a probabilistically robust approach that is simple
to implement completely off-chain, but it does not support
an efficient enumeration of the members of the committee
(it just support membership check). This approach cannot be
applied in Algorithm 3, which needs enumeration (see line 4).
Section VI-B, describes a deterministically robust approach
that supports both efficient enumeration and membership
check. However, it requires a support from the blockchain
(that can be realized as a smart contract).

When a pull-style communication is adopted to communi-
cate through the endpoint, the preferred committee selection
approach is switched. See Section X for further details.

A. PROBABILISTIC APPROACH
The probabilistic approach is suited to be used in the
prover-receives method and provides probabilistic
robustness, i.e., if k is the desired committee size, the actual
committee size k ′ is in [k, αk]. Parameters k and α (with
α > 1) are supposed to be constant and provided as input
to the procedure.

In this approach, for each subject c with public key pc,
we derive from s a random value sc = hash(s|pc) ∈
[0,M −1]. Subject c is selected to be a committee member if
sc <

(1+α)kM
2N , where N is the number of potential committee

members. Requirements verifiability, unpredictability, uni-
formity and efficiency are trivially met. Concerning robust-
ness, we state the following lemma.
Theorem 1: The probabilistic approach for selecting the

committee is probabilistically robust, if the number of poten-
tial committee members is large.

Proof: We have to show that, for increasing α,
Pr
[
k ′ ∈ [k, αk]

]
tends to 1. For the probabilistic approach,

each subject is selected to be part of the committee with prob-
ability p = (1+α)k

2N . The committee size k ′ is a randomvariable
with binomial distribution with probability p for N samples,
hence, its expected value is µ = Np = k(1 + α)/2 (middle
point of [k, αk]) and its variance is σ 2

= Np(1 − p), which
both depend on α. For large N , that binomial distribution
can be approximated by a normal distribution with expected
value µ and variance σ 2. We denote by 8(·) the cumulative
distribution function of a standard normal distribution. Hence
P[k ′ < k] ' 8( k−µ(α)

σ (α) ). It turns out that, by increasing α,
k−µ(α)
σ (α) is always decreasing. Hence, since 8(·) is monotonic

increasing, P[k ′ < k] decreases when α increases. The
symmetry of the probability density around µ allows us to
extend this result also to P[k ′ > αk], which proves the
statement.

B. DETERMINISTIC APPROACH
The deterministic approach is suitable for use in the
prover-sends method where the prover has to know in
advance all the committee members to contact. We introduce
in the blockchain a collector smart contract to which each

potential committee member should voluntarily subscribe to
participate in the selection. The collector keeps in its state
an (arbitrarily ordered) list of pairs (pS ,ES ), where S is a
subscribed subjects, ES is its certified endpoint and pS is
its public key. We denote by N̄ the size of this list. Each
subscription should be performed bymeans of a constant-cost
blockchain transaction.

To select k committee members, we pseudo-randomly
select k positions q1, . . . , qk (each from 0 to N̄−1) according
to the following rule

qi = hash(i|s) mod N̄ (1)

where s is the seed for the certification request, as defined
before. If N̄ � k , the probability of accidentally doubly
selecting the same subject twice is negligible. The prover
needs to access the pairs at positions q1, . . . , qk . This can be
performed securely off-chain by resorting to Merkle proofs,
that can be verified by solely trusting on block headers, with
techniques similar to those presented in Section V-C. Any
untrusted blockchain node can reply with the selected pairs,
equipping each of them with a cryptographic proof that it is
at its position in the list.

The verifiability, unpredictability, uniformity and robust-
ness requirements are trivially met. Concerning efficiency,
note that, Equation 1 should be computed k times. The length
of the Merkle proofs is O(log z), where z is the size of the
blockchain state. Committee membership can be verified in
constant time after having verified Merkle proof in O(log z)
time. The total processing cost for the prover is O(k log z).

C. MOTIVATING THE PARTICIPATION
Independently from the procedure adopted to select the mem-
bers of the committee, our approach is effective if at least a
fraction of the selected members are willing to participate
in the protocol. While there could be intrinsic motivations,
that depends on the specific application contexts, these may
be too dull to be effective. Actually, the prover is the only
subject that is really interested in certifying the control of
its endpoints. Hence, a general solution is to put on the
prover any effort for motivating the committee. In particular,
it should sustain all the necessary costs, paying the mem-
bers of the committee for their work in participating to the
certification procedure. When covering the expenses is not
sufficient to motivate the participation, additional incentives
might help. The proof-of-concept implementation shown in
Section IX-C, also considers how to integrate incentives in
our approach. However, the design of an incentive (or a
penalty for non cooperating members) is tightly dependent on
the specific application context and is beyond the scope of this
paper. The new-born discipline of tokenomics deals with this
kind of design, often involving game theoretic considerations
(see [37] for an introduction about tokenomics).

VII. SECURITY
In this section, we introduce our threat model and analyze
the security of prover-receives and prover-sends

VOLUME 9, 2021 133319



D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

methods in that model. For simplicity, we assume that the
control of subjects over their endpoints does not change over
time. See Section VIII for a discussion of this aspect.

A. THREAT MODEL
In analyzing the security of our methods, we consider the
following threats (or malicious objectives).

Miscertification. Certification of untrue control of subject S
on endpoint E .

Denial of service (DoS). Denial of certification or certifi-
cate verification for a legitimate pair 〈S,E〉.

We denote by N the number of potential committee mem-
bers in the network. We say that a committee member is
inconclusive, if it is not on-line, it does not participate
in the protocol or if its behavior is perceivably broken
(e.g., producing malformed transactions or wrong signa-
tures), otherwise we say that it is conclusive. A conclusive
member can be honest or colluding (with the prover S). A col-
luding member correctly executes the certification protocol
to certify 〈S,E〉, but receives/sends messages for S, that
are supposed to go through E , through a different channel.
One honest member would be enough to create a certificate,
however, it is not possible to know if a specific subject is
honest. In Section VII-B, we prove that one honest member
is present in a committee with high probability when the
number of potential committee members is large.

In our model, any adversary-controlled (certified or
non-certified) subject may deviate from the protocol in an
arbitrary way. For example, by being inconclusive or by mis-
behave maliciously. A notable case is the Sybil attack, which
in our context consists in an adversarial prover attempting
to miscertify an endpoint (not under its control) by creat-
ing a number of fictitious (colluding) subjects, called sybil-
subjects. Sybil-subjects may be used by the adversary as
potential committee members. We assume that the adversary
can control only a limited number m of sybil-subjects, with
m independent from N . The rationale behind this assumption
is the possibility to defend against Sybil attacks imposing
a cost for each subject [58]. This cost is supposed to be
affordable for a regular user that is represented in the system
as one subject but it should be paid by the adversary for each
sybil-subject it creates. If the number of sybil-subjects needed
by the adversary to perform the attack is large, the total cost
of the attack might become unbearable for the adversary or,
at least, dominate the advantage of performing the attack.
This cost can be enforced in practice in several ways. For
example, consider the prover-sends method, in which
potential committee members have to be certified. If the
blockchain supports a cryptocurrency, a fee can be periodi-
cally charged to keep a certificate active.

We assume the underlying blockchain technology to be
secure, in the sense that an adversary

1) cannot tamper with the transactions in the blockchain
history or with blockchain state,

2) cannot stop a non-controlled subject from asking to the
blockchain to perform a transaction, and

3) cannot stop a non-controlled subject from reading from
the blockchain the committed transactions.

This also implies that the adversary cannot add, delete or
tamper with past certifications recorded in the blockchain.

To focus on the security aspects of our protocol, we assume
the channel of E to be immune from certain specific attacks.
(1) For both protocols, we assume no network-level denial
of service is possible. (2) For the prover-sends method,
we assume that the adversary cannot create spoofed mes-
sages that look as if they are sent from E . (3) For the
prover-receivesmethod, we assume the adversary can-
not eavesdrop messages sent to E . We discuss security of spe-
cific kinds of endpoints in Section X. Finally, we assume to
adopt ideal cryptographic hash functions and cryptographic
signatures that cannot be attacked by the adversary.

B. SECURITY ANALYSIS
To prove the security of our methods against miscertification
and DoS attacks, we first prove lemmas about the possibility
to arbitrarily reduce the probability of obtaining a ‘‘bad’’
committee. Since we have introduced two ways to randomly
select a committee, we have two of these lemmas. The bad
members can be intended to be colluding or inconclusive
members, depending on how these lemmas are used. We use
the following notation. We consider a universeU of potential
committee members containing B ⊂ U bad potential mem-
bers. We also denote N = |U | and m = |B|. The resulting
randomly selected committee is denoted by C and B̃ ⊆ C ∩B
is the set of selected bad members.

The following lemma applies to the probabilistic random
selection of a committee introduced in Section VI-A and
is used in the security proofs for the prover-receives
method.
Lemma 1: Consider a committeeC in which each member

is selected from U , independently with probability p = a/N ,
where N = |U |, a is constant, and a < N . The probability
that |B̃| ≥ k̄ , with k̄ ≥ 1, tends to zero as N →∞.

Proof: Consider B = {b1, . . . , bm} and random vari-
ables Y1, . . . ,Ym each associated to a corresponding bad
committee member, where Yi assumes values 1 if bi is
selected and 0 otherwise. Consider a random variable Y =∑

i Yi = |B̃|. The expected value of Y is µ = mp = ma/N .
Since Y is a sum of independent variables, the Chernoff
bound can be applied: for any δ > 0, Pr [Y > (1+ δ)µ] <
( eδ

(1+δ)1+δ
)µ. To obtain Pr

[
Y > k̄ − 1

]
, we equate (k̄ − 1) =

(1 + δ)ma/N , hence, δ = (k̄−1)N
ma − 1. Substituting δ in the

bound we obtain the following.

