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ABSTRACT Conventionally syntactic pattern recognition tasks have been driven by grammars defining
a syntactic structure. Syntactic Pattern recognition tasks were primarily relying on the ability of parsing
algorithms to recognize the patterns in the input data. These algorithms essentially were dependent on the
syntactic grammars defining the patterns. Context free grammars, a type of grammars have been particularly
well studied for pattern recognition tasks to be solved by computer efficiently. Some of the key pattern
recognition tasks had applications in Natural Language Processing (NLP). Though context free grammars
are well suited for capturing rigid patterns and unambiguous patterns, there was a need to encapsulate the
uncertainty aspects involved in some pattern recognition processes. Probabilistic context free grammars can
well handle the need to capture uncertainty in the processes but not in a true sense they are able to capture
the uncertainty associated with the semantic context governing the domain in which the pattern recognition
processes are being attempted at. The paper formally puts forth an approach for syntactico-semantic pattern
recognition. The syntactico-semantic pattern recognition attempts to capture the semantic context and the
uncertainties involved thereof along with probabilistic reasoning. The approach consists of integration
mapping between probabilistic context free grammar (PCFG) and Multi Entity Bayesian network (MEBN),
a first-order logic for modeling probabilistic knowledge bases. Additionally, the paper outlines a modified
version of the CYK parser algorithm for the defined mapping between PCFG and MEBN with a method
to ensure the properness and consistency of such PCFG along with its key application, disambiguation of
PP (Prepositional Phrase) attachment. The theoretical foundation proposed has been validated by a proof-
of-concept implementation of the modified CYK algorithm for syntactico-semantic reasoning in Java with
promising ability to disambiguate PP attachment uses cases of NewYork Times andWikipedia corpus dataset
samples.

INDEX TERMS Syntactic pattern recognition, probabilistic reasoning, MEBN.

I. INTRODUCTION
Grammars form the core of syntactic pattern recognition
tasks, of specific importance, are context free grammars
(CFG). Often the statistical and syntactic patterns find their
best descriptions by a CFG than a regular expression. Proba-
bilistic graphical models are being used for modeling uncer-
tainty reasoning problems for several decades. Awell-defined
and practical example of probabilistic graphical models is the
Bayesian network. The work reported in this paper funda-
mentally relies on the CFG and Bayesian Network.
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A. PROBABILISTIC CONTEXT FREE GRAMMARS (PCFG)
Probabilistic Context Free Grammar [1] is a quintuple,

GPCFG = (MPCFG,TPCFG,RPCFG, SPCFG,PPCFG),

where
• MPCFG = {N i

: i = 1, . . . , n} is a set of nonterminals
• TPCFG = {wk : k = 1, . . . , v} is a set of terminals
• RPCFG = {N i

→ ζ j : ζ j ∈ (MPCFG
⋃
TPCFG)∗} is a set

of rules
• SPCFG = N 1 is the start symbol
• PPCFG is a corresponding set of probabilities on rules
such that.

∀i
∑

j
P(N i

→ ζ j) = 1
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• For a PCFG in chomsky normal form (CNF)

◦ RPCFG = {N i
→ N rN s, N i

→ wk}
◦ ∀i

∑
r,s P(N

i
→ N rN s)+

∑
k P(N

i
→ wk ) = 1

An example of probabilistic context free grammar in CNF is
represented as,
N 1
→ N 2N 31.0 N 2

→ w20.1
N 2
→ N 2N 40.4 N 2

→ w30.04
N 4
→ N 5N 21.0 N 2

→ w40.18
N 3
→ N 6N 20.7 N 2

→ w50.1
N 3
→ N 3N 40.3 N 6

→ w61.0
N 2
→ w10.18 N 5

→ w71.0
The number beside the rule indicates the probability asso-

ciated with the rule.

B. MULTI ENTITY BAYESIAN NETWORK (MEBN)
AMEBN (Multi Entity Bayesian Network) theory [2] TMEBN
is a set of MFrags {F1, F2, F3, . . . ,Fn}.
An MFrag Fi is a quintuple Fi = (C i

MEBN , I
i
MEBN , R

i
MEBN ,

GiMEBN , D
i
MEBN ) where

• C i
MEBN is a finite set of values a context can take form

as a value; context serves as constraints under which the
variables in MFrag are instantiated.

• I iMEBN is a set of input random variables.
• RiMEBN is a finite set of resident random variables,
the term ‘‘resident random variable’’ indicates a random
variable symbol with a parenthesized list of arguments
separated by commas. The arguments used in the resi-
dent random variable representation are used to repre-
sent variables, constant symbols, or the other resident
random variables.

• GiMEBN is a directed acyclic graph representing the
dependency between input random variables and resi-
dent random variables conditional on context random
variables in one to one correspondence similar to the
Bayesian network.

