
Received July 30, 2021, accepted September 12, 2021, date of publication September 22, 2021,
date of current version September 30, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3114702

Genetic Algorithm for Singular Resource
Constrained Project Scheduling Problems
FIROZ MAHMUD , FORHAD ZAMAN , ALI AHRARI, RUHUL SARKER , (Member, IEEE),
AND DARYL ESSAM , (Member, IEEE)
School of Engineering and Information Technology, University of New South Wales Canberra, Canberra, ACT 2612, Australia

Corresponding author: Firoz Mahmud (firoz.mahmud@student.adfa.edu.au)

The work of Ruhul Sarker and Daryl Essam was supported in part by the Australian Research Council Discovery Projects under
Grant DP210102939.

ABSTRACT The Resource-Constrained Project Scheduling Problem (RCPSP) is a challenging optimization
problem. In RCPSPs, it is very common to consider homogeneous activities, which means all activities
require all types of resources. In practice, the activities are often singular because they usually require
one single resource to execute an activity. The existing algorithms may be used for solving this variant
of RCPSPs with a simple modification. However, they are computationally expensive due to unnecessary
resource constraints. In this paper, we propose a customised evolutionary algorithm integrated with three
heuristics for the singular activities. The first heuristic is based on the earliest start time with an aim to rectify
an infeasible schedule. The second heuristic is based on neighbourhood swapping which is used to find the
best possible alternatives. The third heuristic is used to further enhance the quality of the schedule. The
performance of the proposed framework has been tested by solving a wide range of benchmark problems and
the obtained results revealed that the proposed approach outperformed the existing algorithms. In addition,
statistical and parametric testing show the value and characteristics of the proposed approach.

INDEX TERMS Resource-Constrained Project Scheduling, singular activities, genetic algorithm, neigh-
bourhood swapping, forward-backward improvement.

I. INTRODUCTION
A project is a collection of activities where each activity
must execute once to accomplish a project. The efficiency
of a project depends on managing the order of execution of
the activities where many interactions may exist among the
activities, such as precedence relationships among the activ-
ities and sharing a resource by multiple activities. In order
to execute an activity, one or more resources are required
for a finite duration; however, available resources are usually
limited. In order to find the best schedule, the project manager
must assign the resources appropriately. The scheduling of
the activities, which is recognized as project scheduling, is a
well-known complex optimization problem. In this context,
the activity scheduling with resource allocation is called the
Resource-Constrained Project Scheduling Problem (RCPSP).

Over time, RCPSPs have attracted the attention of many
researchers and practitioners due to the practicability of

The associate editor coordinating the review of this manuscript and

approving it for publication was Hisao Ishibuchi .

the research in this field to real-world problems, such as
manufacturing industry, construction, aircraft, engineering,
and software [1]. As RCPSP is an NP-hard (computational
complexity) problem [2], [3], many methods have been intro-
duced to solve a wide variety of RCPSPs problems in which
the objective is to minimize the makespan while satisfy-
ing precedence and resource constraints such as mathemat-
ical model based exact solution, heuristic-based algorithm,
meta-heuristic algorithm, and hybrid meta-heuristic based
approaches [4]. Exact approach can find the global opti-
mum in low-dimensional problems quickly, but they become
computationally expensive and inefficient for large-scale
problems. To overcome this limitation, many heuristic
and meta-heuristic algorithms have been developed, such
as genetic algorithm (GA) [5]–[7], hybrid GA (HGA)
[8], decomposition-based GA [9], differential evolution
(DE) [5], [10], variable neighbourhood search heuristic
(MVNSH) [11]. A detailed literature review of heuristic and
meta-heuristic approaches is discussed in section II, where
the following research gaps are elucidated. (i) No single

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 131767

https://orcid.org/0000-0002-3814-251X
https://orcid.org/0000-0001-5078-8252
https://orcid.org/0000-0002-1363-2774
https://orcid.org/0000-0002-6923-7079
https://orcid.org/0000-0001-9186-6472


F. Mahmud et al.: GA for Singular RCPSP

algorithm can find quality solution for a wide range of RCP-
SPs. One algorithm may perform better for some problems
that may perform badly for some other problems, or some
algorithms may be suitable for small scale RCPSPs, however
they are computationally expensive for large-scale problems.
(ii) It is seen that for some RCPSPs, the best solutions
found by the state-of-the-art methods are still far from the
best-known solutions for those problems.

The above-mentioned solution approaches for solving
different RCPSPs have been developed with a common
assumption that activities require multiple different types of
resources. However, many real-world problems are singular,
meaning each activity require exactly one type of renewable
resource to complete its operation. Fig. 1 shows a typical
software or app (mobile application) development process
cycle as an example of singular activities. In the software
industry, different types of skills are needed to develop soft-
ware such as: (a) Software designer for designing the layout
of the software, (b) Programmer to convert the layout into
executable software, and (c) A testing person to test/debug
the software according to the requirements.

This example has three different tasks and each task
requires a person with a different skill. It is clear that one
task cannot start before finishing of the earlier task. For
example, a programmer cannot start coding before getting the
layout. In traditional problem definition, all of these people
are assumed to be involved in executing each and every activ-
ity, which is not the practical scenario and thus has unnec-
essary resource requirements assumption. This assumption
may significantly increase the complexity of the problem
that would lead to poor performance as well as an increase
in the computational budget. To deal with such real-world
problems, in this paper, we define the problems by assuming
that each activity requires only one type of resource. For
example, software designer is required to design the layout
of a software, in that case we only use the designer as the
resource for software designing activity while other resource
requirements (programmer and tester) are set as zero.