Pr
[
Y > k̄ − 1

]
<

 e
(k̄−1)N
ma −1(

(k̄−1)N
ma

) (k̄−1)N
ma


ma
N

(2)

133320 VOLUME 9, 2021



D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

It is easy to prove, by distributing the exponent ma/N into
the inner factors, that the right hand side of Equation 2 tends
to zero for N →∞. Hence, the statement is proved.
The following theorem asserts the security of the

prover-receives method against the miscertification
attack, where the attacker is the prover.
Theorem 2 (Prover-ReceivesMiscertification Security):

Let S be a prover and E an endpoint. If certificate 〈S,E〉 is
created and verified according to the prover-receives
method, then S controls E with an arbitrarily high probability,
that can be increased by increasing the number of potential
committee members participating in the network.

Proof: Input to Algorithm 2 is P = [G,R]S , where G =
{(51, pc1 ), . . . , (5q, pcq )}, where 5i = Qci |[hash(Qci |R)]ci .
We focus on a single 5 = 5i related to c = ci. Algo-
rithm 2 checks correctness of the signature of 5 and that
c belongs to the committee. If c is honest, it has sent 5
to E and has not sent it to S by other means. Further, Qc
was randomly generated locally by c and since in 5 the
signature [hash(Qc)|R]c involves R, 5 was generated by c
for certification request R, which makes impossible for S to
reuse it from a certificate request procedure performed in the
past. According to our threat model, it is not possible for
the adversary not to control E and read a message sent to
E . Hence, if the verifier were sure that c is honest, 5 alone
would suffice as a certification that S controls E . However,
this is not the case. For this reason, Algorithm 2 checks
that q ≥ k̄ . The statement follows form the application of
Lemma 1, assuming B to be the set of potential committee
members colluding with the attacker.

The following theorem asserts the security of the
prover-receivesmethod against the DoS attack, where
the attacker intends to block a certification of a distinct prover.
Theorem 3 (Prover-Receives DoS Security): In the

prover-receives methods, the probability that an
adversary can successfully perform a denial of service can
be made arbitrarily low by increasing the number of potential
committee members participating in the network.

Proof: A DoS attack can be carried out blocking a
certification or blocking the verification of a certificate. Note
that a verifier performs certificate verification by running
Algorithm 2. This algorithm does not interact with any sub-
ject but only with the blockchain, which is considered secure
in our threat model (see Section VII-A). Hence, an attacker
cannot deny the verification of a certificate. For this rea-
son, we focus on the denial of the certification procedure.
According to our threat model, the adversary cannot perform
a network-level DoS or a blockchain-targeted DoS. Hence,
the only way for the adversary to perform a DoS attack is to
induce the selection of a committee of all inconclusive mem-
bers. The statement follows form the application of Lemma 1,
assuming B to be the set of inconclusive potential committee
members controlled by the attacker.
The following lemma applies to the deterministic random

selection of a committee introduced in Section VI-B and is
used in the security proofs for the prover-sendsmethod.

Lemma 2: Consider a committee C , of k members, ran-
domly selected from U . The probability that |B̃| ≥ k̄ , with
1 ≤ k̄ ≤ k ≤ m, tends to zero as N →∞.

Proof: The probability of the statement can be expressed
as follows.

Pr
[
|B̃| ≥ k̄

]
=

∑k
i=k̄

(m
i

)(N-m
k−i

)(N
k

) (3)

Distributing the denominator, each term can be expressed
in the following form.(m

i

) (N−m)...(N−m−k+i+1)
(k−i)!

N ...(N−k+1)
k!

(4)

For each term, the number of factor depending on N that
are at the numerator is k − i, while at the denominator their
number is k . Hence, each term tends to zero as N → ∞,
which proves the statement.

The following theorem asserts the security of the
prover-sendsmethod against the miscertification attack,
where the attacker is the prover.
Theorem 4 (Prover-SendsMiscertification Security):

Let S be a prover and E an endpoint. If certificate 〈S,E〉
is created and verified according to the prover-sends
method, then S controls E with arbitrarily high probability
that can be increased by increasing the number of potential
committee members participating in the network.

Proof: According to Algorithm 4, the verifier was able
to gather |A| acceptance transactions that are related to a
certificate request transaction tR for 〈S,E〉, with k̄ ≤ |A| ≤
k . Let us consider one of them, say Ac = [5c, pc]c published
by committee member c, whose semantic is that c accepted
challenge 5c, thus supporting 〈S,E〉. Algorithm 4 checks
that c is entitled to accept 5c being part of the committee,
and that the challenge is correct and originated from S.
If c is honest, according to Algorithm 3, it publishes Ac only
if it recognizes that 5c was sent by S from E (Line 12 of
Algorithm 3). According to our threat model, it is not possible
for the adversary not to control E and cheat c by making 5c
to appear as if it were sent from E . If the verifier were sure
that c is honest, Ac alone would suffice as a certification that
S controls E . However, since this is not the case, the verifier
checks that at least k̄ acceptance transactions support 〈S,E〉.
The statement derives from Lemma 2 assuming B to be
the set of potential committee members colluding with the
attacker.
The following theorem asserts the security of the

prover-sends method against the DoS attack.
Theorem 5 (prover-Sends DoS Security): In the

prover-sends methods, the probability that an adversary
can successfully perform a denial of service can bemade arbi-
trarily low by increasing the number of potential committee
members participating in the network.

Proof: As in the proof of Theorem 3, verification cannot
be a target of DoS attack, as well as, the network and the
blockchain (by threat model). Hence, the attacker should

VOLUME 9, 2021 133321



D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

force a committee of all inconclusive members. The state-
ment follows form the application of Lemma 2, assuming B
to be the set of inconclusive potential committee members
controlled by the attacker.

VIII. RE-CERTIFICATION, DE-CERTIFICATION, AND
MULTIPLE CERTIFICATIONS
Regular CAs allows customers to request the revocation of a
certificate to face situations in which a private key is com-
promised. CAs check that the request comes from a subject
entitled to do so. If that check is successful, the CA makes
revocation public and the verifiers are supposed to actively
connect to CA facilities to check for revoked certificates.

In our endpoint certification approach, we have to deal with
both key compromise and endpoint transfer. In the following,
we analyze and provide solutions form both cases.

Let SE be a subject that holds the endpoint E and Ss be
the subject that holds a secret key s related to the public
key p. An endpoint certificate 〈p,E〉 states that SE = Ss.
The relevant cases, in which this is no longer true, are the
following.

Key compromise. Secret key s was published or stolen and
hence there exists (potentially) a subject S̄s (6= Ss = SE )
that knows s. In this case, Ss can be easily impersonated
by S̄s. The impersonator can make assertions pretending
to be the owner of E . This case is analogous to the
one that usually leads to revocation for centralized CAs.
This situation is critical in application contexts where
E may not be general purpose, not always available,
or not comfortable to use. Indeed, these applications
may comprehend protocols asserting something about
SE without directly communicating through E .

Endpoint transfer. E was transferred to a different subject
S̄E (6= SE = Ss, e.g., reassignment of telephone number,
selling of domain name, etc.). This case is specific for
endpoint certification. In this situation, both S̄E and Ss

can potentially behave maliciously. Subject Ss can still
pretend to be the owner of E , creating a situation similar
to that described for the key compromise case. On the
other side, S̄E contacted through E can pretend to be the
same subject Ss and possibly interact with other subjects
through E impersonating Ss = SE .

We now introduce two new primitives that allow us
realizing revocation in all cases: de-certification and
re-certification.

A de-certification transaction is published by Ss on
blockchain on block Bi and it contains [decertify, 〈p,E〉,
hash(Bi−1)]s, where hash(Bi−1) can be substituted by any ran-
dom challenge not under the control of any single subject. The
semantic of de-certification is that verifiers should no longer
successfully verify certificate 〈p,E〉. Clearly, the verification
procedures (Algorithms 2 and 4) should be enriched with the
check that no de-certification was issued up to the instant in
which verification is performed (further details about this are
provided in the following).

De-certification can be used to address the key compro-
mise problem. We note that, in the key compromise case,
de-certification can also be issued by S̄s, but this ends up in
blocking any further malicious use of s by S̄s. De-certification
can also partially address the endpoint transfer problem,
namely, when S̄E behaves maliciously. To avoid this possi-
bility, Ss should explicitly de-certify E right after the transfer
of E to S̄E . De-certification is quick since it does not involve
any committee and any communication through E .
Re-certification is an extended form of certification and is

accomplished by extending the use of the very same proto-
cols presented for certification (Algorithms 1 and 3) in the
following way.
• For re-certification of E , we allow E to be already
certified, i.e., we ditch the second pre-condition in the
require clause of Algorithms 1 and 3.

• Suppose E is already certified by 〈p,E〉. After a re-
certification, a new certificate 〈p′,E〉 is created and
verifiers should no longer successfully verify certifi-
cate 〈p,E〉, but should successfully verify the new
certificate 〈p′,E〉.