• DiMEBN is a set of local conditional probability dis-
tributions where each member of RiMEBN has its own
conditional probability distribution in set DiMEBN .

• Sets C i
MEBN , I

i
MEBN , and R

i
MEBN are pairwise disjoint.

For a MEBN theory TMEBN , a set of MFrags {F1,F2,
F3, . . .Fn}, there exists a joint unique probability distribu-
tion on the set of instances of the random variables of its
MFrags that is consistent with the local probability distribu-
tions assigned within the MFrag [2].
Collectively MFrags represent a knowledge base for a

specific scenario requiring probabilistic reasoning. Once an
MFrag is defined it can be applied as a repeatable pattern
of reasoning queries, this is achieved by allowing the ran-
dom variables to accept arguments. The arguments passed
to a random variable within an MFrag are called ordinary
variables and are distinct from the concept of random vari-
ables. In addition to random and ordinary variables, MEBN
defines the notion of context nodes, resident nodes, and input
nodes. The context nodes are represented as green pentagons

and represent a condition to be satisfied for the probability
distributions to be applied to the random variables within the
MFrag. Input nodes are represented as trapezoids and are the
random variables having an effect on resident random vari-
ables. Resident random variables are represented as yellow
ovals.
Since the Bayesian networks are fixed and rigid, when used

as a tool for knowledge representation put the systems relying
on it for uncertainty reasoning at disadvantage. Often systems
catering to real-world situations demand flexibility in model-
ing the knowledge representation networks dynamically and
MEBN being a fusion of Bayesian Networks with First-Order
Logic expressivity stands as the most desirable probabilistic
knowledge reasoning tool.
In an MFrag, resident random variables are conditioned on

input random variables, these input random variables are the
resident random variables in some other MFrag of the same
MEBN, overall, the MEBN is a large Bayesian network with
MFrags being smaller subnetworks. The arguments in the
form of logical variables or even as a function passed to the
resident random variable are responsible for the instantiation
of situation-specific Bayesian network (SSBN) specific to the
values of the arguments, thereby accommodating flexibility.
MEBN Theory is queried using first-order logic con-

structs, connectives, and operators. Every query on MEBN
involves the construction of a situation-specific Bayesian
network (SSBN) from the set of MFrags belonging to the
concerned MTheory.
Given the probabilistic approach of formally defined

systems like PCFG and MEBN theory for uncertainty rea-
soning in syntactic and semantic aspects respectively, a map-
ping between these two formal systems lays the foundation
for syntactico-semantic reasoning. MEBN theory has been
widely adopted and used in various fields [3]. MEBN theory
has been mapped with the Relational Model of Relational
Databases [4] in a similar attempt as this paper puts forth.

II. BACKGROUND
The background of the research primarily encompasses the
following aspects.
1. Augmenting context-free grammars with semantic

information.
2. Works based on semantic compositionality.
3. Uncertainty representation in Semantic web.
4. Use of MEBN as a probabilistic ontology-based reason-

ing system.
Context-free grammar as its definition implies, cannot cap-
ture, represent, or encode any information representational of
the contextual information. In other words, this simply means
their primary role is in validating the sentences for syntactic
validity, restricting it from analyzing the sentence in seman-
tic form. There have been some pioneering works by [28]
and [29] namely, Affix grammars and Attribute grammars to
address the need to represent contextual semantic informa-
tion in the grammar’s rule productions. Especially, produc-
tion rules in attribute grammars with the help of additional
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attributes capture semantic information. The notion of Affix
and Attribute grammars develop the mechanism of encapsu-
lating the semantic information in the rule productions of the
grammar. Reference [30] used linear constraints to represent
semantic properties within context-free grammar andwas one
of the early attempts to augment context-free grammar with
semantic information. Though the probabilistic/stochastic
grammar uses probability distribution over the rules of the
grammar they are purely based on the syntactic and statisti-
cal properties of the strings in the grammar [7], [8]. More-
over, [31] and [32] have shown that semantic information
in the form of distributional semantics will be challenging
and not sufficient enough for identifying logical relatedness
between the constructs of the grammar. Frege’s Principle, also
known as the principle of semantic compositionality [12],
states that the meaning of a complex sentence is dependent
on the meaning of individual subparts of the sentence and the
way the subparts form the complex sentence. The principle
of semantic compositionality in an interesting way suggests
that for understanding a complex expression it is pertinent
to know the way the complex expression is formed from sub
expressions and their meaning in semantic context [33], [34].
Nevertheless, probabilistic context-free grammar is the candi-
date henceforth studied for augmentationwith semantic infor-
mation representation systems due to their ability to represent
the uncertainty of the rule production using a probability
distribution. In the context of parse trees generated by the
context-free grammar works by [35] and [36] suggest an
approach based on attention mechanism during the parse tree
generation thereby paving a way to realize a form of semantic
compositionality. Reference [37]’s work on Affix grammars
is the one inspired by [28], attempting direct integration with
ontology for syntactic assisted semantic parsing of weighted
affix grammar strings. Reference [9]’s work attempted aug-
menting probabilistic grammars with Markov Random fields
in an unsupervised learning model for the structure induc-
tion to identify a set of images with image features mod-
eled as structural aspects of PCFG. However, the notion
of (PGMM) Probabilistic Grammar-Markov Model does
not consider the role of semantics played in image
classification.