In this research, we introduced a class of RCPSPs where
a project may require multiple resources but each activ-
ity needs only one of those resources for its completion.
This variant of RCPSPs is also NP hard but the algorithmic
computational complexity for this case is lower than the con-
ventional RCPSPs. However, it is a challenging variant. From
the best of our knowledge, no solution approach reported
in the literature for such a variant of RCPSP. To solve
such RCPSPs, in this paper, we propose an evolutionary
algorithm based framework that combines a multi-operator
genetic algorithm with three heuristics. In this approach,
the initial population is randomly generated that may include
some infeasible solutions. The first heuristic is used to repair
an infeasible schedule (if any). Each of the individuals
can usually be improved by the second heuristic where a
swap-eligible matrix is introduced based on the direct and/or
indirect successors and the singular resource requirements.
We only swap those activities that require the same types

FIGURE 1. An example of a singular activities.

of resources because the makespan of the project depends
on those activities. It is worth to mention here that a quality
initial population helps the evolution process to converge to
high quality solutions with less computational time. Finally,
we use a forward-backward improvement (FBI) heuristic as
a local search, for fine tuning the final solution for any possi-
ble improvement. To show the applicability of the proposed
approach and analyze its performance, we proposed a new
set of test problems using existing homogeneous RCPSPs
taken from the standard project scheduling library (PSPLIB
[12]). Here, we developed a systematic approach to generate
singular RCPSPs, as discussed in subsection V-A. The perfor-
mance of the proposed framework was evaluated by solving
these test problems, with up to 120 non-dummy activities.
To judge the quality of solutions, the experimental results
obtained from the proposed approachwere comparedwith the
same from a well-known algorithm, known as Consolidated
Optimization Algorithm (COA), which was developed for
homogeneous RCPSPs. The comparison shows the superior-
ity of the proposed framework.

The remainder of this paper is organized as follows: a lit-
erature review is presented in Section II. Section III gives the
problem description. The details of the proposed framework
is presented in Section IV. Section V provides the experimen-
tal result and performance comparison. Section VI presents
the conclusion and recommendations for future work.

II. LITERATURE REVIEW
Over the last few decades, many solution approaches have
been developed for solving different RCPSP variants, which
can be classified as (i) exact approach, (ii) heuristic and
meta-heuristic algorithms, and (iii) hybrid algorithm. For the
exact approach, mathematical modelling based approaches
such as integer programming [13], [14] and mixed integer
linear programming [15], [16] are widely used. The branch
and bound (BB) [17], cutting plane (CP) [18], and branch
and cut (BC) [19], [20] algorithms are usually applied to

131768 VOLUME 9, 2021



F. Mahmud et al.: GA for Singular RCPSP

solve the developed models. Although the exact method
can solve a small-scale problem effectively, it’s perfor-
mance deteriorates and they become computationally expen-
sive for large-scale problems [21]. For solving medium to
large scale problems, heuristic and meta-heuristics are used,
such as priority rule-based heuristic [22], [23], GA based
solution [24]–[26], GA with implicit enumeration module
(IEM) based framework [27], combined precedence rela-
tions and resource calendars based approach [28], fuzzy
clustering-based chaotic technique with a differential evolu-
tion (FCDE) [29], particle swarm optimisation (PSO) [30],
simulated annealing [31], and so on.

Although heuristic and meta-heuristic methods are very
effective to solve a wide variety of RCPSPs, it cannot guar-
antee to find a satisfactory solution for all RCPSP variants.
To overcome this limitation, hybrid algorithms that com-
bine heuristics and meta-heuristics were developed. For
example, Elsayed et al. [32] proposed a hybrid framework
for solving single-mode RCPSP using two multi-operator
evolutionary algorithms i.e., multi-operator GA (MOGA) and
multi-operator DE (MODE), while Zaman et al. [33] solved
multi-mode RCPSPs based on this framework. Multi-mode
RCPSPs are an extension of classical single-mode RCPSPs
where each activity has several execution modes and each
mode has a different set of duration and resource require-
ments. Both algorithms have their own sub-populations and
new offspring are generated by evolving its own individ-
ual sub-population while considering self-adaptive crossover
and mutation operators. A final set of solutions, which
is obtained from both algorithms, is further enhanced by
using a local search, namely forward-backward improve-
ment. The performance of the framework is evaluated by
solving standard benchmark problems and shows promising
results; however, it was not tested on 90 non-dummy activities
benchmark problems. Bettemir et al. [31] proposed an opti-
mization model using a combination of two meta-heuristic
algorithms i.e., genetic algorithm and simulated annealing for
achieving faster convergence rate and increasing efficiency.
For comparison, seven heuristics were included which were
taken from different algorithms used in project management.
The experimental result showed that the proposed hybrid
algorithm outperforms a sole GA based meta-heuristic, how-
ever, it is outperformed by recent algorithms. Fang et al. [34]
proposed a framework for solving RCPSP using two different
heuristic algorithms (memetic GA and PSO). Although the
inclusion of a local search improves the quality of solu-
tions, it was inferior for 30 activities problems. Ziarati et al.
[35] developed a framework by using three variants of bee
algorithms i.e., bee algorithm (BA), bee swarm optimiza-
tion (BSO), and artificial bee colony (ABC) algorithm. The
experimental result showed that BA with FBI outperformed
in comparison with two other variants. However, it was far
away from the state-of-the art algorithms.

All the above solution approaches were developed for
solving homogeneous activities, whereas, singular activities
are more practical for the real-world problem as introduced

in section I. To the best of our knowledge, RCPSP with
singular activities and its solution approach are applicable for
a wide variety of benchmark problems and has not yet been
explored much except for [4], [36], where two random prob-
lem instances from each of the problem instances from stan-
dard datasets(i.e., j30, j60, j90, and j120) were considered.