Re-certification can be used to address the endpoint trans-
fer problem for the case not covered by de-certification.
Suppose the control of E is legitimately transferred from
SE (owning key pair (s, p)) to S̄E (owning key pair (s̄, p̄)).
By exploiting re-certification, S̄E can revoke 〈p,E〉 and con-
textually substitute it with 〈p̄,E〉. Note that both actions are
justified by the fact that S̄E controls E .
Consider a verifier that have to check the validity of a

certificate R = 〈p,E〉. If the verifier has access to the full
blockchain history, it can easily check, in the blockchain his-
tory, if R is currently not de-certified and not re-certified. For
verifiers that act as light clients, we should provide a succinct
independent certificate that includes information about R not
being recently de-certified and re-certified. A way to achieve
this is by storing the set V of all currently valid certificates in
the state of a single smart contract and provide aMerkle-proof
of the fact that, at a certain block, R was in V , with the same
approach described in Section V-C. Then, this Merkle-proof
can be included in a succinct independent certificate. Set V
should be updated as the last step of certification and re-
certification, which can be easily accomplished by the same
smart contract. It is not hard to include in this framework
also de-certification by handling them by the same smart
contract. For protocols in which the prover provides succinct
independent certificate to the verifier on-demand, the same
prover may take care to provide a recent enough certificate.
Otherwise, the verifier should take care to obtain a recent
proof my itself.

We just mention the possibility to admit multiple certi-
fications for the same endpoint E assuming that any new
certification coexists with the previous ones (for example for
using different public keys for different purposes). In this
case, the re-certification request should explicitly state that
all previous certifications have to be invalidated, or should
list which previous certifications should be invalidated.

133322 VOLUME 9, 2021



D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

This has no impact on the certification protocol but should
be taken into account by verifiers.

Finally, we note that the above procedures are secure
in our threat model (see Section VII-A): an attacker that
has no knowledge of the private key cannot trigger the
de-certification of a certified endpoint and an attacker that has
no control on the endpoint cannot trigger its re-certification.

IX. EVALUATION
Weevaluate our approach from several points of viewwith the
intent to assess the applicability of our results in a practical
contexts. In particular,
• we check the compliance of our approach with the W3C
standardization work related to self-sovereign identity
management,

• we evaluate latency and other aspects of both methods
and compare them against the basic protocols recalled
in Section III,

• we describe a proof of concept realization (PoC), based
on the Ethereum technology, and describe practical
issues and solutions,

• we discuss the costs of the actors in our PoC,
• we provide insights about the compatibility of our
approach with other blockchain technologies.

A. CONFORMITY WITH W3C STANDARDS
In this section, we investigate the possibility to use our meth-
ods in conjunction with the standardization effort by theW3C
consortium that are related to Self Sovereign Identity man-
agement, namely, Verifiable Credentials (VC) [51], which
is a W3C recommendation, and Decentralized IDentrifiers
(DID) [46], which currently is a W3C working draft. This
standardization work is complex, covering a wide spectrum
of use cases. For clarity, in this section, we refer only to the
simplest cases.We start by focusing onVCeswhich is a stable
tool to express general claims. Then, we focus on DIDes,
on the basis of the current draft. DIDes are interesting, since
they explicitly state a relationship between subjects and their
endpoints.

VCes are objects (usually encoded as JSON objects) that
intend to substitute physical credentials. A subject obtains,
from a centralized issuer, a VC that states a claim about the
subject itself (e.g., ‘‘has a driving license’’). The VC contains
a proof (for example a signature by the issuer) that can be
verified by a verifier by cryptographic means. Normally,
the verifier trusts the issuer, and the authenticity proof is
enough to also trust the claim. The independent certificate
introduced in Section V-C can be considered a VC, where
the claim specifies the prover and its controlled endpoint
while, technically, the issuer is a randomly selected commit-
tee. The verifier trusts its claim because of the properties
of the certificate creation procedure and of the trust in the
adopted blockchain. According to the design described in
Section V-C, the signature is substituted by the Merkle proof
of a part of the blockchain state and by the indication of the
corresponding block. Clearly, the verifier should check the

Merkle proof starting from a trusted block header. What we
require is compatible with the VC recommendation, since
in a VC the proof is equipped with a type, which specifies
the kind of proof. W3C have a dedicated standardization
work for proofs [26], in which a proof type is required
to specify a proof algorithm that generates a proof value,
that can be checked by running a proof verification algo-
rithm. This schema is flexible enough to fit the certification
methods proposed in Section V and the design described
in Section V-C.
A DID is a URI in the form did:method:identifier that

identifies a subject. A DID has to be resolved into a DID
document, which specifies attributes for that subject and it
is usually encoded as a JSON object. Details on how this
resolution is performed is implicitly specified by the method
of the URI. For example, the ethrmethod refers to the uPort
identity manager (see Section XI), which we consider for our
proof of concept in Section IX-C. The DID document can list
endpoints related to the subject, under the service JSON key.
For each of them, an id, a type, and a serviceEndpoint should
be given. The serviceEndpoint may be a string (a URL), or a
complex object, whose syntax and semantic depend on the
type of the endpoint. While currently the draft does not spec-
ify many types, the proposed structure is extremely flexible
and it is clearly able to cover a wide range of endpoints. This
meets the flexibility required by the wide number of appli-
cation contexts that we mentioned in Section II. Additional
fields may be specified with each endpoint, this allows DID
documents to support the design described in Section V-C.
An example of DID document realizing that design is given
in Section IX-C.

B. COMPARISON AGAINST BASIC PROTOCOLS
In this section, we theoretically analyze the prover-
receives and prover-sends methods regarding to the
time taken to obtain a certification and we compare the whole
proving process against the basic protocols shown in see
Section III.
We define the latency of a certification protocol as the time

taken by the protocol from when the transaction tR for the
certification request is broadcasted in the blockchain network
to when the certificate is completely known to all nodes.
We assume the delay due to local computation to be negli-
gible. We assume that the blockchain produces new blocks,
regularly. We call b the interval of time between two consec-
utive blocks. For simplicity, we assume b to be constant and
the number of transactions a single block can host to be much
larger than the committee size k . We assume that the load of
the blockchain (transactions submitted per unit of time) to
be much lower than its maximum throughput, so that, each
transaction is accepted in the next available block (blockchain
scalability issues are widely discussed in other works, see for
example [36], [42], [59], and [21]). If the instant in which a
new transaction is received by the blockchain is independent
from the previous block commit time, the expected time that a
transactionwaits before acceptance is b/2.We call pb the time

VOLUME 9, 2021 133323



D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

to propagate a block to all nodes and pt the time to propagate
a new (still unaccepted) transaction to all nodes. We always
assume pb < b and pt < b.

Concerning communication of challenges through the end-
point, we denote by W the time taken by a message to reach
destination, comprising transmission, propagation and possi-
bly any form of interaction (see Section X for further con-
siderations) and depends on the underlying communication
technology of the endpoint. We assume that the bandwidth
of the endpoint channel is large enough to send/receive all
messages to/from the committee members in parallel.

Under these assumptions, the expected latency for the cer-
tification protocol of the prover-receives method can
be derived by observing the diagram in Figure 4 and it turns
out to be

pt +
b
2
+

⌈
pt +W + pb

b

⌉
b+ pb. (5)

FIGURE 4. Timings for the certificate creation protocol for the
prover-receives method (compare with Figure 2).

Note that, in the figure, b̃ denotes the expected time left for
the next block to be produced, which depends on pt + W +
pb and in general is different from b/2. The same formula
also holds for the latency of the certification protocol of the
prover-sendsmethod. Figure 5 shows the corresponding
timing diagram, where acceptance messages are actually as
many as the committee members that successfully terminate
the protocol.

For both protocols, the fact that the certification is recorded
in the chainmeans that the prover has received blocks with the
corresponding transactions and can autonomously produce an
independent certificate according to the description given in
Section V-C.
For both methods, any verifier, which knows the header of

the blockchain (i.e., a blockchain light client, see Section IV),
takes negligible time to verify an independent certificate,
since no network interaction is needed in this process.

The basic protocols shown in Section III, do not require any
preliminary certification, but need to interact with the prover
through the endpoint during verification. This interaction

FIGURE 5. Timings for the certificate creation protocol for the
prover-sends method (compare with Figure 3).

takes time W but should be performed each time a verifier
needs to ascertain the endpoint control.

Concerning the number of messages that have to be trans-
mitted through the endpoint, the basic protocols send one
message for each verification, while both our methods only
send one message for each committee member during certi-
fication.

This comparison is summarized in Table 2. We can con-
clude that our approach is favorable, with respect to the basic
protocols in the following cases:
• when verifiers are many (or unbounded) and messages
through the endpoint have a (monetary or procedural)
cost,

• when W is too large for the verifier,
• when the prover may be off-line when the verifier intend
to ascertain endpoint control.

On the other hand, the following aspects should be taken
into account.
• The use of a blockchain introduces new costs (discussed
in Section IX-E).

• Committee members should be motivated to participate
to a certification protocol (see Section VI-C).

• Our approach may need procedures for certificate man-
agement (discussed in Section VIII).

C. PROOF OF CONCEPT
We realized a Proof of Concept1 (PoC) with the purpose of
showing that the proposed approach can be implemented with
state-of-the-art technologies and with the intent to estimate
blockchain costs (analyzed in Section IX-E).

Our PoC realizes the prover-receives method (see
Section V-A) with a probabilistic selection of the committee
(see Section VI-A). Endpoints are 〈ip address, port〉 pairs for
UDP sockets. The PoC is based on the Ethereum blockchain
technology.

1The code of the PoC is available at https://gitlab.com/
uniroma3/compunet/networks/bindingpoc. The master branch contains
the code described in this section. The branch multiple_clients_performance
is related to experiments described in Section IX-D.

