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ABSTRACT An artificial Earth satellite (AES) with three different principal central moments of inertia is
under consideration. The AES moves along a Keplerian circular equatorial near-Earth orbit. The AES is
equipped with electrodynamic attitude control system that simultaneously generates Lorentz and magnetic
control torques. The possibility of using an electrodynamic attitude control system for monoaxial attitude
stabilization of AES in the orbital coordinate system is analyzed. The development of the concept of
electrodynamic attitude control, including the use of a restoring torque with a distributed delay (integral
term), is proposed. The conditions are found under which the electromagnetic attitude control system with
distributed delay solves the problem of AES monoaxial stabilization in the presence of the disturbing
gravitational torque. In a nonlinear formulation, sufficient conditions for the asymptotic stability of the AES
equilibrium position are obtained. A theorem on the asymptotic stability of the AES programmed attitude
motion is proved. The effectiveness of the constructed attitude control with a distributed delay is confirmed
by numerical modeling.

INDEX TERMS Asymptotic stability, attitude control, delay systems, electric variables control, low earth
orbit satellites, magnetic variables control.

I. INTRODUCTION
The electromagnetic interaction of the artificial Earth satel-
lite (AES) with the Earth’s magnetic field has a significant
effect on the AES attitude dynamics and can be used in
AES attitude control system. The magnetic attitude control
systems based on this interaction, their advantages and dis-
advantages are discussed in a variety of works. For example,
see [1]–[3] and papers cited therein. The concept of AES
attitude control using the Lorentz torque was proposed in [4]
and papers cited therein. Later this concept was addressed
in [5] and [6] and developed in accordance with modern
trends in control theory. The electrodynamic attitude control
strategy based on simultaneous usage of the magnetic and
Lorentz torques occurred to be potent [7] since it can relief
some natural constraints that are inherent to both magnetic
and Lorentz attitude control systems.
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approving it for publication was Halil Ersin Soken .

A parametric approach for damping the AES oscillations
in the orbital frame was proposed in [7] and developed in [8],
where consideration was given to AES attitude stabilization
in the direct equilibrium position in the orbital frame. The
mathematical background of this approach relies on the dif-
ferential equations of the linear approximation. The perma-
nent stability of the AES direct equilibrium position under
the perturbing action of the gravitational torque was proved
with the use of numerical analysis of the roots of the char-
acteristic polynomial. The analytical proof of the asymptotic
stability of the AES direct equilibrium position was presented
in [9] where nonlinear analysis of the differential equations
of motion was performed on the basis of the Lyapunov direct
method [10]–[13] and on the special approach to constructing
Lyapunov functions [14], [15].

The problem of controllability in electrodynamic attitude
control system was addressed in [16], where it was shown
that the linearized differential system can be reduced to
time-invariant one of larger order. For obtained time-invariant
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FIGURE 1. AES in the orbital coordinate system.

system, controllability is analyzed, and the optimal stabiliza-
tion algorithm based on the LQR method is constructed.

This paper analyzes the applicability of the electrodynamic
attitude control system for monoaxial AES stabilization in the
arbitrary angular position in the orbital frame. This problem
was previously considered in [17], where it was solved using
a completely different control, and the stability analysis was
based on approaches that are fundamentally different from
those used in this article.

As is known, the problem of monoaxial AES stabiliza-
tion is relevant in connection with many applications, for
example, Earth-pointing satellites, remote sensing, scientific
space missions with a telescope. In some problems of AES
stabilization, it is important not only tomeet stabilization con-
ditions but also avoid unacceptable vibrations due to attitude
control system. For example, large space telescope needs in
vibrations suppression in the process of its pointing [18]. One
of the popular ways for smoothing transients and vibration
suppression is based on the usage of PID controller. However,
thismethod is not universal, since the integral term introduced
into the control process, can play a negative role with time
increasing. In particular, this drawback restricts the use of
PID controllers for highly precise tracking. To overcome this
disadvantage, it was proposed in [19] to use control with
distributed delay for some types of mechanical systems.