III. PROBLEM DESCRIPTION
The RCPSP can be formulated as a mathematical model, with
an objective of minimizing the project’s duration (makespan)
while satisfying the relevant constraints such as precedence
and resource constraints. A project S consists of D + 2
activities and can be defined as: S = {1, 2, . . . ,D + 2},
where each activity has to execute exactly once in order to
complete a project. Two dummy activities: 1 and D + 2
are used to represent the ’project start’ and ’project finish’,
respectively. To execute an activity, a certain amount of time
and renewable resources are required. We use activity on
node (AoN) paradigm to represent a project instead of activity
on arc (AoA) diagram. It is easier to create a base model of
a project and more efficient to manage the logical relation
between the activities by using AoN rather than AOA [5]. For
example, Fig. 3 (a) is an AoN representation of an example
project with 7 activities (S = {1, 2, . . . , 7}), where arc
represent the precedence constraints, which enforce that an
activity cannot start before finishing the predecessor(s) of
that activity. The acronyms used to formulate the model and
proposed approach are presented in Table 1.

To formulate the mathematical model, in this research,
we consider the following assumptions: (1) each activity
can only execute once; (2) an activity cannot start execu-
tion before finishing all of its predecessors; (3) duration and
resource requirement of each activity is given in advance;
(4) resource requirement by an activity must not exceed the
maximum available resource limit and can only use one
renewable resource type; (5) Preemption is not allowed, that
means an activity cannot be interrupted in the middle of the
execution; (6) the objective of this optimization model is
to minimize the project completion time. The mathematical
model is as follows [37]:

Min: FTD+2 (1)

Subject to: FTh ≤ FTj − dj, ∀h ∈ Pj,

∀(j, h) ∈ {1, 2, . . . ,D+ 2} (2)∑
j∈CSt

rj,k ≤ Rk , ∀k ∈ {1, 2, . . . ,K } ,∀CSt (3)

FTj ≥ 0, ∀j ∈ {1, 2, . . . ,D+ 2} (4)

where FTD+2 is the finish time (FT) of the last dummy
activity, Pj is the list of all predecessors for the jth activity, rj,k
is the amount of the k th resource required for the jth activity,
K is the total number of renewable resource types, Rk is the
resource availability of the k th renewable resource type and
CSt is the set of activities scheduled at time t ≤ FTD+2.
The objective function of this model is presented by using
Eqn. (1), which is the makespan minimization of a project.

VOLUME 9, 2021 131769



F. Mahmud et al.: GA for Singular RCPSP

TABLE 1. List of acronyms.

Precedence and resource constraints are shown in Eqns. (2)
and (3), respectively. Eqn. (4) certifies that the FT of each
activity must be greater than zero or equal to zero.

IV. PROPOSED APPROACH
In this subsection, we discuss our proposed evolutionary
algorithm for solving large-scale RCPSP problems. From
the many evolutionary algorithms, we chose multi-operator
genetic algorithm due to its superior performance to solve
complex real-world problems [32]. In our experimental setup,
we modified the original standard benchmarks according
to the requirement of singular RCPSPs, where an activ-
ity requires one renewable resource instead of all available
renewable resources. We named the proposed algorithm
as S-GA. The proposed S-GA and the three heuristics
i.e., earliest start time (EST), neighbourhood swapping
(NS), and forward-backward improvement based heuristic
are described in the following subsections. The details of the
proposed approach is shown in Fig 2.

A. S-GA FRAMEWORK
The proposed framework starts with a random initial popu-
lation Xi, i = 1, 2, . . . ,Np, where Np is the population size.
Some of the initial solutions may be infeasible with respect to

precedence and resource constraints. To repair an infeasible
schedule to a feasible one, an EST based heuristic is used
which will be discussed in subsection IV-C. The EST and FT
of each activity are also calculated using Eqns. (6) and (7),
respectively. The feasible schedule is further verified with the
resource constraints. After satisfying those two constraints,
the fitness value (FV) of each population is calculated as
FTD+2. The feasibleXi is the initial population for heuristic 2.
This heuristic defines a swap eligible matrix to determine the
eligible activities for swapping, which will be explained in
subsection IV-D.

All the resultant solutions are then sorted based on their
FVs. To obtain a more diverse population, a new set of
solutions is generated based on genetic operators, including
two crossover operators and one left-shift mutation operator.
which will be elaborated in subsection IV-E. These new
solutions are then repaired using our EST heuristic. Once we
obtain the new feasible individual from GA, the redundant
individual (if any) is removed from Xi and new random indi-
vidual is inserted to replace each of the redundant individuals.
In the next step, the quality of Xi is further enhanced by
using FBI, which will be discussed in subsection IV-F. The
process of sampling new solutions by the GA, applying the
heuristics to each individual, and updating Xi continues until
the maximum number of fitness evaluations is reached. The
detailed steps of the proposed S-GA is shown in Algorithm 1.

B. REPRESENTATION AND INITIAL POPULATION
In this subsection, we represent the initial population with
size Np as Xi. Each schedule is a random sequence of the
activities with the size ofD+2. The random initial population
is generated as follows:

Xi = {1, perm(1)i,D+ 2}, ∀i, 1 = {2, 3, . . . ,D+ 1}.

(5)

where perm(1)i is the random combination of non-dummy
activities, 1 and D + 2 represent two dummy activities
for ’start’ and ’end’ activities, respectively, Xi is the ith

schedule, i ∈ Np.