133324 VOLUME 9, 2021



D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

TABLE 2. Comparison between methods proposed in this paper (Section V), basic protocols (Section III), and centralized Certification Authority. See also
comments in Sections IX-B, IX-E, and XI-C. We evidenced in bold the aspects that might be considered critical for the adoption in decentralized
applications.

It realizes N = 1000 potential committee members, one
prover, and one verifier. Other parameters for the probabilistic
committee selection are k = 20 and α = 3. Since in our PoC
there is no risk for committee members to be inconclusive,
off-line, or colluding, we set k̄ = k . In this setting the average
committee size is 40 and at least 20 cooperating members are
enough to produce a certificate. The probability of having
a committee with less than k members is less than 10−4

(see proof of Theorem 1). To give a measure of the security,
consider an attacker that controls m = 100 members (out
of N = 1000). The probability to successfully carry out a
miscertification attack is less than 10−6 (using the Chernoff
bound as in the proof of Lemma 1).
The PoC produces independent certificates (see

Section V-C). They are stored in the blockchain as a standard
DID according to the ethr method [3], [53] (currently
provisional), which makes use of a central DID repository
realized by a smart contract, called Ethr-DID-Registry.
The PoC also implements a mechanism to reward the

committee members for their participation to the certification
procedure (see Section VI-C). To do that, the PoC encom-
passes a smart contract, that we name Binding, to record
each certification request, keep money contextually paid by
the prover, and pay involved committee members when the
prover shows the certificate to the Binding smart contract.
This last transaction is also used to produce the independent
certificate for the DID.

The architecture of our PoC is shown in Figure 6. The
Binding smart contract is written in solidity, compiled as
EVM bytecode and executed in the blockchain.2 The rest
of the software is written in javascript and runs in a single
NodeJS [8] instance. Actors (i.e., the prover, the verifier,
and potential committee members) are just objects in that
instance. In our PoC, all actors are similar to light clients that
are connected to the Ropsten testnet by nodes operated by
Infura [2]. To limit the number of connections open at the
same time to the Infura node, in our PoC, all actors access

2The Binding smart contract is deployed at address
0x71260C67A26Dd23CA9B2595b25e83974a0D2Aa8B of the Ropsten test
network.

FIGURE 6. Architecture of our proof-of-concept realization and
interaction between modules.

the Infura node by means of a special proxy object, which,
in turn, uses the web3.js [14] library to contact the node.

We now provide some details about the execution of the
certification protocol and the verification. The prover issues
the request calling method newRequest of the Binding con-
tract to which it provides its public key p, its endpoint E
and the offered reward (in the Ether cryptocurrency). The
transaction of this call is denoted tR. Since the Ethereum
technology does not allow to access the id of tR within
its execution, the Binding contract generates a new identi-
fier R, for this request. The Binding contract keeps track,
in its state, of R, p, E , the submitted reward, and the block
number nR. An event e = 〈p,E,R, nR〉 is notified by
means of the emit event feature of Ethereum. The block
number nR is needed to retrieve the hash bR of block nR,
which is needed, together with R, to compute a shared
and unpredictable seed for the random committee selection
(see Section VI-A). Potential committee members are sub-
scribed (through the proxy) to receive this kind of events.
Each event e is enough for each potential committee member
to check if it is part of the committee for the corresponding
request. If c is a committee member, it chooses Qc, prepares
and signs 5c (see Algorithm 1), and sends it in an UDP
packet to E . The prover collects all 5c’s and, if there are
enough of them that are correct, it packs the correct ones inG.
Then, the prover calls method payCommittee of the Binding
contract passing G, R, and bR (bR is not strictly needed, but
its presence simplifies the task of the verifier). This call is

VOLUME 9, 2021 133325



D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

FIGURE 7. Excerpt of the DID document produced by our PoC, representing an independent certificate of endpoint control.

recorded in a certificate transaction P, which has two effects.
First, P permanently stores G, R, and bR in the blockchain
ensuring, by smart contract check, that R exists and that it
is coherent with bR. Second, the Binding contract equally
divides and pays the reward to all committee members that
participated to G. Verification of the correctness of P is
delegated to the verifier to reduce execution costs, however,
it is in the interest of the prover to provide a correct P since
the reward is paid in any case. When P is accepted, in a block
whose number is nP, the prover prepares an independent cer-
tificate which ideally should be a triple 〈P, nP,MerkleProof〉
(see Section V-C). The Merkle proof is obtained exploiting
method eth_getProof of Ethereum nodes [32] accessed by a
suitable library [1]. Actually, there are some technical sub-
tleties in using that API, since, it returns a byte string that
encodes both P and its Merkle proof plus a transaction index
i (i.e., the position of P in the block nP), which is needed
to verify the proof. Note that, Ethereum records transactions
even if the corresponding contract execution rises an excep-
tion, hence, it is not enough to have a proof for the transaction.
Ethereum stores, in each block, receipts with the outcome
of each transaction. They are also equipped with their own
Merkle tree. The eth_getProof API can also obtain proofs for
them (with the same encoding). This information should also
be part of our independent certificate as well.

After P is recorded in the blockchain, the prover prepares a
DID containing the independent certificate and stores it in the
Ether-DID-Registry, which is realized as a single smart con-
tract. This operation is supported by a specific library [57].
The DID is also directly sent to the verifier, which checks the
validity of all the above mentioned information against the
trusted header of block nP, which it stores as a light client.
Verifier checks encompass the validity ofG in P, as described
in Algorithm 2.

The DID document produced by our PoC is shown
in Figure 7. Unfortunately, at the time of writing,
the library for the ether-did registry only support a simplified

DID schema that does not include the possibility to have com-
plex objects as serviceEndpoint. We worked around
this problem by including as value for serviceEndpoint
a string containing the JSON representation of the complex
object we intend to include. Note the presence of P plus its
proof, the receipt of P plus its proof, the index of P, and the
block number nP. This is enough for the verifier to check the
integrity of the independent certificate starting from a trusted
chain of block headers that it keeps, as a light client does.

D. EXPERIMENTAL RESULTS
To further provide evidence of the practical applicability of
our approach, we tested our PoC simulating the load of a real
application. Additionally, we also experimentally measure
the maximum throughput that we can achieve in our setting
and we compare it with a theoretical maximum.

We focus on a Robinson list application, where phone line
subscribers can register to allow or deny phone calls by mar-
keting operators. We imagine a blockchain-based application
where users express their option, along the lines of the one
described in [24]. In the blockchain, users are identified by
public keys, while expressed options are related to telephone
numbers. Associating a public key with a telephone number,
is exactly the problem solved by our approach.

The Italian Robinson list is called Registro Pubblico
delle Opposizioni (RPO) [9] and it is centrally managed,
since 2011, by Fondazione Ugo Bordoni (FUB). Currently,
users express their deny of marketing calls by using a
web-based interface or a call center. FUB allowed us to ana-
lyze the history of new users’ registrations. Currently, on the
average, RPO receives about 50 subscriptions per day, but in
the past a peak with about 25,000 subscriptions in single day
(24 hours) was recorded, corresponding to 1041 subscriptions
per hour, on average.

We set up an experiment to prove that our PoC can achieve
a throughput (number of certifications per hour) that allows
us to handle such a request peak. To this purpose, we focused

133326 VOLUME 9, 2021



D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

TABLE 3. Results of throughput measurement experiments.

on the performance of the decentralized certification process,
hence, we deactivated DID creation and publishing features.
In fact, they depend on an external service that we do not
intend to involve in the test.

To measure the maximum throughput of our system,
we considered an increasing number of provers n continu-
ously performing requests. Each prover sends a request as
soon as the previous one is recognized as fulfilled. In this
setting, when the system is up to speed, n is ideally also
the total number of requests that are submitted and not yet
fulfilled. This setting also imposes a self-timing behavior so
that, on average, the frequency of submitted requests matches
the frequency of produced certificates.We performed the tests
using the Ropsten testnet. We run each test for about ten min-
utes. When analyzing our data, we eliminated transient at the
beginning (1 minute) and end (45 seconds) of the test. Cur-
rently, Ropsten allows about 8million gas units per block. For
our PoC, each certification request requires two transactions
(request+ certificate) for a total of about 600k gas units (this
is true when the system is up to speed, see also Section IX-E),
giving about 13 transactions per block. The Ropsten testnet
currently produces one block every 10 seconds, on aver-
age, which gives a theoretical maximum throughput of
4,680 certifications per hour. Since our goal was to measure
it in practice, we cared about running our experiments when
the load of the testnet was low. Results of our experiments are
shown in Table 3. Each row corresponds to one experiment,
for which we provide the range of involved blocks,3 the dura-
tion, the amount certification requests transactions recorded
in the blocks, the amount of certificate transactions recorded
in the blocks, and the computed throughput.4 The indicated
block ranges are those resulting after eliminating the tran-
sient, as specified above, and hence, the system can be con-
sidered up to speed, within the specified intervals. Note that,
the amount of requests is always quite close to the amount
of certifications, which confirms the described self-timing
behavior. Differences between the number of certifications
and the number of requests are due to boundary effects:

3Blocks are publicly accessible to everyone. To access them directly
from the blockchain, several systems are available. For example,
http://ropsten.etherscan.io can be used.

4 We published both data already extracted from blocks and scripts
to compute the statistics shown in the table. The reader can find
them at https://gitlab.com/uniroma3/compunet/networks/bindingpoc/-/tree/
multiple_clients_performance/bindingPerformance.

requests that are issued in the transient before the starting
block are not always perfectly compensated by requests that
are accounted in the interval but have certifications after the
ending block.