For knowledge-based systems, the information is repre-
sented in the form of collections of symbolic structures which
is often referred to as knowledge base. Reasoning over the
knowledge base is primarily a process of understanding, anal-
ysis, and processing the collection of symbolic structures to
produce useful insights. The work by [38] and [39] treats
the knowledge-based system as a problem-solving activity.
The work by [40] describes the concept of the semantic
web as a web of data that can be processed by computers
paving away towards knowledge-driven systems from data-
driven systems. In the world of knowledge representation,
an ontology is a concept which encapsulates some common
terms in a domain that represents the domain knowledge
in a fashion that allows the knowledge to be processed by
computers. The Web ontology language (OWL) assists the

semantic web by providing a well-defined semantics and rea-
soning capability [41]. Despite well-defined semantics, OWL
fails to capture the inherent uncertainties in the knowledge
bases thereby making the semantic web unable to capture
uncertainty. To address this issue, the consortium of the
world wide web (W3C) put forth the project ‘‘Uncertainty
Reasoning for the World Wide Web’’ [42]. The notion of
probabilistic ontologies with capabilities like expressiveness,
probabilistic reasoning to model the uncertainty was pro-
posed by [43], [44]. This notion of probabilistic ontology is
called PROWL and is developed as an upper ontology over
the Bayesian network-based probabilistic graphical reason-
ing model called MEBN (Multi Entity Bayesian Network).
PR-OWL inherits the capability of probabilistic reasoning
with a First-order logic expressivity using the underlying
MEBN. Reference [10] has further refined the PR-OWL
overcoming some of the issues in it. Due to the well-defined
semantics and ability to probabilistically capture the uncer-
tainty and reasoning capabilities thereof this research builds
its work based on PR-OWL and MEBN. MEBN theory
has been mapped with the Relational Model of Relational
Databases [4] in a similar attempt as this paper puts forth.
Moreover, the MEBNs are being used across various systems
for their ability of ontology-based probabilistic reasoning.
The primary objective of using MEBN is to model the uncer-
tainty in the ontologies. The uncertainty modeling in ontol-
ogy leads to a notion called probabilistic ontologies. From
modeling situational and contextual information in real-world
perspective to building semantically enriched sophisticated
intelligent systems, probabilistic ontologies and MEBN are
at the core of such systems. Reference [45] modeled user
behavior and activity pattern into a MEBN. A spiral model
like processes were used to model MEBN for user’s behavior,
the spiral nature of processes meant the involvement of sev-
eral iterations, experiments, and improvements over a period.
Using MEBN resulted in the achievement of high reliability
and low rate of false alarms, the user modeling was in the
context of internet security through simulated user actions by
the researchers. The researchers did point in their work that
additional inclusion of several affecting factors and properties
could further improve the reliability and robustness of their
system.

Reference [46] highlighted the need for first-order prob-
abilistic reasoning methods in the field of robotics to
cater to the requirement of autonomously operating robotic
systems. The concerned researcher proposed a method
named Bayesian Logic Networks (BLN) which resembles
the concept of MEBN. Primarily MEBN is being used
as a probabilistic knowledge representation system with
first-order logic expressivity. Reference [47]’s work mainly
focused on merging the ontologies using PR-OWL and
MEBN based on temporal aspects of the events. Refer-
ence [48] proposed a method of identification of most
influencing classes for entities using multivariate analy-
sis. The methods, kind of resemble pre MEBN modeling
methodology.
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Research Gap:
1. Lack of a well-defined formal method to inte-

grate stochastic grammar with ontology-based probabilistic
reasoning.

2. No attempts were made for the integration of stochas-
tic grammar with well-established MEBN’s ontology-based
probabilistic reasoning capability

III. MAPPING BETWEEN PCFG AND MEBN
To establish a connecting link between PCFG and MEBN,
there needs to be a mapping between the members of quin-
tuples of PCFG and MEBN. The process is outlined in two
steps.
Step 1:Mapping of Non-terminals and Terminals in PCFG

to the sets of Context, Input, and Random variables in the
MEBN theory.
Step 2: Mapping between probability distributions of

PCFG and MEBN.