In this connection, the problem is raised in this paper
about the possibility of implementing such a system of elec-
trodynamic AES attitude control by the type of a PID-like
controller, in which (in contrast with [17]) the control
torque contains a distributed delay (integral component).
A theorem on the asymptotic stability of the AES angular

position is proved with the use of the original construction for
the Lyapunov-Krasovsky functional. The theorem substanti-
ates the possibility of constructing the desired control system.
The effectiveness of the constructed control with a distributed
delay is confirmed by a numerical simulation.

II. PROGRAM AES ATTITUDE
We consider an AES whose center of mass (point C) moves
in a circular equatorial near-Earth orbit of a radius R as
shown in Fig. 1. The AES attitude motion in the orbital
coordinate system Cξηζ with the unit vectors Eξ0, Eη0, Eζ0 is
under investigation. The axis Cξ of this coordinate system
is directed along the tangent to the orbit in the direction of
motion, the axis Cη is orthogonal to the orbit plane, and the
axis Cζ is directed along the radius vector R =

−−→
OEC = REζ0

of the AES center of mass relative to the Earth centerOE . The
angular velocity of the orbital coordinate system relative to
the inertial system is denoted by Eω0. The system of the main

central axes of inertia Cxyz (unit vectors Ei, Ej, Ek) of the AES
is rigidly connected with the AES.

The angular position of the axes Cxyz relative to the axes
Cξηζ is defined by the matrixA of direction cosines αi, βi, γi
(i = 1, 2, 3) so that the equalities

Eξ0 = α1Ei+ α2Ej+ α3Ek,

Eη0 = β1Ei+ β2Ej+ β3Ek,
Eζ0 = γ1Ei+ γ2Ej+ γ3Ek

hold true. Regarding orbital frame as the basic one, we define
the program angular position of AES in the orbital frame by
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matrix A0 of direction cosines. The unit vectors

A>Eξ0 = (α1, α2, α3)> � Es1,

A>Eη0 = (β1, β2, β3)> � Es2,

A>Eζ0 = (γ1, γ2, γ3)> � Es3

are invariable in the basic coordinate system Cξηζ . Analo-
gously, the unit vectors

A>0 Eξ0 = (α10, α20, α30)> � Er1,

A>0 Eη0 = (β10, β20, β30)> � Er2,

A>0 Eζ0 = (γ10, γ20, γ30)> � Er3

rigidly connected with the AES, are invariable in the coordi-
nate system Cxyz.

Let the unit vector Es0 = c1Es1 + c2Es2 + c3Es3, where
ci = const, i = 1, 2, 3 be invariable in the basic coordinate
system Cξηζ (Fig. 1). Let some axis with the unit vector

Er0 = x0Ei + y0Ej + z0Ek , where x0 = const, y0 = const, z0 =
const, be fixed in AES, that is invariable in the coordinate
system Cxyz.
The AES angular position corresponding the equality
Er0 = Es0 will be referred to as a program angular position.
We consider the following control problem: it is required to

design the control torques providing existence and asymptotic
stability of AES programmedmotion in the orbital frame such
that

Er0 = Es0, Eω′ = E0. (1)

Here and in what follows Eω′ is the AES angular veloc-
ity relative to the orbital frame in the projections on the
axes Cxyz. The attitude motion (1) is called the program
attitude motion of the AES.

It should be noted that the absolute angular velocity of
the AES is not zero in the program attitude motion. So, the
stabilization of program attitude motion (1) of the AES in
the rotating orbital frame is equivalent to the stabilization of
permanent rotation [14], [20], [21] of the AES in the inertial
frame.

III. CONTROL DESIGN
We consider electrodynamic attitude control system based
on the simultaneous usage of Lorentz and magnetic control
torques [7], [22]

EML = EP× ET , EMM = EI × EB, (2)

where EB is the Earth’s magnetic field induction, calculated at

the AES center of mass, EP = Q Eρ0, Q is the total charge of
the AES, Eρ0 = Q−1

∫
V µ EρdV is the radius vector of the AES

center of charge relative to its center of mass, µ is the density
of charge distribution over the AES volume V , Eρ is the radius
vector of the AES element dV with respect to its center of
mass, ET = EvC × EB, EvC is the velocity of the AES center of
mass relative to the greenwich coordinate system, vector EI is
the intrinsic magnetic moment of the AES.