Figure 8, graphically shows how throughput varies by vary-
ing n. By increasing n, we correspondingly linearly increase
the throughput of certifications that we request. However,
after n = 50 no throughput increase is observed, whichmeans
we have approached the maximum throughput of the whole
system and increasing n just gives an increase of the latency
of each request.

The maximum throughput we obtained is about 2,600 cer-
tifications per hour, which is well above the peak of about
1,000 certifications per hour needed to support the highest
request peak in the history of RPO. In fact, at 2,600 certifi-
cations per hour we can process the peak of 25,000 requests
arrived in 24 hours, in about 10 hours.

Regarding the inability to reach the maximum theoretical
throughput, this can be ascribed to non-ideal conditions that
are not under our control, in particular, the unavoidable pres-
ence of other users and the observed ‘‘unfair’’ behavior of
some miners of the Ropsten testnet that silently discarded all
our transactions in their mined blocks.

Even if our experiments are carried out in a testnet,
we believe that they prove that our approach can scale to the
throughput of real applications, provided that the underlying
blockchain is adequately dimensioned.

E. COST ANALYSIS
In this section, we analyze the costs of our approach,
focusing on the prover-receives method and on our
PoC realization.

The following is a general list of costs with the subjects
that are supposed to sustain them.

• The prover sustains the cost of placing the certification
request on the blockchain and of notarizing the certifi-
cate transaction P in the blockchain.

• The cost to interact through the endpoint is sustained by
the prover and/or by committee members depending on
the kind of endpoint (see also Section X).

• The prover sustains the cost of the creation of the DID
document that contains the independent certificate.

• The verifier sustains the cost to verify the independent
certificate in the DID document.

VOLUME 9, 2021 133327



D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

FIGURE 8. Throughput for increasing number of provers. The maximum throughput turns out to be about
2,600 certifications per hour.

All actors have to sustain the cost of operating a light client,
which we do not consider in our analysis. Actually, the light
client approach is targeted to have a low operating cost and
reducing it is a general problem with several contributions
(see, for example, [35] and [22]).

We note that the verifier has only to perform local compu-
tation, hence its cost is negligible. This is coherent with our
objective to support a large number of verifications.

Concerning the endpoint interaction cost, in the PoC, this
is clearly irrelevant, since we use just UDP communications.
However, in a real context, this can be substantial. If the
communication through the endpoint have to be paid by the
prover, no problem arises, since it is in its interest to pay it.
However, if it must be paid by the committee members, this
may turn out to be a disincentive to cooperate in the certi-
fication protocol. Hence, it is important to provide a mean
to pay committee members to both reward them for their
cooperation and to reimburse the cost they bear to participate.
Our PoC shows how it is possible to integrate that reward in
our certification protocol.

We now focus on the costs of the transactions. We pro-
vide costs in Ethereum gas units, which is the accounting
unit for smart-contract execution costs in Ethereum. Each
gas unit has a cost which is fixed by the market. After-
ward, we discuss actual costs in ether (the cryptocurrency of
Ethereum, denoted with its code ETH) and in fiat currency
(US dollars, USD).

• The call to the newRequest method costs 208,092 gas
units, for our PoC, independently from the committee
size. In addition, the prover transfers an amount of
ether to reward its cooperation and reimburse the costs
of communicating on the endpoint channel. Since this
amount is application specific, we do not discuss it
further.

• The publication of the certification transaction, made
by calling the payCommittee method, has a cost that
linearly depends by the number of committeemembers x
involved in G. In our experiments, the needed gas units
are approximately given by 41598.1 x + 30162.4. For
our PoC we have x = k̄ = 20, giving about 862,124 gas
units. While carrying out the experiments of Section IX-
D, we noted that when the call is iterated many times,
the needed gas units can be reduced to about 372,000.
In the following cost estimation, we do not consider this
reduction.

• To update the DID Document, the prover calls the setAt-
tribute method of the Ether-DID-Registry. The cost of
this call also depends on k̄ . For our PoC (k̄ = 20), this
cost is 391,521 gas units.

The actual cost for each gas unit, called gas price and
valued in ETH, may change very much over time, as well
as, the USD/ETH exchange ratio. We considered the average
of these values between February 1st, 2020 and February 1st,
2021. The average USD/ETH exchange ratio turned out to be
398.44 USD for one ETH and the average gas price for the
Ethereummain network turned out to be 69×10−9 ETH.With
this values, the total amount spent by the prover in our PoC
is about 40 USD to obtain a certificate on the Ethereum main
network. This cost is in line with costs of certificates issued
by a certification authority for certifying the control of a web
server, for one year 5

This analysis shows that our solution does not simply
provide a fully decentralized certification service, but also
its cost is comparable with analogous centralized solutions.
In any case, to reduce costs, one may consider to adopt a

5Some pricing examples are available here: https://www.
webhostingsecretrevealed.net/blog/ecommerce/buy-ssl-certificate/. The
average price of these providers for a single domain certificate for one year,
at the time of writing, is about 142 USD per year.

133328 VOLUME 9, 2021



D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

TABLE 4. Human involvement and latency of the channels considered
in Section II.

different and cheaper blockchain technology. Section IX-F
discusses this.

F. COMPATIBILITY WITH DIFFERENT BLOCKCHAIN
TECHNOLOGIES
We realized our PoC on Ethereum because it is currently
one of the most adopted blockchains for the development of
smart contracts. However, Ethereum transaction fees may be
considered very expensive. There are other blockchains (such
as Tezos [11], EOS [4], etc.) offering smart contracts with the
same expressive power but with much lower costs making
our protocol much more affordable. Note that, the smart
contract essentially guarantees two requirements: (1) it forces
the prover to block a stake used to reward the committee
members; (2) when the prover declares its certificate, it pays
only the specified committee. We can achieve these require-
ments, even on blockchains providing smart contract with
less expressiveness. For instance, on Algorand [23], we can
realize our approach using one stateless smart contract per
certification instead of the singleton smart contract that we
adopted in our PoC. This stateless smart contract should
have, wired in its code, the total reward for the committee,
the number of required committee members (i.e. k̄) and the
pair 〈p,E〉. At deployment, the prover transfers the total
reward to the contract. When the prover receives k̄ partial
challenges, it cannot send a single transaction paying all com-
mittee members but k̄ transactions are needed, each triggered
by one of the involved committee members. Our method
can be applied, also, on blockchains where it is not possible
to create smart contracts. In this case, we can still achieve
endpoint certification, exploiting transactions with arbitrary
data, but we cannot enforce payment of committee members.

X. TECHNICAL CONSIDERATIONS
In this section, we discuss technical aspects related to the
endpoints considered in Section II and we discuss if and
how they impact the adoption of our certification methods.
We also provide some guidelines to choose between our two
certification methods, with some examples.

Table 4 shows the order of magnitude of the time taken
by endpoint channels to deliver a single message (latency
column) and the need of a human to use channels (human
involvement column). About latency, we note that, for
the considered channels, it ranges from seconds to days.

About human involvement, we state that, for some channels,
no human involvement is needed. These are cases in which
communication can be easily managed via software, like
for email or SMS. For others, the involvement of a human
is required by the very nature of the communication chan-
nel, like for postal mail or for phone calls. Other situations
are in the middle, in the sense that, by design, a human
is supposed to be involved in configuring a system (e.g.,
for DNS records at registrars, static web page editing, bank
transfer order placement). However, this can be considered
optional, in the sense that it can be avoided by proper system
integration. A related aspect is that a channel that does not
require human involvement may require specific equipment
(e.g., an Interactive Voice Response, IVR, for phone calls)
or custom software (e.g., a web app), which may or may
not be easily available to committee members or to provers,
depending on the application context.

In principle, involving humans and using a slow channel
do not impact the adoption of our certification methods.
However, in an application, it should be carefully consid-
ered if the effort of the human activity and the timings are
compatible with the application requirements and with the
rewards offered to the committee members. Additionally,
we note that, slow and human-needing channels pose a further
pressure for the adoption of our solutions with respect to
basic protocols, especially when the number of verifications
is expected to be large.

After a kind of endpoint/channel is selected, to choose
between theprover-receives and theprover-sends
methods, it is useful to take into consideration several other
aspects, which are summarized in Table 5.
The first column specifies if sending messages through the

endpoint channel has a cost. This is true, for example, for
bank transfers, phone calls, postcards, etc.We specified ‘‘no’’
where costs are negligible in practice. We do not go further
into this. Just note that the subject that pays usually depends
on the direction of the communication and, for sustained use,
flat pricing might be available, which might ease the choice
of a specific endpoint/channel.

Columns protocol and communication style put in evidence
that channels are very different with respect to how they
deliver messages. Some of them are based on an underlying
protocol (e.g., TCP, HTTP, DNS), while others can be used
by simply sending one message (e.g., UDP, email, SMS,
bank transfers). In the latter case, channel is normally used
in push-style (i.e., data source initiates the transmission), but
pull-style (i.e., data receiver initiates the transmission asking
for the data) can still be adopted, if there are constraints on
who can initiate the transmission. For example, this is the case
for IP-based communications where private addressing [47]
and network address translation [52] may be present. When a
channel encompasses a protocol, this may impose the use of
a pull-style communication. For example, this is the case of
DNS or HTTP with static page. In other situations, the choice
between push and pull style is leaved to the designer (e.g., for
HTTP with a web app, or for plain TCP).

VOLUME 9, 2021 133329



D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

TABLE 5. Several features of the endpoint/channel are listed. The choice columns, provides informal examples of choices of certification method and
push/pull communication style with a brief reason.