A. STEP 1
For a mapping to exist between a PCFG and a MEBN pri-
marily there must be a relation between constructs of PCFG
and MEBN. This implies the non-terminals and terminal
symbols of PCFG shall have a kind of mapping withMEBN’s
constructs, specifically, the sets of input, context, and resi-
dent variables of each MFrags. The relation is established as
follows,

Every non-terminal shall have a corresponding input vari-
able of an MFrag, which implies.

MPCFG ⊂
⋃

I iMEBN

Every derivation of grammar rule shall be part of an infinite
set ε of entity identifier symbols across all MFrags of the
MEBN theory, which implies.

∀(N i
→ N rN s

∈ RPCFG and N i
→ wk ∈ RPCFG)

N rN s
∈ ε and wk ∈ ε

There shall be a unique resident random variable hasProb-
ability (θN i , θN rN s ) for each MFrag Fi where θi is an ordinary
variable belonging to the set of constant and identifier sym-
bols of MEBN theory TMEBN , implying,

∀(Fi ∈ TMEBN ) has Probability (θN i , θN rN s ) ∈ RiMEBN

An example MFrag for the nonterminal Ni is represented
in Fig. 1.

B. STEP 2
The mapping between probability distributions of PCFG
and MEBN is achieved by combined probability distribution
across PCFG and MEBN theory using a method of com-
bining probabilities with least Shannon’s information loss,
the method is known as the conflation of probabilities [5] and
is represented using symbol &(). The reason to use conflation
of probability is that the conflation method gives more pri-
ority to distribution based on smaller standard deviation and

FIGURE 1. MFrag for a nonterminal.

avoids the issues which arise if a simple average of probabil-
ity would have been considered instead. The method of using
conflation of probability distribution has been successfully
adopted by various other works [18]–[20]. Since the prob-
ability distribution of PCFG and MEBN is defined discrete
sets, the conflation method to consolidate the probabilities
in the mapping process is more effective. In general, if we
have probability mass functions, pmf1, pmf2, and pmf3 the
conflation of these functions is commutative, associative, and
iterative.

&(pmf 1, pmf 2) = &(pmf 2, pmf 1),

&(&(pmf 1, pmf 2), pmf 3) = &(pmf 1,&(pmf 2, pmf 3)),

&(pmf 1, pmf 2, pmf 3) = &(&(pmf 1, pmf 2), pmf 3)

The conflation of probabilities in addition to being commu-
tative, associative, and iterative also holds for the following
lemmas.
Lemma 1 (Equality of Sum of Conflated Probabilities):

Let, P = {p1, p2, p3, . . . pn} and P′ = {p′1, p
′

2, p
′

3, . . .p
′
n} be

a set of probability values such that, |P| = |P′| and for
i ∈ {1,2,3,. . . ,n}

∑
i pi = 1 and

∑
i p
′
i = 1. Also, there exists

a one-to-one injective mapping M between P and P′.
For any pi ∈ P, pj ∈ P and M(pi) = p′i ∈ P′, M(pj) = p′j ∈

P′ if pi + pj = S and given that

pi conflation = (pi×p′i)÷((pi×p
′
i)+ ((1−pi)×(1−p′i))) and

pj conflation = (pj×p′j)÷((pj×p
′
j)+ ((1−pj)×(1−p′j)))

then for,

pii = (pi conflation÷(pi conflation + pj conflation))×(pi + pj) and

pjj = (pj conflation÷(pi conflation + pj conflation))×(pi + pj),

The equality pii + pjj = S holds True.
Lemma 2 (Equality of Conflated Probabilities in Product

of Probabilities): From Lemma 1 given that pi+pj = S,pii+
pjj = S and for any pl ∈ P, pm ∈ P. If

Pt1 = pi×pl×pm
Pt2 = pj×pl×pm and

P′t1 = pii×pl×pm
P′t2 = pjj×pl×pm
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then for,

Pt1 + Pt2 = pi×pl×pm + pj×pl×pm = pl×pm×(pi + pj)

and

P′t1 + P′t2 = pii×pl×pm + pjj×pl×pm = pl×pm×(pii + pji)

The equality Pt1 + Pt2 = P′t1 + P′t2 holds True.
InMEBN theory, for a non-empty finite set of entity identi-

fier symbols {ε1, ε2, . . . ,εn} there exists a partial worldW of
a resident random variable RV (θi. . .θn) which is the set of all
instances of the parents of random variable RV (θi. . .θn) and
the context variables of the MFrag Fi that can be obtained by
substituting εi for ordinary variables {θi. . .θn} of Fi. A partial
world state SW for partial world W is the set of assignments
of values for each one of the random variables of the MFrag
Fi in the partial world.