AES attitude stabilization in the orbital coordinate system
is analyzed in terms of the nonlinear differential equations
of the AES attitude motion based on the Euler–Poisson
scheme [20]:

d
dt
(J Eω)+ Eω × (J Eω) = EMG + EML + EMM , (3)

dEsi
dt
+ Eω′ × Esi = 0, i = 1, 2, 3. (4)

Here Eω = Eω0 + Eω
′ is the absolute angular velocity of

the AES.
The procedure of the control design is in accordance

with [17], where it was shown that each control parameter EP
and EI can be chosen as a sum of restoring term, dissipative
term and compensating one. As is known, AES that moves
in the Earth’s gravitational and magnetic fields [20], [23],
[24] is subjected to a lot of disturbing torques [3], [20], [25].

In this paper we consider gravitational torque EMG as the
most significant disturbing torque. Compensating terms of

control torques EML and EMM allows the suppression of dis-
turbing gravitational torque EMG = 3ω2

0Es3 × (JEs3), where
J = diag(A,B,C) is the inertia tensor of AES in the coor-
dinate system Cxyz. Corresponding components of control
vectors EP and EI are constructed in [17].
The dissipative component of control torque we take in the

form

hL( Eω′ × (A> ET ))× (A> ET )+ hM ( Eω′ × (A>EB))× (A>EB),

A> ET = TξEs1 + TηEs2 + TζEs3,

A>EB = BξEs1 + BηEs2 + BζEs3. (5)

This approach is rather natural since the dissipative con-
trol torque is linear with respect to the relative angular
velocity Eω′ [14], [26], [27].

The restoring component of control torque is constructed
in the form

aEr0 × Es0 + b

t∫
t−τ

Er0 × Es0(σ )dσ, (6)

where a, b are constants with a > 0. Unlike [17], the restoring
torque contains distributed delay (integral term).

Substitution of the control torque in the right hand side of
the equations (3) results in the following equations:

d
dt
(J( Eω′ + ω0Es2))+ Eω′ × (J Eω′)+ ω0Es2 × (J Eω′)

+ω0 Eω
′
× (JEs2) = aEr0 × Es0 + b

t∫
t−τ

Er0 × Es0(σ )dσ

+hL( Eω′ × (A> ET ))× (A> ET )+ hM ( Eω′ × (A>EB))× (A>EB).

(7)

The system (7), (4) admits the programmed motion (1).
In dipole approximation of the Earth’s magnetic field

(‘‘straight magnetic dipole’’) [20], [23], [24] A>EB = BηEs2,
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Bη = −(RE/R)3g01 = const, A> ET = TζEs3, Tζ = R(ω0 −

ωE ) Bη = const and equations (7) take on the form

d
dt
(J( Eω′ + ω0Es2))+ Eω′ × (J Eω′)+ ω0Es2 × (J Eω′)

+ω0 Eω
′
× (JEs2) = aEr0 × Es0 + b

t∫
t−τ

Er0 × Es0(σ )dσ

−hL( Eω′ − ( Eω′Es3)Es3)− hM ( Eω′ − ( Eω′Es2)Es2). (8)

We assume that initial functions for the system (8), (4)
belong to the space C([−τ, 0],R12) of continuous functions
Eϕ(ξ ) : [−τ, 0]→ R12 with the uniform norm

‖Eϕ‖τ = max
ξ∈[−τ,0]

‖Eϕ(ξ )‖,

where ‖ · ‖ denotes the Euclidean norm of a vector.
Let ( Eω>t , Es

>

1t , Es
>

2t , Es
>

3t )
> be the restriction of a solution

( Eω>(t), Es>1 (t), Es
>

2 (t), Es
>

3 (t))
> to the segment [t − τ, t] [28].