It is important to note that, adopting pull-style com-
munication, has an impact on the committee selection
approach. Namely, this switches the suitable approach
with respect to that suggested in Section VI. In fact,
in Section V, we described certification protocols adopt-
ing a push-style communication, but adopting pull-style
communication reverses the initiator of the communication,
hence, it makes the deterministic approach suitable for the
prover-receivesmethod and the probabilistic approach
suitable for the prover-sends method.

Depending on the criticality of the application context,
an important aspect to consider is the security of the channel,
which may have an impact on the overall security of the
certification procedure. In Section VII, we analyzed the secu-
rity of our certification protocols assuming an ideal channel.
However, in practice, security also depends on the specific
kind of endpoint and channel considered. To put the following
discussion in the right light, we point out that all security
concerns about eavesdropping and spoofing that we are going
to consider, also affect basic protocols commonly used in the
current practice, for example, for two factor authentication.

Suppose that an endpoint E is under the control of a subject
S and an attacker M intends to miscertify that E is under its
control. Normally, messages to E are routed in a network
(e.g., Internet, telephone network, postal logistic network,
etc.). Attacker M has a limited number of points of presence
(PoP) in that network that can be used to perform an attack.
Depending on the context, a PoP can be a controlled computer
or appliance, a postal mail insider, etc. From these PoPs,
in principle, M can create spoofed messages, that look as if
they were sent from E , and can eavesdrop messages destined
to E passing through that PoP. Different channels present dif-
ferent security levels for spoofing and eavesdropping, hence,
it is interesting to analyze what capability are actually needed

by M for accomplishing an attack that exploits channel vul-
nerabilities.

Let us consider channels with no protocol and used
according to a push-style with the prover-sendsmethod.
In these cases,M requires only the spoofing capability to per-
form amiscertification attack and this is easy to perform from
any PoP. For the prover-receives method, M requires
only eavesdropping capability to attack. However, in this
case, M can see all messages only if it has a PoP close to E .
In certain cases, this means close to S, but if E is served in a
distributed manner, like for certain DNS networks or Content
Delivery Networks that adopt anycast routing, eavesdropping
can be very hard.

We now consider pull-style communications. In these
cases, some form of protocol is present that involve sending
messages in both directions and all messages have to be suc-
cessfully delivered to conclude the communication. Hence,
M requires both spoofing and eavesdropping capability for
a successful attack. In this case, the overall difficulty of the
attack is given by themost difficult task between spoofing and
eavesdropping. Since, eavesdropping requires a PoP close
to E , this is needed for the whole attack if certification is
based on a pull-style communication channel. Again, if E is
served in a distributed manner this is hard to achieve.

In columns eavesdropping difficulty and spoofing
difficulty, we provide an informal rough evaluation of the
difficulty of an attacker to perform these attacks for all
endpoint/channels considered. A successful eavesdropping
is in general not that easy to achieve since the attacker PoP
have to be close to E , and it is hard if E is on a distributed
infrastructure. Spoofing is generally easy for channels with
no protocol, but, if the organization that runs the network
(e.g., a telco operator or a bank) deploys countermeasures
to contrasts the attack, this becomes hard, and harder than

133330 VOLUME 9, 2021



D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

TABLE 6. Comparison with related literature.

just eavesdropping. If the channel encompasses a protocol,
spoofing is at least as harder as eavesdropping.

In the choice columns, we propose reasoned choices
between prover-receives and prover-sendsmeth-
ods, with associated push/pull style. These should be intended
as examples of applications of the above considerations and
not as mathematically derived results. In fact, a complete
decision process should consider also other aspects. For
example, we did not took into account rewards and reimburse-
ment from the prover to each committee member.

XI. RELATED WORK AND COMPETITORS
Since endpoints exist independently from a blockchain and
the certificate (i.e., the output of our certification protocols)
is written in the blockchain, the research about blockchain
oracles is of interest for this paper. Further, a certificate of
endpoint control can be used as an attribute of the identity
of a user in applications (which may be blockchain-based or
not), hence identity management research is also related to
this paper. In this section, we briefly review relevant research
in both areas and describe its relation with our contribution.
Table 6 summarizes the content of this section.

A. ORACLES
The need of feeding a blockchain-based application with
off-chain data is handled by the so-called (inbound) oracles.
Most oracles (but not all) focus on retrieval of data published
on the web. The first simple oracles had to be considered
trusted, but lately a number of publicly accessible solutions
was proposed that address the trust problem in different ways:
for example TLSNotary [12] is used to certify data taken from
HTTPS-based web-pages and a trusted execution environ-
ments (like Intel SGX [25]) is used to ensure correct software
execution on third party premises. A common technique is to
involve a multiplicity of subjects that assert on-chain what
they observed off-chain. In this case, contradictory assertions
should be properly handled. A recent survey on trustworthy
oracles [18] provides a comprehensive comparison of cur-
rently known solutions and approaches. To the best of our
knowledge, no proposed oracle specifically deal with the
problem we address in this paper. However, some proposals
are general-purpose in nature and can be somehow adapted

to address our problem. At the end of this section, we point
out the distinctive aspects of our proposal.

Æternity [16] is a general purpose blockchain ecosystem
that also explicitly supports oracles. It reuses the consensus
mechanism of the blockchain to also agree on the state of
the outside world. Witnet [27] is a blockchain designed as an
infrastructure to support the execution of decentralized ora-
cles in which each participant has more chance to contribute
(and to be rewarded) on the basis of its reputation, earned
by who agree with the majority. Simple reputation-based
approaches are affected by the so-called lazy voter problem
(defined in [15]). A lazy voter always participate with a
cheap answer that is independent from the state of the real
world and has some good chance to be the majority answer
and get a reward. In fact, in certain cases, being lazy may
be considered the most rational choice by all participants.
This is supported by classic results about behavior under
scarcity of information or coordination, in economics (e.g.,
the Akerlof’s ‘‘The Lemon Market’’ [17]) and game theory
(e.g., the ‘‘focal point’’ concept by Schelling [48]). Chain-
Link [30] is a reputation-based general-purpose decentral-
ized oracle that motivates each oracle operator to behave
honestly by making reputation statistics public. Astraea [15]
is a proposal (currently still theoretical) of a decentralized
oracle based on a voting system that address the lazy voter
problem by setting up a game between two class of players:
voters and certifiers. Voters play a low-risk/low-reward role
that is resistant to adversarial manipulation while certifiers
play a high-risk/high-reward role that guarantee an high level
of accuracy. In Astraea, a Nash equilibrium exists where all
rational players behave honestly.

See Section XI-C for a discussion of trustworthy oracles
with respect to our approach.

B. IDENTITY MANAGEMENT
An Identity Management (IdM) is a framework (of poli-
cies and technologies) to ensure proper access of users to
resources. It is standardized by ISO [7] and regulated by
the eIDAS [56] regulation of the European Union. Protocols
and standards related to IdM systems are surveyed in [41].
Identities can be useful across several organizations. For
this reason, single sign-on approaches, such as Facebook

VOLUME 9, 2021 133331



D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

connect, are adopted [43], but usually rely on centralized
architectures. The idea of realizing IdM on top of blockchains
is a further step toward making IdM independent from a
specific organization. In private/permissioned blockchains
some kind of trust among participants exists, hence imple-
menting IdM over them does not introduce new conceptual
problems. The Self-Sovereign Identity (SSI) approach, sur-
veyed in [40], envisions solutions in which subjects should
be able to create and control their own identity, without
relying on any centralized authority. In this context, pub-
lic/permissionless blockchains are fundamental tools. W3C
hosts ongoing efforts to standardize the building blocks of
SSI, likeDecentralized Identifiers (DIDs) [46] and Verifiable
Claims/Credentials (VC) [51]. A realization of this frame-
work is backed by theDecentralised Identity Foundation [28].
The relation between DIDs and eIDAS is analyzed in [31].

One of the first attempts to design an IdM system deployed
on the blockchain trying to accomplish self-sovereign iden-
tities is Namecoin [33]. The uPort system [13] makes use of
Ethereum smart contracts to record and retrieve simple DIDs.
Hyperledger Indy [5] is an identity management system built
on a permissioned blockchain. Sovrin [50] is an public IdM
network built on Indy composed only by trusted institutions.
ShoCard [49] binds existing trusted credentials (e.g., a pass-
port), with additional identity attributes by means of Bitcoin
transactions. The last three systems are also analyzed and
compared in [29]. Further recent contributions are Sora [54],
DNS-IdM [34], and [55]. All the above mentioned SSI sys-
tems include decentralized identity registries but still rely on
external and centralized certification authorities to obtain any
certification.

Our contribution is a decentralized methodology to create
certificates of endpoint control. Hence, it is complementary
to any SSI proposal. Our PoC, described in Section IX-C,
is based on Ethereum and on the uPort realization of
the W3C DID standard. A detailed relation between our
approach and the W3C standardization efforts is provided in
Sections IX-A and IX-C.

C. COMPARISON WITH EXISTING SOLUTIONS
In section IX-B, we explained how our solution compares
with basic protocols, which is the natural decentralized and
currently-adopted alternative. In this section, we investigate
how our approach compares against the main other competi-
tors.

Decentralized trustworthy oracles (see Section XI-A)
appear as natural competitors. However, they are based on
the concept of voters, where each voter declares what it
is supposed to be its observation. For this reason they are
affected by the lazy voter problem (see Section XI-A): lazy
voters chose a cheap answer that is likely to be the majority
answer whenmany voters are lazy. Themain problem to solve
in these systems is to assess (or force) honesty of voters.