A local probability distribution πRV (ε) for a resident
random variable RV (θi. . .θn) in MFrag Fi in addition to
specifying a subset of values for the resident random
variable provides a probability distribution function such
that πRV (ε)(γ |SW ) >= 0 and

∑
γ πRV (ε)(γ |SW ) = 1,

where γ is a finite subset which ranges over the set
{ε1, ε2, . . . ,εn}

⋃
{T ,F} where ‘‘T’’, ‘‘F’’ denotes truth val-

ues TRUE and FALSE respectively. For a mapping to exists
between PCFG andMEBN, there shall be a uniqueMFrag for
each of non-terminal having production rules, implying,

∀(N i
→ N rN s

∈ RPCFG and N i
→ wk ∈ RPCFG)

Fi ∈ TMEBN and has Probability (θN i , θN rN s ) ∈ RiMEBN ...

The mapping from PCFG and MEBN theory ensures the
following.

PPCFG−MEBN (N i
→ N rN s)

= &(P(N i
→ N rN s),πRV (ε)(γ |SW ))

if N i
→ N rN s

∈ RPCFG otherwise 0,

where

N rN s
∈ γ,

and

PPCFG−MEBN (N i
→ wk ) = &(P(N i

→ wk ),πRV (ε)(γ |SW ))

if N i
→ wk ∈ RPCFG otherwise 0

where

wk ∈ γ

and.
The conflation, &(P(N i

→ N rN s), πRV (ε)(γ |SW )) is
defined as

P(N i
→ N rN s)× πRV (ε)(γ |SW )÷(P(N i

→ N rN s)

×πRV (ε)(γ |SW )+(1−P(N i
→ N rN s))

× (1−πRV (ε)(γ |SW ))).

IV. MODIFIED CYK ALGORITHM, PROPERNESS AND
CONSISTENCY OF THE PCFG MAPPED WITH MEBN
A. MODIFIED CYK ALGORITHM FOR PCFG
MAPPED WITH MEBN
Given a context-free grammar GPCFG, FPCFG is the set of all
derivations of the grammar GPCFG.
Let gen(t) denote the string s = wk1 . . .w

k
n where s ∈ T

∗
PCFG

and FPCFG(s) = {t :t ∈ FPCFG, gen(t) = s} is a set of all
possible parse trees for string s.
P(N i

→ N rN s) and P(N i
→ wk ) denote the probability

associated with N i
→ N rN s and N i

→ wk respectively such
that.

∀i
∑

r,s
P(N i

→ N rN s)+
∑

k
P(N i

→ wk ) = 1.

For a given parse tree t ∈ FPCFG derived using set of rules
α1 → β1 ∈ RPCFG, α2 → β2 ∈ RPCFG, . . . , αn → βn ∈
RPCFG, p(t) is defined as,

p(t) = ∀x
∏

P(αx → βx).

For FPCFG(s) the highest scoring parse tree is

arg maxp(t)

A CYK [21] algorithm to parse the string s = wk1 . . .w
k
n of

the PCFG takes GPCFG and s as inputs and outputs arg max
p(t) for FPCFG(s).

Since the algorithm is recursive,1(l,o,N i) is defined as for
the string s = wk1 . . .w

k
n

1(l, o,N i) = maxp(t) for t ∈ FPCFG(l,o,N i).

where FPCFG(l, o,N i) is a set of all parse trees for wk1 . . .w
k
o

for any l and o such that 1 ≤ l ≤ o ≤ n and N i is a root
node of the parse tree. It is to be noted that 1(l,o,N i) = 0 if
FPCFG(l,o,N i) is an empty set.
Also,

1(l,l,N i) = P(N i
→ wkl ) if N i

→ wkl ∈ RPCFG
otherwise 0.

The mapping of PCFG with MEBN as defined in
section III requires the parsing algorithmCYK to additionally
lookup for probability value from MEBN query. The CYK
algorithm needs to be modified to the only lookup for proba-
bility value from MEBN query when a specific non-terminal
symbol is encountered in the parsing process for which
Syntactico-semantic reasoning is expected. This is done by
creating a set of non-terminal symbols M ′PCFG ⊂ MPCFG for
which a MEBN query lookup is performed. Whenever, CYK
algorithm matches a non-terminal N i

∈ M ′PCFG,1(y, z,N i) is
calculated as

1(y,z,N i) = max(PPCFG−MEBN (N i
→ N rN s)×1(y,z′,N r )

×1(z′ + 1,z,N s)) ∀z′ ∈ {y, . . . (z− 1)}

where, 1(l,l,N i) is calculated as

1(l, l,N i) = PPCFG−MEBN (N i
→ wk )
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Algorithm CYK
Input:
s = wk1 . . .w

k
n and GPCFG = (MPCFG, TPCFG, RPCFG, SPCFG,

PPCFG)