IV. STABILITY ANALYSIS
Let hL = hh̃L , hM = hh̃M . Here h̃L , h̃M are fixed positive
numbers, h is a positive parameter. Then

hL( Eω′ − ( Eω′Es3)Es3)+ hM ( Eω′ − ( Eω′Es2)Es2) = hD(Es2, Es3) Eω′,

where

D(Es2, Es3) = h̃L(I− Es>3 Es3)+ h̃M (I− Es>2 Es2)

and I is the (3×3)–identity matrix. It is worth noting that the
matrix D(Es2, Es3) is symmetric and positive definite.
Using the approach developed in [29]–[31], choose

a Lyapunov function candidate for (8), (4) as follows

V =
1
2
‖Er0 − Es0‖2 +

χ

2
Eω′>J Eω′ +

1
h
(Es0 × Er0)>D−1(Es2, Es3)J Eω′,

where χ is a positive parameter.
We obtain

1
2
‖Er0 − Es0‖2 + χb1‖Eω′‖2 −

1
h
b3‖Es0 − Er0‖‖Eω′‖ ≤ V

≤
1
2
‖Er0 − Es0‖2 + χb2‖Eω′‖2 +

1
h
b3‖Es0 − Er0‖‖Eω′‖,

V̇ ≤ χ Eω′>
(
ω0J( Eω′ × Es2)− ω0Es2 × (J Eω′)

+ aEr0 × Es0 + b

t∫
t−τ

Er0 × Es0(σ )dσ − hD(Es2, Es3) Eω′
)

+
1
h
(Es0 × Er0)>D−1(Es2, Es3)

(
ω0J( Eω′ × Es2)

− ω0Es2 × (J Eω′)− ω0 Eω
′
× (JEs2)+ aEr0 × Es0

+ b

t∫
t−τ

Er0×Es0(σ )dσ
)
+

1
h
b4‖Eω′‖2 +

1
h
b5‖Er0−Es0‖‖Eω′‖2,

where bj > 0, j = 1, . . . , 5.

Taking into account the positive definiteness of D(Es2, Es3),
we arrive at the estimate

V̇ ≤ −χhb6‖Eω′‖2 + χb7‖Eω′‖2 +
1
h
b8‖Er0 − Es0‖‖Eω′‖

+χa‖Er0 − Es0‖‖Eω′‖ + χ |b|‖ Eω′‖

∥∥∥∥∥∥
t∫

t−τ

Er0 × Es0(σ )dσ

∥∥∥∥∥∥
−
a
h
(Es0 × Er0)>D−1(Es2, Es3)(Es0 × Er0)

+
b
h
(Es0 × Er0)>D−1(Es2, Es3)

t∫
t−τ

Er0 × Es0(σ )dσ

+
1
h
b4‖Eω′‖2 +

1
h
b5‖Er0 − Es0‖‖Eω′‖2,

where b6, b7 are positive constants.
Next, construct a Lyapunov–Krasovskii functional in the

form (see [28], [32], [33])

Ṽ =V +
ε

h

t∫
t−τ

(σ−t+τ )(Es0(σ )×Er0)>D−1(σ )(Es0(σ )×Er0)dσ.

Here ε = const > 0, D−1(σ ) = D−1(Es2(σ ), Es3(σ )). Then

˙̃V ≤ −χhb6‖Eω′‖2 + χb7‖Eω′‖2 +
1
h
b8‖Er0 − Es0‖‖Eω′‖

+χa‖Er0 − Es0‖‖Eω′‖ + χ |b|‖ Eω′‖

∥∥∥∥∥∥
t∫

t−τ

Er0 × Es0(σ )dσ

∥∥∥∥∥∥
+
1
h
b4‖Eω′‖2 +

1
h
b5‖Er0 − Es0‖‖Eω′‖2

−
a
h
(Es0 × Er0)>D−1(t)(Es0 × Er0)

+
b
h
(Es0 × Er0)>D−1(t)

t∫
t−τ

Er0 × Es0(σ )dσ

−
ε

h

t∫
t−τ

(Es0(σ )× Er0)>D−1(σ )(Es0(σ )× Er0)dσ

+
ετ

h
(Es0 × Er0)>D−1(t)(Es0 × Er0).