On the contrary, in our approach, endpoint control is not
an opinion of a voter. Actually, our committee members just
collect the cryptographic proof of endpoint control, derived

from an interaction through the endpoint, and communicate
them to the prover for inclusion in the certificate. Hence,
in our approach, by design, committee members cannot be
lazy voters. Even in the cases in which a human is involved
(see Section X), (s)he just ‘‘copy’’ the received cryptographic
proof into a digital form. From this point of view, our problem
is fundamentally different from a generic oracle problem.
For this reason, we was able to formally prove the high
accuracy of our approach, with high probability, relying only
on random committee selection. For the same reason, our
approach is easy to implement even on a common Ethereum
network.

Regarding the possibility to compare our approach against
a trustworthy oracle, consider the following cases.

1) Consider a procedure realized with a trustworthy ora-
cle that does not involve any interaction through the
endpoint. In this case, the oracle is just a decentralized
way to query a third-party centralized source of infor-
mation (e.g., yellow pages or the billing statement of
the telecom operator), that should be considered trusted.
However, we excluded trust in a centralized third party
since the beginning (see Section I).

2) Suppose to adopt a human-based procedure that inter-
acts with the human prover through the endpoint. In this
case, the significance of any experimental comparison
is limited, since timings and accuracy are negatively
affected by the presence of the human. Further, this
experimentation might turn out to be quite tricky: should
it involve real humans or humans should be modeled in
some way?

3) Suppose to consider an automatic approach adopted
on top of a trustworthy oracle infrastructure with the
purpose to avoid the involvement of humans. It may or
may not be affected by the lazy-voter problem. If this
approach is not affected by the lazy-voter problem,
it essentially realizes a solution very similar to the
one described in this paper, using a trustworthy oracle
infrastructure as a regular blockchain. In particular, any
specific feature of the chosen infrastructure to contrast
the lazy-voter problem is disregarded. We think that
this approach is too similar to the setting adopted in
Section IX to be considered a competing solution. On the
contrary, we are not aware of any reasonable automatic
approach affected by the lazy-voter problem.

On these bases, we think that performing comparison tests of
our approach against a trustworthy oracle is not useful and
possibly misleading.

Regular (centralized) certification authorities (CAs) are
clearly competitors of our approach. As already mentioned
in the introduction, CAs are the de-facto standard to obtain
electronic certification about many kinds of human-verifiable
assertions, and this is true also for certain endpoints,
the notable case being secure website certification. First of
all, it must be stressed that CAs are centralized, which is
a big drawback for decentralized applications, as already

133332 VOLUME 9, 2021



D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

mentioned in the introduction. In any case, it is useful to
compare CAs against our approach with respect to other
aspects. In Table 2, we (also) summarize the comparison of
our approach against regular CAs. Since, both approaches
produce an easily verifiable certificate, verification time is
negligible and prover does not need to be on-line. However,
while in regular CAs the verifier need to trust the public
key of the CA, in our approach the verifier does not need
this trust, but have to be a light client of the underlying
blockchain infrastructure. About the number ofmessages sent
through the endpoint for each certification, this is constant
both for CAs and for our approach. Due to decentraliza-
tion, in our approach, this number is typically higher, but it
may tuned to strike a good application-dependent trade-off
between the number of messages to be sent on the channel
(see the k parameter, in Section V) and security. Costs are typ-
ically larger for certification authorities (see Section IX-E),
since checks are not completely automatically performed.
However, CAs usually perform additional checks besides just
technical endpoint control, like, for example, a check on
the real-life identity of the public key owner. These checks
may provide additional security or may represent a problem,
for example if just endpoint control certification is needed
while real-life identity have to be concealed. These additional
checks also make the time of producing a certificate by a CA
typically much longer than in our approach.

XII. CONCLUSION
We described two decentralized (blockchain-based) meth-
ods to create certificates regarding control of an endpoint
by a subject identified solely by its private/public key-pair.
We exploredmany aspects of our proposal including, security,
applicability with several kinds of endpoints, and certificate
management. We provided a proof-of-concept realization
showing that our approach is easy to implement in practice.
We also evaluated latency and blockchain-related costs.

With respect to currently adopted naive decentralized
approaches, our protocols do not require the subject to be
on-line and the endpoint load does not depend on the number
of verifications. This makes our approach especially suited
for applications where a large number of subjects, which may
be not always on-line, have to be verified by a large number
of verifiers.

Our contribution complements current state of the art in the
field of decentralized self-sovereign identity management by
providing a fully decentralized way of certifying endpoints.
Our approach can also be compared with decentralized ora-
cles in the sense that it provides, on-chain, a proof of an
off-chain truth. However, we leveraged the specificities of
our problem to provide an easy-to-realize solution that can
be based on most of the existing blockchain networks.

As a future work, we envision the application of our
approach in practical contexts. We also plan to evolve our
proof-of-concept realization into a publicly usable library and
to provide support for its adoption with the most common
blockchain technologies.

ACKNOWLEDGMENT
A preliminary version of this article was presented at the
2020 IEEE Symposium on Computers and Communications
(ISCC) [DOI: 10.1109/ISCC50000.2020.9219594].

REFERENCES
[1] (Feb. 2021). Eth Proof 2.0.0—Get a Merkle-Proof From the Blockchain.

[Online]. Available: https://github.com/zmitton/eth-proof
[2] (Dec. 2020). Ethereum API|IPFS API Gateway|ETH Nodes as A Ser-

vice|Infura. [Online]. Available: https://infura.io/
[3] (Feb. 2021). ETHR DID Method Specification. [Online]. Available:

https://github.com/decentralized-identity/ethr-did-resolver/blob/master/
doc/did-method-spec.md

[4] (Feb. 2021). Home|EOSIO Blockchain Software & Services. [Online].
Available: https://eos.io/

[5] (Jun. 2020). Hyperledger Indy. [Online]. Available: https://github.com/
hyperledger-archives/education/blob/master/LFS171x/docs/introduction-
to-hyperledger-indy.md#hyperledger-indy-references

[6] Security and Privacy—A Framework for Identity Management—Part 1:
Terminology and Concepts, document ISO/IEC 24760, New York, NY,
USA, 2019.

[7] Security and Privacy—A Framework for Identity Management.
ISO/IEC 24760, New York, NY, USA, 2019.

[8] (Dec. 2020). Nodejs. [Online]. Available: https://nodejs.org/it/
[9] (Apr. 2020). Registro Pubblico Delle Opposizioni. [Online]. Available:

http://www.registrodelleopposizioni.it/en
[10] The Transport Layer Security (TLS) Protocol Version 1.2,

document RFC 5246, Mar. 2021. [Online]. Available: https://tools.
ietf.org/html/rfc5246

[11] (Feb. 2021). Tezos|Secure Upgradable Built. [Online]. Available:
https://tezos.com/

[12] (Mar. 2021). Tlsnotary—A Mechanism for Independently Audited.
[Online]. Available: https://tlsnotary.org/TLSNotary.pdf

[13] (Apr. 2020). UPort: A Self-Sovereign Identity and User-Centric Data
Platform. [Online]. Available: https://github.com/uport-project/specs

[14] (Dec. 2020). Ethereum JavaScript API—Web3.js 1.0.0 Documentation.
[Online]. Available: https://web3js.readthedocs.io/en/v1.3.0/

[15] J. Adler, R. Berryhill, A. Veneris, Z. Poulos, N. Veira, and A. Kastania,
‘‘Astraea: A decentralized blockchain oracle,’’ in Proc. IEEE Int. Conf.
Internet Things, Oct. 2018, pp. 1145–1152.

[16] T. Arts, Y. Malahov, and S. Hanse, ‘‘Eternity: Open source blockchain for
scalable and secure smart contracts,’’ Æternity Community, Tech. Rep.,
May 2020.

[17] G. A. Akerlof, ‘‘The market for ‘Lemons’: Quality uncertainty and
the market mechanism,’’ in Uncertainty in Economics. Amsterdam,
The Netherlands: Elsevier, 1978, pp. 235–251.

[18] H. Al-Breiki,M. H. U. Rehman, K. Salah, andD. Svetinovic, ‘‘Trustworthy
blockchain oracles: Review, comparison, and open research challenges,’’
IEEE Access, vol. 8, pp. 85675–85685, 2020.

[19] A. M. Antonopoulos,Mastering Bitcoin: Programming Open Blockchain.
Newton, MA, USA: O’Reilly Media, 2017.

[20] A. M. Antonopoulos and G. Wood, Mastering Ethereum: Building Smart
Contracts and DApps. Newton, MA, USA: O’Reilly Media, 2018.

[21] M. Bernardini, D. Pennino, and M. Pizzonia, ‘‘Blockchains meet dis-
tributed hash tables: Decoupling validation from state storage,’’ in Proc.
Distrib. Ledger Technol. Workshop, vol. 2334, P. Mori, M. Bartoletti,
S. Bistarelli, Eds., 2019, pp. 43–55.

[22] B. Bunz, L. Kiffer, L. Luu, and M. Zamani, ‘‘FlyClient: Super-light clients
for cryptocurrencies,’’ inProc. IEEE Symp. Secur. Privacy (SP), May 2020,
pp. 928–946.

[23] J. Chen and S. Micali, ‘‘Algorand: A secure and efficient distributed
ledger,’’ Theor. Comput. Sci., vol. 777, pp. 155–183, Jul. 2019.

[24] A. Cirillo, A. Mauro, D. Pennino, M. Pizzonia, A. Vitaletti, and
M. Zecchini, ‘‘Decentralized robinson list,’’ in Proc. 3rd Workshop Cryp-
tocurrencies Blockchains Distrib. Syst., Sep. 2020, pp. 1–6.