C. HEURISTIC 1: REPAIRING AN INFEASIBLE SOLUTION
In this research, the initial schedule Xi is a permutation or
random combination of non-dummy activities. This random
schedule may be infeasible based on precedence and resource
constraints. A serial schedule generation scheme (SSGS) [38]
is used to create a feasible schedule from the infeasible one.
In SSGS, one activity is selected in each iteration based on
earliest start time from the non-dummy activities by satis-
fying precedence and resource constraints. This process is
continue until all non-dummy activities are converted to fea-
sible schedule. In order to make all activities of ith individual
are feasible, D iterations are required [39]. Fig. 3 (a) shows
an example of a project network, Fig. 3 (b) shows a feasible
schedule that only considers precedence constraints and the
makespan is 7 units, and Fig. 3 (c) shows a feasible schedule

131770 VOLUME 9, 2021



F. Mahmud et al.: GA for Singular RCPSP

FIGURE 2. Flowchart of Algorithm 1.

after satisfying both precedence and resource constraints
where the makespan is 10 units instead of 7. The following
steps are taken into account to construct feasible schedule.

Firstly, any infeasible schedule in Xi is repaired by using
Eqn. (2), then ESTj and FTj of the jth activity are calculated
using Eqns. (6) and (7), respectively by using the critical path
method (CPM), while considering precedence constraints
only.

ESTj =

{
0, if j has no predecessor
max

(
FTm|m ∈ P(j)

)
, 0 < j ≤ D+ 2

(6)

FTj = ESTj + dj (7)

where FTm is the finish time of the mth predecessor from the
set of predecessors of the jth activity, j is the jth activity, and
D+ 2 represents the total number of activities.
Secondly, after converting to be precedence feasible Xi,

this schedule may violate the resource constraints. If any
activity resource usages exceed the resource availability, it is
rescheduled to the next earliest possible start time. Finally,

makespan is calculated as the finish time of the last dummy
activity, i.e., FTD+2.

D. HEURISTIC 2: IMPROVEMENT OF Xi, i ∈ Np:
NEIGHBORHOOD SWAPPING
In this subsection, NS is proposed to improve the quality
of Xi which is obtained from Heuristic 1 as discussed in
subsection IV-C. In NS, the activities of Xi are reshuffled
between the eligible activities. The eligible activities refers
to the activities which are not direct and/or indirect suc-
cessors of each other but have the same type of resource
requirements. The performance of a schedule depends on
the optimal resource allocation among the activities. As we
consider singular RCPSPs, where each activity requires one
resource type, the performance may improve by swapping the
activities that have the same type of resource requirement.
As a consequence, we consider those activities for swapping,
which are not direct and/or indirect successor, as well as have
the same type of resource requirement.

The simplest way to rearrange the activities is a random
combination. However, that may violate the precedence and

VOLUME 9, 2021 131771



F. Mahmud et al.: GA for Singular RCPSP

FIGURE 3. An example of (a) A project network, (b) A precedent feasible schedule, and (c) A resource feasible
schedule.

Algorithm 1 Pseudo-Code of Proposed Solution Approach
Require: MRuns, CFE , MFFE , NP.
1: Generate swap eligible matrix, as discussed in

subsection IV-D.
2: for i = 1: MRuns do
3: CFE ← 0
4: Initial Population: Generate random initial schedule,

Xi, i = 1, 2, . . . ,NP, as discussed in subsection IV-B.

5: Repair any infeasible schedule of Xi, i ∈ NP by using
Algorithm 2.

6: Evaluate objective function using Eqn. (1) . Update,
CFE ←− CFE + NP.

7: Regenerate and improveXi, i ∈ NP using Algorithm 3.
Increment CFE by 1 for each new schedule .

8: while CFE 6 MFFE do
9: Generate offspring using the GA operators as dis-

cussed in subsection IV-E.
10: Evaluate objective function of the offspring based

on steps 5 and 6.
11: Remove redundant schedule, if any in Xi and

update, CFE=CFE+1 for each new schedule.
12: Apply forward-backward improvement (FBI) as

discussed in subsection IV-F.
13: end while
14: Calculate the best individual.
15: end for

Algorithm 2 EST Technique to Obtain Feasible Xi

Require: Number of activities, D+ 2.
1: Generate a random initial schedule, Xi, i ∈ D+ 2
2: Repair infeasible schedule, if Xi violate the precedence

constraints by using Eqn. (2).
3: Calculate ESTj and FTj using Eqn. (6) and (7).
4: Repair infeasible schedule with respect to resource con-

straints. If any activity of Xi is violate then shift this
activity to next possible start time.

5: Evaluate fitness value of each schedule.

resource constraints which leads to an infeasible schedule.
For example, Fig. 4 (a) represent a feasible schedule after sat-
isfying precedence and resource constraints of a project net-
work (Fig. 3 (a)), Fig. 4 (b) shows a schedule after performing
random shuffle which is infeasible as it interchanges the
positions of activity-2 and activity-5. This schedule is infea-
sible as activity-2 is the immediate predecessor of activity-5,
so activity-5 cannot be scheduled before activity-2. For the
same reason, we cannot interchange activity-4 and activity-6.
To avoid this unexpected event, we use the NS technique.
As shown in Fig. 4 (c), we cannot swap those activities if they
are a direct and indirect successor of each other. In Fig. 4 (c),
the activities in red colour circles represent an unsuccessful
swap and the green colour circle shows the successful swap
as there is no direct or indirect successor relationship and
the last one is a feasible schedule. To represent the successor
relationships among the activities, we create a swap eligible
matrix [4] by using Eqn. (8).