With the aid of the substitution Eψ(t) = D−1/2(t)(Es0 × Er0),
we obtain

a(Es0 × Er0)>D−1(t)(Es0 × Er0)

+ b(Es0 × Er0)>D−1(t)

t∫
t−τ

Es0(σ )× Er0dσ

+ ε

t∫
t−τ

(Es0(σ )× Er0)>D−1(σ )(Es0(σ )× Er0)dσ

− ετ (Es0 × Er0)>D−1(t)(Es0 × Er0)

= (a− ετ ) Eψ >(t) Eψ(t)+ ε

t∫
t−τ

Eψ >(σ ) Eψ(σ )dσ
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FIGURE 2. Direction cosines. No delay, τ = 0.

+ b Eψ >(t)D−1/2(t)

t∫
t−τ

D1/2(σ ) Eψ(σ )dσ

=

t∫
t−τ

(
Eψ(t)
Eψ(σ )

)>
W
(
Eψ(t)
Eψ(σ )

)
dσ

+ b Eψ >(t)D−1/2(t)

t∫
t−τ

(D1/2(σ )− D1/2(t)) Eψ(σ )dσ.

Here

W =


(a
τ
− ετ

)
I
b
2
I

b
2
I εI


and I is the (3× 3)–identity matrix.

Applying Mean Value Theorem, it is easy to verify that∥∥∥∥∥∥
t∫

t−τ

(D1/2(σ )− D1/2(t)) Eψ(σ )dσ

∥∥∥∥∥∥
≤ b8‖Eω′t‖τ

t∫
t−τ

‖Es0(σ )× Er0‖dσ,

where b8 is a positive constant.
Let us define conditions under which there exists ε > 0

such that the matrix W is positive definite. It can be
shown that, to derive less conservative constraint on the
parameters a, b, one should take

ε =
a
2τ 2

. (9)

As a result, we obtain the following domain of admissible
values of a, b:

a > τ |b|. (10)

Thus, if the conditions (9), (10) hold, then

˙̃V ≤ −χhb6‖Eω′‖2 + χb7‖Eω′‖2 +
1
h
b8‖Er0 − Es0‖‖Eω′‖

+χa‖Er0 − Es0‖‖Eω′‖ + χ |b|‖ Eω′‖

∥∥∥∥∥∥
t∫

t−τ

Er0 × Es0(σ )dσ

∥∥∥∥∥∥
+
1
h
b4‖Eω′‖2 +

1
h
b5‖Er0 − Es0‖‖Eω′‖2

+b8‖Eω′t‖τ‖Es0 × Er0‖

t∫
t−τ

‖Es0(σ )× Er0‖dσ,

−
1
h
b9(Es0 × Er0)>D−1(t)(Es0 × Er0)

−
1
h
b10

t∫
t−τ

(Es0(σ )× Er0)>D−1(σ )(Es0(σ )× Er0)dσ,

where b9 > 0, b10 > 0.
In addition, there exist positive numbers δ, b11, b12 such

that the estimates

(Es0 × Er0)>D−1(t)(Es0 × Er0) ≥ b11‖Es0 × Er0‖2 ≥ b12‖Es0 − Er0‖2

are valid for ‖Es0 − Er0‖ < δ.
Hence, if χ, δ are sufficiently small and h is sufficiently

large, then
1
4

(
‖Er0 − Es0‖2 + χb1‖Eω′‖2

)
≤ Ṽ

≤ ‖Er0 − Es0‖2 + 2χb2‖Eω′‖2 + b13

t∫
t−τ

‖Es0(σ )× Er0‖2dσ,

˙̃V ≤ −
1
2
χhb6‖Eω′‖2 −

1
2h
b9 b12‖Es0 − Er0‖2

−
1
2h
b10b11

t∫
t−τ

‖Es0(σ )× Er0‖2 dσ

for ‖Es0 − Er0‖ < δ, ‖Eω′t‖τ < δ. The fulfilment of these
inequalities implies (see [28]) the asymptotic stability of the
programmed motion (1).

As a result, we arrive at the following theorem.
Theorem 1: Under the condition (10), there exists h0 > 0

such that the programmed motion (1) is asymptotically stable
for all h ≥ h0.