[25] V. Costan and S. Devadas, ‘‘Intel SGX explained,’’ in Proc. IACR, 2016,
vol. 86, pp. 1–118.

[26] D. Longley and M. Sporny. (Jan. 2021). Linked Data Proofs 1.0. [Online].
Available: https://w3c-ccg.github.io/ld-proofs/

[27] A. Sánchez de Pedro, D. Levi, and L. Iván Cuende, ‘‘Witnet: A decen-
tralized Oracle network protocol,’’ 2017, arXiv:1711.09756. [Online].
Available: http://arxiv.org/abs/1711.09756

VOLUME 9, 2021 133333



D. Pennino et al.: Efficient Certification of Endpoint Control on Blockchain

[28] (2018). Decentralized Identity Foundation. [Online]. Available:
https://identity.foundation/

[29] P. Dunphy and F. A. P. Petitcolas, ‘‘A first look at identity manage-
ment schemes on the blockchain,’’ IEEE Secur. Privacy, vol. 16, no. 4,
pp. 20–29, Jul. 2018.

[30] S. Ellis, A. Juels, and S. Nazarov. (Sep. 2017). Chainlink: A Decentral-
ized Oracle Network (V1.0). Accessed: Mar. 2021. [Online]. Available:
https://dev.exodus.io/assets/docs/chainlink-whitepaper.pdf

[31] EU. (Apr. 2020). EIDAS Supported Self-Sovereign Identity.
[Online]. Available: https://ec.europa.eu/futurium/en/system/files/ged/
eidas_supported_ssi_may_2019_0.pdf

[32] S. Jentzsch and C. Jentzsch. (Nov. 2020). EIP-1186: RPC-Method to Get
Merkle Proofs. [Online]. Available: https://eips.ethereum.org/EIPS/eip-
1186

[33] H. A. Kalodner,M. Carlsten, P. Ellenbogen, J. Bonneau, andA. Narayanan,
‘‘An empirical study of Namecoin and lessons for decentralized namespace
design,’’ in Proc. 14th Annu. Workshop Econ. Inf. Secur., Delft, The
Netherlands, Jun. 2015, pp. 22–23.

[34] J. A. Kassem, S. Sayeed, H. Marco-Gisbert, Z. Pervez, and K. Dahal,
‘‘DNS-IdM: A blockchain identity management system to secure personal
data sharing in a network,’’ Appl. Sci., vol. 9, no. 15, p. 2953, Jul. 2019.

[35] A. Kiayias, A. Miller, and D. Zindros, ‘‘Non-interactive proofs of proof-
of-work,’’ in Proc. 24th Int. Conf. Financial Cryptogr. Data Secur. (FC),
Kota Kinabalu, Malaysia. Springer, 2020, pp. 505–522.

[36] S. Kim, Y. Kwon, and S. Cho, ‘‘A survey of scalability solutions on
blockchain,’’ in Proc. Int. Conf. Inf. Commun. Technol. Converg. (ICTC),
Oct. 2018, pp. 1204–1207.

[37] R. Lamberty, D. de Waard, and A. Poddey, ‘‘Leading digital
socio-economy to efficiency—A primer on tokenomics,’’ 2020,
arXiv:2008.02538. [Online]. Available: http://arxiv.org/abs/2008.02538

[38] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and
S. G. Stubblebine, ‘‘A general model for authenticated data structures,’’
Algorithmica, vol. 39, no. 1, pp. 21–41, May 2004.

[39] R. C. Merkle, ‘‘Protocols for public key cryptosystems,’’ in Proc. IEEE
Symp. Secur. Privacy, Apr. 1980, p. 122.

[40] A. Mühle, A. Grüner, T. Gayvoronskaya, and C. Meinel, ‘‘A survey on
essential components of a self-sovereign identity,’’ Comput. Sci. Rev.,
vol. 30, pp. 80–86, Nov. 2018.

[41] T. Miyata, ‘‘A survey on identity management protocols and standards,’’
IEICE Trans. Inf. Syst., vol. E89-D, no. 1, pp. 112–123, Jan. 2006.

[42] G. D. Monte, D. Pennino, and M. Pizzonia, ‘‘Scaling blockchains without
giving up decentralization and security: A solution to the blockchain scal-
ability trilemma,’’ in Proc. 3rd Workshop Cryptocurrencies Blockchains
Distrib. Syst., 2020, pp. 71–76.

[43] A. Pashalidis and J. C. Mitchell, ‘‘A taxonomy of single sign-on systems,’’
in Information Security Privacy, R. Safavi-Naini and J. Seberry, Eds.
Berlin, Germany: Springer, 2003, pp. 249–264.

[44] D. Pennino, M. Pizzonia, and A. Papi, ‘‘Overlay indexes: Efficiently
supporting aggregate range queries and authenticated data structures in off-
the-shelf databases,’’ IEEE Access, vol. 7, pp. 175642–175670, 2019.

[45] D. Pennino, M. Pizzonia, A. Vitaletti, and M. Zecchini, ‘‘Binding of
endpoints to identifiers by on-chain proofs,’’ in Proc. IEEE Symp. Comput.
Commun. (ISCC), Jul. 2020, pp. 1–6.

[46] D. Reed and M. Sporny. (Jan. 2021). Decentralized Identifiers (DIDs)
V1.0: Core Architecture, Data Model, and Representations. [Online].
Available: https://www.w3.org/TR/did-core

[47] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. D. Groot, and E. Lear,
Address Allocation for Private Internets, document RFC1918, 1996.

[48] T. C. Schelling, The Strategy Conflict. Cambridge, MA, USA: Harvard
Univ. Press, 1960.

[49] ShoCard. (Apr. 2020). Shocard Whitepaper. [Online]. Available:
http://shocard.com/wp-content/uploads/2018/01/ShoCard-Whitepaper-
Dec13-2.pdf

[50] Sovrin. (Apr. 2020). Sovrin: Control Your Digital Identity. [Online].
Available: https://sovrin.org/

[51] M. Sporny, D. Longley, and D. Chadwick. (Jan. 2021). Verifiable Cre-
dentials Data Model 1.0: Expressing Verifiable Information on the Web.
[Online]. Available: https://www.w3.org/TR/vc-data-model

[52] P. Srisuresh and M. Holdrege, IP Network Address Translator (NAT)
Terminology and Considerations, document RFC2663, 1999.

[53] O. Steele and M. Sporny. (Feb. 2021). DID Specification Registries:
The Inter Operability Registry for Decentralized Identifiers. [Online].
Available: https://www.w3.org/TR/did-spec-registries/

[54] M. Takemiya and B. Vanieiev, ‘‘Sora identity: Secure, digital identity on
the blockchain,’’ in Proc. IEEE 42nd Annu. Comput. Softw. Appl. Conf.
(COMPSAC), vol. 2, Oct. 2018, pp. 582–587.

[55] M. Toorani and C. Gehrmann, ‘‘A decentralized dynamic PKI based on
blockchain,’’ in Proc. 36th Annu. ACM Symp. Appl. Comput., Mar. 2021,
pp. 1646–1655.

[56] EIDAS—Electronic Identification, Authentication and Trust Services,
European Union, Maastricht, The Netherlands, 2014.

[57] Uport-Project. (Feb. 2021). Ethereum DID Registry—Ethereum
Registry for ERC-1056 Ethr Did Methods. [Online]. Available:
https://github.com/uport-project/ethr-did-registry

[58] G. Urdaneta, G. Pierre, and M. V. Steen, ‘‘A survey of DHT security
techniques,’’ ACM Comput. Surv., vol. 43, no. 2, pp. 1–49, Jan. 2011.

[59] Q. Zhou, H. Huang, Z. Zheng, and J. Bian, ‘‘Solutions to scalability of
blockchain: A survey,’’ IEEE Access, vol. 8, pp. 16440–16455, 2020.

DIEGO PENNINO received the Ph.D. degree
in computer science from Roma Tre University,
in 2021. He is currently a Researcher in computer
science with the Engineering Department, Roma
Tre University. His research is involved in the field
of integrity and security of the data, and in the field
of blockchain and smartcontracts.

MAURIZIO PIZZONIA is currently an Assistant
Professor with Roma Tre University, Italy. He is
very much oriented in solving real problems and
in devising innovative solutions that can lead to
applications. In 2011, he co-founded a start up in
cloud security. He has been teaching cybersecurity
courses, since 2004. He has published more than
50 papers in scientific conferences and journals,
and served as a coordinator for research units
and work packages in two European projects. His

research interests include design of algorithms and software systems for
cybersecurity, blockchain, internet analysis, and information visualization.

ANDREA VITALETTI is currently an Associate
Professor with the Sapienza University of Rome.
He founded the spin-offs WLAB (sold in 2016)
and WSENSE (left in 2019). He is also the
Co-Founder of GIUSTA. He teaches networking,
data management, and the IoT topics in engineer-
ing and product design for M.Sc. and B.Sc. stu-
dents at Sapienza. He has coauthored more than
60 papers in scientific conferences and journals.
He has been involved in a number of EU projects

as a researcher and a principal investigator, and coordinated the FET Open
PLEASED. His research interests include algorithms and protocols for wire-
less networks and the IoT, private and distributed data management, and
distributed ledger technologies.

MARCO ZECCHINI received the M.S. degree
in computer science engineering from the
‘‘La Sapienza’’ University of Rome, in 2019,
where he is currently pursuing the Ph.D. degree
in data science with the Department of Com-
puter, Control and Management Engineering. His
research is involved in the field of the Internet of
Things, blockchain, and smart contracts.

133334 VOLUME 9, 2021