SEMq,j =


0, if q == j and rq,k 6= rj,k
0, if q > j, j ∈ Pq and rq,k 6= rj,k
0, if j > q, q ∈ Pj and rq,k 6= rj,k
1, otherwise

(8)

where rj,k and rq,k are the k th types of resource demands of
the jth and qth activity, respectively, Pj and Pq represents the
predecessors of the jth and qth activity, respectively.
After creating the swap eligible matrix based on the

precedence relation and the resource demand, this heuristic
is applied to improve the quality of a feasible schedule,
as shown in Algorithm 3. In it, two activities interchange
their position where the cell value of the matrix is ‘1’ and
the makespan of the new schedule is evaluated. If the new
makespan is better than the old makespan, then the original
schedule is replaced by the new schedule, otherwise, Xi is
unchanged.

E. GA BASED SCHEDULING
In this subsection, we discuss the GA and its parame-
ters. GA is a powerful evolutionary algorithm proposed by
Holland [40], to find good quality solutions using natural

131772 VOLUME 9, 2021



F. Mahmud et al.: GA for Singular RCPSP

FIGURE 4. An example of neighbourhood swapping technique to improve Xi of Fig. 3(a).

Algorithm 3 Neighbourhood Swapping Based Scheduling
Require: A feasible Xi, and its makespan, Np, SEM .
1: for i = 1: Np do
2: for row = 2: NoAct-1 do
3: for col = 2: NoAct-1 do
4: Generate new schedule by interchanging position

of two activities where cell value of the SEM
matrix is ‘1’.

5: Evaluate makespannew of the new Xi, using Eqn.
(1).

6: if makespannew < makespan then
7: Update Xi.
8: end if
9: end for
10: end for
11: end for
12: Improved Xi

selection and genetics. GA can produce a large number of
diverse solution spaces from a limited number of random ini-
tial populations by using genetic operators, such as crossover,
selection, and mutation. Since the target of each evolution is
to find a better individual than the predecessor, GA keeps
the better individuals, thus leading to achieving the goal of
optimising the objective function.

In this research, the initial population (Xi, i ∈ Np) is ran-
domly generated as discussed in subsection IV-B. To produce
the offspring from Xi, we use two crossovers: (1) two-point,
and (2) uniform crossover and one mutation operator [32].
At the beginning, both crossover operators have an equal
probability to select and produce the new offspring. Hence
initially, the probability of each operator is set to 0.5. Based
on the fitness value of a new individual, the probability of

each crossover is adapted. If a new individual generated from
a specific crossover operator is better than its parent, then the
probability of that crossover operator is increased. As a result,
more individuals are generated by using the more successful
crossover operator. To create more diversity inXi, a mutation
operator, namely left-shift mutation operator is used. At the
initial point themutation probability,MP, is set to 0.05, which
is reduced to 0.001 at the later evolutionary process. The
fitness value of the new individuals i.e., offspring are eval-
uated and the redundant offspring are removed by inserting a
random schedule. Finally, individuals are sorted based on the
best fitness value i.e., makespan.

F. HEURISTIC 3: FORWARD-BACKWARD IMPROVEMENT
In this research, the quality of Xi is further improved by FBI.
In this method, also called double justification [41], firstly
an activity is scheduled in a forward direction in one cycle,
then in the next cycle, the same procedure is performed in a
backward direction. The detailed steps of this approach can
be found in [42].

In a forward cycle, activities are scheduled based on EST
as discussed in subsection IV-C. In a backward cycle, FTD+2
which is obtained by a forward cycle is the start time of the
next backward schedule. Each activity is shifted to its right as
much as possible while maintaining precedence and resource
constraints. Xi, is updated if the makespan of a schedule is
better than the original schedule.

V. EXPERIMENTAL RESULTS
This section presents the experimental setup, discusses and
analyzes the results obtained by the proposed approach for
solving the modified RCPSPs, including problem instances
with 30, 60, 90, and 120 non-dummy activities (j30, j60, j90,
and j120, respectively). The problem sets j30, j60, j90 and

VOLUME 9, 2021 131773



F. Mahmud et al.: GA for Singular RCPSP

j120 have 480, 480, 480, and 600 instances, respectively.
To evaluate the performance of the proposed algorithm, all
the 3 × 480 + 600 = 2040 problem instances were solved
using five variants of the proposed algorithm as:

• var1: In this variant, a schedule is randomly generated
which may be infeasible. The EST-based heuristic is
used to convert any infeasible schedule to a feasible
schedule by satisfying precedence constraint. The fit-
ness value of the feasible schedule is evaluated after
satisfying the resource constraints. This variant uses
steps 2 to 6 of Algorithm 1.

• var2: The random initial schedule from var1 is further
improved by using neighbourhood swapping (NS) as
discussed in subsection IV-D. For this variant, we use
steps 2 to 7 of Algorithm 1.

• var3: To create a more diverse solution as well as to
improve the quality of the solution, a GA based heuristic
is used as discussed in subsection IV-E. Steps 2 to 10 are
used to evaluate the objective function.

• var4: Instead of using a random initial population in
GA, in this variant, Xi is improved using var2 and then
it is used as the initial population of the GA.

• var5: To further improve the quality of the solution, FBI
is used along with var4. This variant uses all steps of
Algorithm 1.

• COA: For the purpose of comparison, modified datasets
were also solved using a well-established algorithm,
namely COA. The COA algorithm was developed for
homogeneous activities, we modified the algorithm for
singular activities. It is worth mentioning that the COA
algorithm has previously outperformed many existing
algorithms. The details of this algorithm and its param-
eters can be found in [32].