VOLUME 9, 2021 132627



A. Aleksandrov, A. A. Tikhonov: Monoaxial Electrodynamic Stabilization of AES in Orbital Coordinate System

FIGURE 3. Direction cosines. Distributed delay, τ = 0.3.

FIGURE 4. Gravitational and control torques. No delay, τ = 0.

FIGURE 5. Gravitational and control torques. Distributed delay, τ = 0.3.

V. COMPUTER MODELING
Let us consider an AES with tensor of inertia J =

diag(1000, 700, 800) and the total electric chargeQ = 0.005.
Here and in what follows all dimension values are in the
SI units. The program motion is the equilibrium Er0 = Es0
in the orbital frame, where Er0 = (γ1, γ2, γ3)> = (1/

√
3,

1/
√
3, 1/
√
3)>. The attitude stabilization problem is solved

with the use of control torques in accordance with equations
(7), (4), where we put a = 0.1, hL = 0.0983, hM = 0.4966.
Let the initial attitude position of AES is defined by ‘‘air-

craft’’ angles φ(ξ ) = 0.2, ψ(ξ ) = −0.2, θ(ξ ) = 0.2 and
angular velocity components ωx(ξ ) = 0.1, ωy(ξ ) = 1.1,
ωz(ξ ) = 0.1 for ξ ∈ [−τ, 0]. First consider the case where
τ = 0, that is control system with no integral term (b = 0).

132628 VOLUME 9, 2021
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In this case the control process converges to the program
motion as shown in Fig. 2. Here and on all other graphs,
the latitude argument u = ω0 t is plotted along the abscissa.
Now consider the case where τ = 0.3, b = 1. In this case

the control process converges to the programmotion as shown
in Fig. 3.

It can be easily seen that the introduction of integral com-
ponent with distributed delay into the control system can
significantly reduce the oscillation of the control process
and accelerate its convergence to an asymptotically stable
solution. The results obtained indicate that the control method
used in this work turns out to be better than the meth-
ods that were previously used [17] to solve the problem of
AES monoaxial stabilization.

It is worth to note that the problem of AES attitude stabi-
lization is a nonlinear dynamic problem. Therefore, ensuring
a higher smoothness of the control process can be funda-
mentally important when controlling a large space structure,
especially when the eigenfrequencies of the system are close
to resonance ratios [34], [35].

The control torques were also calculated for the above two
cases. The results are shown in Fig. 4 for the case τ = 0
(b = 0) and in Fig. 5 for the case τ = 0.3, b = 1.
It can be seen that the presence of distributed delay (inte-

gral term) makes it possible to halve the values of the control
torques at the beginning of the control process.

VI. CONCLUSION
An artificial Earth satellite (AES) with an arbitrary triaxial
ellipsoid of inertia in a circular equatorial orbit is considered.
The mode of monoaxial stabilization in the orbital frame is
considered as the programmed mode of AES attitude motion.
To stabilize the AES axis in the programmed motion mode,
an electrodynamic attitude control system is used, which
generates the Lorentz torque and the magnetic torque. These
two control torques provide compensation of the disturbing
gravitational torque, and also implement the restoring and
damping components that allow stabilizing the AES axis in
the programmed attitude motion mode.

The novelty of the problem statement lies in the fact that,
in contrast to the previously known works using an electro-
dynamic attitude control system, there are no restrictions on
the position of the stabilized axis in the orbital frame.

The novelty of the approach to solving the problem lies
in the development of the concept of electrodynamic atti-
tude control by using the restoring torque with a distributed
delay. A simple and easily verified sufficient condition for the
asymptotic stability of the programmed attitude motion of the
AES has been obtained in a nonlinear formulation with the
use of the approach developed by the authors to constructing
Lyapunov functions. Thus, the development of the theory of
electrodynamic attitude control is given for solving the prac-
tically important problem of monoaxial attitude stabilization
of a satellite not only in a straight position, but also in an
arbitrary position in the orbital frame. Numerical modeling
confirms the conclusion proved in the theorem.

As the result, an extension of the concept of electrody-
namic attitude control with electrodynamic compensation of
the perturbing torque and distributed delay in integral term
was proposed. Conditions were established under which the
electromagnetic control supports AES monoaxial attitude
stabilization.
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