START:
1. For x = 1 . . . (n− 1)
2. For y = 1 . . . (n− 1)
3. z = y+ x
4. ∀ N i

∈ RPCFG calculate
5. 1(y,z,N i) = max(P (N i

→ N rN s) ×
1(y,z′,N r )×1(z′ + 1,z,N s)) for z′ ∈
{y, . . . (z− 1)}
// pointers are to be stored for retrieval of
// the highest scoring parse tree

6. store the pointers to y, z and N i for
arg max (P(N i

→ N rN s) ×
1(y,z′,N r )×1(z′ + 1,z,N s)) for z′ ∈
{y, . . . (z− 1)}

END

Otherwise in the case of, N i /∈ M ′PCFG

1(y,z,N i) = max(P(N i
→ N rN s)×1(y,z′,N r )

×1(z′ + 1,z,N s)) ∀z′ ∈ {y, . . . (z− 1)}

The probabilities of rules of PCFG are often learned by
training and analysis of linguistic corpus [7], [8], usually,
these processes are very time-consuming. To preserve the
properness and consistency of PCFG driven byMEBN is very
crucial to ensure that the semantics of parsing a string by a
PCFG are unaffected. T An approach based on reducing the
Kullback–Leibler (KL) divergence between the probability
distributions is discussed in [25]. However, recalculating the
conflated probabilities and further normalizing them pre-
serves the property of properness and consistency without
the need for a complex process of applying the Lagrange
multiplier method as proved in proposition 9 of [6].

A PCFG is proper if,

∀i
∑

j
P(N i

→ ζ j) = 1

A PCFG is consistent if,

∀s ∈ FPCFG
∑

p(t) ∀t ∈ FPCFG(s) = 1

For any given i, ∑
j
P(N i

→ ζ j)= 1

And let P′(N i
→ ζ j) indicate the normalized probability

after conflation operation with the probability distribution
function, πRV (ε)(γ |SW ), of a resident random variable RV(ε)
from MTheory’s MFrag Fi.

P′
(
N i
→ ζ j

)
=

&
(
P
(
N i
→ ζ j

)
, πRV (ε) (γ | SW )

)∑
j&
(
P
(
N i→ ζ j

)
, πRV (ε) (γ | SW )

)
∗

∑
j
P
(
N i
→ ζ j

)
∀j ∈ {1, 2, . . . , n}

However, in the case of N i /∈ M ′PCFG, or j ∈ {1},

P′(N i
→ ζ j) = P(N i

→ ζ j).

By definition of P′(N i
→ ζ j) and given that∑

γ πRV (ε)(γ |SW ) = 1, it is evident considering the
Lemma 1 and 2 that∑

j
P′(N i

→ ζ j) = 1.

And the probability distribution πRV (ε)(γ |SW ) will have
the probabilities defined or inferred for each state of the
random variable corresponding to each production rule for
the non-terminal N i.∑

j P
′(N i
→ ζ j)= 1, implies that the property of proper-

ness of the PCFG driven by MEBN shall be preserved.
The consistency requirement of the PCFG driven by

MBEN requires,

∀s ∈ FPCFG
∑

p(t) ∀t ∈ FPCFG(s) = 1.

This is ensured as the MTheory defined shall have MFrag
for each of the nonterminal belonging to PCFG.

|TMEBN | ≥ |MPCFG|

Given that
∑
γ πRV (ε)(γ |SW ) = 1 and

P′
(
N i
→ ζ j

)
=

&
(
P
(
N i
→ ζ j

)
, πRV (ε) (α | SW )

)∑
j&
(
P
(
N i→ ζ j

)
, πRV (ε) (α | SW )

)
∗

∑
j
P
(
N i
→ ζ j

)
∀j ∈ {1, 2, . . . , n}

for any p′(t) defined as,

p′(t) = ∀x
∏

P′(αx → βx)

and considering Lemma 1 and 2, implies that ∀s ∈

FPCFG
∑
p′(t)∀t ∈ FPCFG(s) = 1, preserving the consis-

tency of the grammar.
Also, it is noted that Theorem 1 from [2] specifically states

that for a MEBN theory ‘‘there exists a joint unique probabil-
ity distribution on the set of instances of the random variables
of its MFrags that is consistent with the local distributions
assigned by the MFrags’’.

The modified CYK Algorithm, CYKPCFG−MEBN follows
as below.