All of the above variants performance were tested using the
same problem instances. Besides, for comparison, the same
instances were also solved using a well-known existing
algorithm, namely COA. For a fair comparison, we set the
population size and maximum fitness evaluations to 10 and
5000, respectively, and all other parameters were kept the
same as COA. All of the algorithms were run independently
31 times, to evaluate the performance and verify the robust-
ness of the proposed algorithms. In each run, the evolution
process is continue until it is reached the maximum fitness
evaluations, i.e., MFFE = 5000. All algorithms were imple-
mented in a Matlab2018b environment on a computer with
a Core(TM)i7-8700 CPU@3.20GHz, and 16GB RAM, with
Windows 10 operating system.

A. TEST PROBLEMS: MODIFIED PSPLIB BENCHMARKS
In this subsection, the proposed and existing algorithms were
tested using the well-known PSPLIB [12] benchmarks with
j30, j60, j90, and j120 instances, where j represents the num-
ber of non-dummy activities. As the original PSPLIB bench-
marks were designed for homogeneous activities, where each
activity may requires all of the available renewable resources,

we modified the original instances as we assume that each
activity requires only one renewable resource at a particu-
lar time instead of all of them, while keeping the resource
availability same as they originally were. To generate new
benchmark sets, the original instance has been modified as
follows:

• Case 1: For each activity, keeping the highest resource
demand as they are and the remaining demands con-
verted to zero by using Eqn. (9). For example, if the
resource demand of the jth activity are r1 = 5, r2 = 9,
r3 = 6, and r4 = 2, then the modified resource demand
will be, r1 = 0, r2 = 9, r3 = 0, and r4 = 0.

rj,k =


rj,k = max(rj,K ), Keeping highest

resource demand
0, otherwise

(9)

• Case 2: In some cases, an activity may require same
highest amount of resources for two or more resource
types. In that case, we take the first highest resource
demand as it is and the remaining demands converted
to zero. For example, if the resource demand of the jth

activity are r1 = 5, r2 = 5, r3 = 6, and r4 = 6, then
the modified resource demand will be, r1 = 0, r2 = 0,
r3 = 6, and r4 = 0.

To simulate real-world problems, the problem instances
have been modified according to the singular resource
requirements, and so optimal solutions of the new problem
instances are unknown. Therefore, we evaluate the percentage
of average deviation from the lower bound (LB) and the LB
of each instance is calculated as the FT of the last dummy
activity while only considering precedence constraints. The
modified test instances were then used to evaluate the perfor-
mance of each algorithm. After 31 independent runs, the per-
formance is reported in Table 2-5 as a percentage deviation
of mean makespan from the lower bound (%DevM ), average
standard deviation (avSTD), the average deviation of mini-
mum makespan from the lower bound (%DevLB), and com-
putational time in days. The %DevM , avSTD, and %DevLB
are calculated using Eqn. (10), Eqn. (11), and Eqn. (12),
respectively.

%DevM = 100×

∑N
ins=1MMspan,n −

∑N
ins=1 LBn∑N

ins=1 LBn
(10)

avSTD =

∑N
ins=1 STDn

N
(11)

%DevLB = 100×

∑N
ins=1MinMspan,n−

∑N
ins=1 LBn∑N

ins=1 LBn

N
(12)

where MMspan,n and MinMspan,n is the mean and minimum
makespan of the nth instance, respectively, LBn is the critical
path duration of the nth instance (that does not consider
resource constraint), and N is the total number of instances,
i.e., 480, 480, 480, and 600 for j30, j60, j90, and j120,
respectively.

131774 VOLUME 9, 2021



F. Mahmud et al.: GA for Singular RCPSP

TABLE 2. Comparison of the experimental results obtained from the
proposed approach and COA for j30 instances.

TABLE 3. Comparison of the experimental results obtained for the
proposed approach and COA for j60 instances.

Table 2-5, summarizes the experimental results for the
benchmarks sets of j30, j60, j90, and j120. It can be seen
that deviation and average STD of var1 and var2 are higher
than var3, var4, var5, and COA for all of the benchmark
instances. However, the time required to find the solution
of var1 and var2 is significantly lower than the other vari-
ants of the proposed approach and COA. Note that the way
COA was implemented for solving the new test problems,
it would not be computationally efficient for these problems.
In other words, COA will always take longer time than
any of the custom designed algorithm implemented in this
research. So, the time comparison with COA is not really a
fair comparison but it can be considered as a worst case time

TABLE 4. Comparison of the experimental results obtained from the
proposed approach and COA for j90 instances.

TABLE 5. Comparison of the experimental results obtained from the
proposed approach and COA for j120 instances.

FIGURE 5. Convergence plot of minimum makespan for an instance.

scenario. However, it helps to validate the quality of solutions.
The reason for considering COA is that we do not have any
other algorithm handy for result validation and comparison.
The performance of var5 and COA are almost similar for
small-scale test problems, i.e., j30, and j60 benchmarks, how-
ever, var5 outperformed COA for large-scale test problem,
i.e., j90, and j120. Moreover, the computational budget of
var5 is also significantly lower than COA.

The proposed approach demonstrates that it can obtain
best quality solutions with less computational time than that
of the existing state-of-the-art algorithm. Fig. 5 shows the
convergence rate of var3, var4, var5, and COA. It is seen than
var5 converges faster than the other variants of the proposed
approach and COA. It is also seen that the proposed approach
performs better even for the wide-range benchmarks and the
overall ranking of the proposed one is the best one that is
discussed in subsection V-D1.