V. EXPERIMENT
One of the well-suited applications of syntactico-semantic
reasoning is disambiguation of the PP attachment [22]. Also,
the application of syntactico semantic reasoning for the dis-
ambiguation of PP attachment is discussed in [23]. Based on
the mapping defined a MEBN is defined for the following
PCFG with specific consideration to the semantics of prepo-
sition ‘‘with’’ in linguistic terminologies.
S → NP VP 1 NN→ man 0.1
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Algorithm CYKPCFG−MEBN

Input:
s = wk1 . . .w

k
n and GPCFG = (MPCFG, TPCFG, RPCFG, SPCFG,

PPCFG)

START:
1. For x = 1 . . . (n− 1)
2. For y = 1 . . . (n− 1)
3. z = y+ x
4. ∀N i

∈ RPCFG calculate
5. 1(y,z,N i) = max(P′(N i

→ N rN s)
× 1(y,z′,N r )×1(z′ + 1,z,N s)) for z′ ∈
{y, . . . (z− 1)}
// pointers are to be stored for retrieval
of
// the highest scoring parse tree

6. store the pointers to y, z and N i for
argmax(P′(N i

→ N rN s) ×
1(y, z′,N r )×1(z′ + 1, z,N s)) for z′ ∈
{y, . . . (z− 1)}

END

VP→ V NP 0.7 NN→ woman 0.1
VP→ VP PP 0.3 NN→ telescope 0.3
NP→ DT NN 0.8 NN→ dog 0.5
NP→ NP PP 0.2 DT→ the 1.0
PP→ IN NP 1.0 IN→ with 0.6
V → sleeps 0.5 IN→ in 0.4
V → saw 0.5
The sentence to be parsed is ‘‘the dog saw the man with the

telescope.’’
The definedMEBN has threeMFrags that model the ontol-

ogy to capture the process of resolving the PP attachment
resolution, the MFrags defined using a tool UnBBayes [24],
and the approach recommended in [11] are shown in Fig. 2.
The OWL modeled ontology has four classes and associated
object and data properties.

Classes:
• Verb
• Subject
• Object
• PrepositionalPhraseObject
Object properties:
• hasObject
• Domain: Verb
• Range: Object

• hasSubject
• Domain: Verb
• Range: Object

Data properties:
• PPObjectModifiesVerbAction
• Domain: PrepositionalPhraseObject, Verb
• Range: Boolean

FIGURE 2. MEBN defined for disambiguation of PP attachment.

• PPObjectRelatesToObject

• Domain: PrepositionalPhraseObject, Object
• Range: Boolean

• PPObjectRelatesToSubjectAct

• Domain:PrepositionalPhraseObject, Subject
• Range: Boolean

For the sentence ‘‘the dog saw the man with the telescope.’’
the instance of class Verb represents ‘‘saw’’, the instance of
class Object represents ‘‘dog’’, the instance of class Sub-
ject represents ‘‘man’’ and the instance of class Preposition-
alPhraseObject represents ‘‘telescope’’.
Though discussing the semantics of linguistics of the

English language is beyond the scope of this paper, a light
introduction to semantic roles helps here in understanding
the background behind the experiment setup more clearly
in terms of the prerequisite linguistic understanding needed.
Semantic roles in linguistics label the semantic meaning aris-
ing out of the verb and associated noun phrases in a sentence.
Some of the prominent semantic roles centered around verb
and noun phrases and their general descriptions in the context
of linguistics are as follows.

• Agent: the entity which is the initiator of the action
implied in the verb

• Patient: the entity which is affected by the action implied
in the verb
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• Instrument: the mode or tool with which the action
implied in the verb was performed

• Benefactive: the entity recipient of the action implied in
the verb.

• Goal: the entity representing the purpose of the action
implied in the verb

• Source: the entity representing the origin of the action
implied in the verb

• Destination: the entity representing the destination of the
action implied in the verb.

• Location: the entity representing the place of the action
is executed

Often these roles will be the semantic information needed
to answer the questions based on who, what, how, etc. The
experiment in this paper, to realistically model the prior prob-
abilities for the MEBN designed relies on the semantic roles
centered around the WH questions. The relation is deemed
established between the entities if there exists a convincing
answer for any of the followingWH questions. This approach
is based on the findings based on the arguments put forth
in [27].
• ‘‘Who’’ and ‘‘What’’ type of questions pointing to the
Agent-Patient relation.

• ‘‘How’’ and ‘‘with what’’ type of questions pointing to
the use of instrument or mode or method.

• ‘‘Where’’ type of questions pointing to the source, des-
tination, and place of the action.

• ‘‘Whom’’ type of questions pointing to the benefactive
entity.

The labeled samples from the NewYork Times Corpus and
Wikipedia Corpus based dataset are selected. This sample
dataset contains labeled PP attachment sentences containing
the preposition ‘‘with’’. The probability distributions defined
for the MFrags are based on the probabilities calculated from
the observed semantic roles in the sentences.