B. COMPARISON WITH EXACT SOLVER
In this subsection, to judge the quality of solutions obtained
from our algorithm, we solved some randomly selected
instances from the test sets using the Branch and Cut (B&C)
algorithm built in Matlab as OPTI toolbox. For the experi-
ment, 10 instances from each of 30, 60, 90, and 120 activities
problems were randomly selected and they were solved
using our proposed approach as well as the exact solver
(B&C). To solve the selected problems using B&C algorithm,
we need less than 500 nodes for j30 problems, 81k for j60,
and 213k for j90. However, we were unable to obtain any
feasible solution for j120 problems even with up to 2 million
nodes. For j30, j60 and j90 instances, there are no differences
between the objective function values of these two methods.
The computational times of the two approaches are reported
in Table 6. The maximum number of nodes required to find
the solution by the B&C algorithm are also reported in the last
column of the table. From Table 6 and Fig. 6, it is found that
time required by the exact method is lower than the proposed
method for 30 activities problem, however, it is increased
almost exponentially for 60, and 90 activities problems.

VOLUME 9, 2021 131775



F. Mahmud et al.: GA for Singular RCPSP

TABLE 6. Comparison of computational times of the proposed approach
and exact method.

TABLE 7. Effect of different population size.

The computational budget of the proposed approach is
increased linearly for the small to large scale problem, which
demonstrates the consistency of the proposed approach.

FIGURE 6. Computational time comparison for proposed and exact
method.

C. PARAMETRIC TEST
In this subsection, the effect of different parameters: (1) effect
of problem size, (2) effect of population size, (3) effect of
maximum fitness evaluation, and (4) effect of considering
local search to generate the feasible solution, are analyzed.

1) EFFECT OF PROBLEM SIZE
In this experiment, the effect of problem size is shown
in Fig. 7. From that figure, it is found that the computational
budget is increased while increasing the problem size (time
is shown in Table 2-5 in days), which is highly nonlinear.
However, the proposed approach takes considerably less time
than that of COA, which demonstrate the effectiveness of the
proposed approach and ensures that the proposed approach
converges quickly towards the best quality solution.

2) EFFECT OF POPULATION SIZE
In this experiment, we chose five different population sizes
as: n, 2n, 3n, 4n, and 5n (where n = 5), to analyze the

FIGURE 7. Effect of problem size.

effect of various population sizes. The experiment was carried
out on some selected instances from each of the benchmark
problems and the effect of fitness value and computational
time are shown in Fig. 8 and Table 7 respectively. It is
found that increasing the population size may result in bet-
ter mean makespan (Fig. 8), however computational time is
also increased (Table 7). From the experiment, it is found
that the population size of 2n is the best among the five
options. In comparison with COA, the proposed approach
showed less variance of makespan than that of COA. Fur-
thermore, the proposed approach can find the same quality
of solution with less computational budget which ensures the
quicker convergence rate of the proposed approach than that
of COA.

FIGURE 8. Effect of population size.

3) EFFECT OF MAXIMUM FITNESS EVALUATIONS
In this subsection, the maximum fitness evaluation is varied
and the effect of this experiment is reported in Table 8. In our
experiment, we mainly considered 10 as population size and
5000 as the number of maximum fitness evaluations. For
experimental analysis, we considered the performance when
evaluations reached 1000 and this analysis was evaluated
using all benchmarks instances.

From Table 8, it is clear that the performance of the pro-
posed algorithm is improved when the experiment is allowed
a higher number of fitness evaluations. Algorithms with
5000 fitness evaluations outperformed for all benchmarks
over with 1000 fitness evaluations. It is worth mentioning that
the proposed approach outperformed COA regardless of the
number of fitness evaluations.

131776 VOLUME 9, 2021



F. Mahmud et al.: GA for Singular RCPSP

TABLE 8. %avDEV when maximum fitness evaluation varies.

TABLE 9. Effect of local search.

4) EFFECT OF CONSIDERING LOCAL SEARCH
In this experiment, we examined two local search
mechanisms i.e., (1) neighbourhood swapping, and (2)
forward-backward improvement along with the proposed
algorithm. For the experimental study, five different complex
instances are taken from each of the benchmarks as stated
in Table 9.

The average deviation of minimum and mean makespan
from the lower bound, with or without local search, is shown
in Table 9. It is found that the deviation of minimum and
mean makespan are similar for the small-scale benchmark
problem. However, the average deviation of the proposed
approach increases significantly for the large-scale problems
where local search is not considered. This mainly happens
due to the algorithm without local searches becoming stuck
in local optimum for the large-scale benchmarks.

D. STATISTICAL TEST
In this subsection, the proposed approach has been validated
by using different statistical tests. To do this we use (1)
Friedman test ranking, (2) Wilcoxon test, and (3) Boxplot,
to compare the results among the different proposed variants
and COA.

1) FRIEDMAN TEST
A Friedman test is used to test the overall rank of an algo-
rithm. In this experimental step, the average mean makespan
deviation from the lower bound is used as input and the
corresponding ranking is reported in Table 10. From the
result, it is seen that var5 gets the highest ranking among all
of the proposed variants and COA, which further indicates the
superiority of the proposed algorithm.

2) WILCOXON TEST
AWilcoxon test is performed to evaluate the performance of
all the proposed variants and the objective values obtained
from 31 runs were considered as sample data. The value

TABLE 10. Friedman test ranks for different algorithms.

TABLE 11. Wilcoxon sign test results for different algorithms.

FIGURE 9. Boxplot of mean makespan of all benchmarks.

of p indicates the significance of the samples, where p <

0.05 represents that there is a statistically significant dif-
ference between the samples. The result obtained from the
Wilcoxon test is shown in Table 11, which shows that p values
are less than the 0.05; this shows a statistically significant
difference between the proposed approach and COA.