The parse tree obtained for the sentence ‘‘the dog saw the
man with the telescope.’’ using Java-based implementation of
algorithm CYK is, see Fig. 3. The parse generated implies
that the dog can see through the telescope which is highly
unlikely in the real world.

Whereas the parse tree obtained for algorithm
CYKPCFG−MEBN is, see Fig. 4. Here, the parse generated has
the PP attached to the NP indicating the dog is seeing a man
carrying a telescope, which makes much more sense.

The query to MEBN on the resident random vari-
able hasProbability(v, ppobj) generated an SSBN as shown
in Fig. 5. Upon evidence propagation across the SSBN,
the probability for the rule VP → VP PP from the defined
MFrag is inferred as 0.34. The parse tree obtained from algo-
rithm CYKPCFG−MEBN shows the effect of the normalized
conflated probability of the rule VP→VPPP for the sentence
under consideration for the parsing to be semantically and
syntactically meaningful.

Further, the modified algorithm’s time complexity does
remain asymptotically as O(n∧3|G|) where n is the length of
string and |G| is the size of grammar, since the lookup for the

FIGURE 3. Parse tree obtained using algorithm CYK.

FIGURE 4. Parse tree obtained using algorithm CYKPCFG-MEBN.

non-terminal which requires syntactico-semantic reasoning is
based on O(1) lookup time complexity data structure.

The experiment further identifies sentences from the
sample dataset such that their top two best parse trees
obtained from Stanford CoreNLP’s parser differ on the
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TABLE 1. Sample sentences for disambiguation of PP attachment.

FIGURE 5. SSBN generated for a MEBN query on PP attachment.

prepositional phrase attachment. The Stanford CoreNLP’s,
version 4.2.2, trained PCFG’s rules deciding the PP’s
attachment to VP and NP are ‘‘@NodeSet-610143252’’ ->

‘‘@VP^S-VBF-v| VBD^VP_ NP^VP-B>’’ ‘‘PP^VP’’ and
‘‘@NodeSet-610143252’’ -> ‘‘@VP^S-VBF-v|VBD^VP_’’
‘‘NP^VP-R’’ respectively. Each parse tree has a score, a log
probability. It is observed from table 1 that the state-of-the-
art Stanford CoreNLP’s PCFG parser still could not disam-
biguate the PP attachment correctly to imply the real-world
meaning.

Upon applying the method of syntactico-semantic rea-
soning discussed in section III and IV it is observed that
there is a significant additive change in the log probability
of parse trees indicating the correct attachment. Though the
change is not to the extent to influence the outcome of the
Stanford CoreNLP parser but proves the case that syntactico-
semantic reasoning is a promising approach to incorporate
semantic reasoning capabilities in syntactic reasoning pro-
cesses. Further analysis of the experiment points out the fact
that to achieve a change in log probabilities to an extent to
change the outcome of the parser output, especially in the
case of Stanford CoreNLP, the MEBNs have to be modeled
more closely to resemble domain knowledge capturing every
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minute uncertainties. Also, various other factors like the
depth of the parse tree, the magnitude of the probabilities of
the PCFG rules influence the outcome, hence the syntactico-
semantic reasoning.

VI. CONCLUSION
Syntactic pattern recognition tasks relying on probabilistic
context free grammars have been very popular and widely
adopted by several works. In the modern world where the
data constantly changes not only statistically but also seman-
tically, relying just on the syntactic or statistical aspects for
syntactic pattern recognition is not enough to keep pattern
recognition systems to the current data driven times. Today
a sentence, ‘‘Apple’s stocks fell’’, could mean something
completely different based on what the word ‘‘Apple’’ means,
hence the need to consider the contextual and semantic infor-
mation. The work [26] heavily stressed the need to give
larger importance to contextual and semantic information for
modern NLP tasks. Ontology Web Language (OWL) and
upper ontologies built on top of the MEBN for example the
PR-OWL [10], elegantly captures the semantic knowledge
bases along with probabilistic reasoning capabilities.

Inspired from the [12]–[14] principle of semantic com-
positionality and its applications the paper is an attempt to
formally define a method to map a probabilistic syntactic
pattern recognition process with probabilistic ontology-based
graphical knowledge representation and reasoning system.
PCFGs have been used with Markov Random fields [9].
The wide adoption of MEBN and its development system
makes the proposed syntactico-semantic pattern recognition
method to be directly used in existing systems. Attempts for
the disambiguation of PP attachment using context-aware
semantic information have proved to be effective compared
to syntactic or text corpus based token embeddings [15]–[17].
The approach for PP attachment disambiguation discussed in
this paper is one such promising approach not requiring the
disambiguation method to frequently train on the text corpus.
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