VOLUME 9, 2021 131777



F. Mahmud et al.: GA for Singular RCPSP

3) BOX PLOT
In this subsection, a boxplot is used to present the perfor-
mance of the proposed algorithm. The mean fitness value of
each individual instance of the benchmarks are used as the
input data and the corresponding statistical result is shown
in Fig. 9. Themiddle line of the box presents themedian value
of the fitness value for the corresponding benchmarks. The
bottom and top lines represent the 25% and 75% percentile
of the final values, respectively. From Fig. 9, it is seen that
most of the mean makespan of each instance is close to the
mean result for the corresponding benchmarks, which shows
that S-GA obtained a good quality result for each instance of
each benchmark.

VI. SUMMARY AND CONCLUSION
Despite the large number of solution approaches to solve
RCPSPs over the past few decades, they are designed for
homogeneous activities where each activity may require sev-
eral of the available resource types. However, real-world
problems do not require every resource all the time, usually
need one specific resource for one specific activity. There-
fore, we considered RCPSPs with singular activities and
modified the standard benchmarks where each activity needs
only one resource type, instead of all. To solve this variant of
RCPSPs, we proposed an S-GA, that is based on a GA and
three heuristics.

The performance of the proposed framework is evaluated
by solvingmodified test problemswith up to 120 non-dummy
activities. As we modified the original benchmarks, the same
problems were solved with the well-known COA algorithm.
Furthermore, different statistical tests and parametric anal-
ysis were performed to investigate the effectiveness of the
proposed variants of S-GA. From the experimental result,
the findings can be summarized as:
• S-GA outperformed COA; S-GA can find better quality
solutions.

• From the statistical tests, it is seen that our proposed
approach is the best in comparison to COA.

• The inclusion of local search enhances the performance
of S-GA.

• The proposed approach is more consistent than that
of COA, regarding the effect of maximum fitness
evaluations.

• The effect of population size has only a small impact on
the performance.

• The exact solver ensures that S-GA obtains the same
solution for the small to large scale problem.

In future, this research can be extended by considering
uncertainty in activity duration. In addition, time-varying
resource availability and resource requirements would be
another potential area to explore.

REFERENCES
[1] H. F. Rahman, R. K. Chakrabortty, and M. J. Ryan, ‘‘Memetic algorithm

for solving resource constrained project scheduling problems,’’ Autom.
Construct., vol. 111, Mar. 2020, Art. no. 103052.

[2] P. Brucker, ‘‘Scheduling and constraint propagation,’’ Discrete Appl.
Math., vol. 123, nos. 1–3, pp. 227–256, Nov. 2002.

[3] J. Blazewicz, J. K. Lenstra, and A. H. G. R. Kan, ‘‘Scheduling subject to
resource constraints: Classification and complexity,’’Discrete Appl. Math.,
vol. 5, no. 1, pp. 11–24, Jan. 1983.

[4] F. Mahmud, F. Zaman, R. Sarker, and D. Essam, ‘‘Heuristic embedded
genetic algorithm for heterogeneous project scheduling problems,’’ in
Proc. IEEE Congr. Evol. Comput. (CEC), Jul. 2020, pp. 1–8.

[5] F. Zaman, S. Elsayed, R. Sarker, D. Essam, and C. A. C. Coello,
‘‘An evolutionary approach for resource constrained project schedul-
ing with uncertain changes,’’ Comput. Oper. Res., vol. 125, Jan. 2021,
Art. no. 105104.

[6] S. M. Elsayed, R. A. Sarker, and D. L. Essam, ‘‘A new genetic algorithm
for solving optimization problems,’’ Eng. Appl. Artif. Intell., vol. 27,
pp. 57–69, Jan. 2014.

[7] F. Zaman, S. M. Elsayed, R. Saker, and D. Essam, ‘‘Resource constrained
project schedulingwith dynamic disruption recovery,’’ IEEEAccess, vol. 8,
pp. 144866–144879, 2020.

[8] V. Valls, F. Ballestín, and S. Quintanilla, ‘‘A hybrid genetic algorithm for
the resource-constrained project scheduling problem,’’ Eur. J. Oper. Res.,
vol. 185, no. 2, pp. 495–508, Mar. 2008.

[9] D. Debels and M. Vanhoucke, ‘‘A decomposition-based genetic algorithm
for the resource-constrained project-scheduling problem,’’ Oper. Res.,
vol. 55, no. 3, pp. 457–469, 2007.

[10] S. M. Elsayed, R. A. Sarker, and D. L. Essam, ‘‘A three-strategy
based differential evolution algorithm for constrained optimization,’’ in
Proc. Int. Conf. Neural Inf. Process. Berlin, Germany: Springer, 2010,
pp. 585–592.

[11] R. K. Chakrabortty, A. Abbasi, and M. J. Ryan, ‘‘Multi-mode resource-
constrained project scheduling using modified variable neighborhood
search heuristic,’’ Int. Trans. Oper. Res., vol. 27, no. 1, pp. 138–167,
Jan. 2020.

[12] R. Kolisch and A. Sprecher, ‘‘PSPLIB—A project scheduling problem
library: OR software-ORSEP operations research software exchange pro-
gram,’’ Eur. J. Oper. Res., vol. 96, no. 1, pp. 205–216, 1997.

[13] D. Recalde, R. Torres, and P. Vaca, ‘‘An exact approach for the multi-
constraint graph partitioning problem,’’ EURO J. Comput. Optim., vol. 8,
nos. 3–4, pp. 289–308, Oct. 2020.

[14] M. Ritt and A. M. Costa, ‘‘Improved integer programming models for
simple assembly line balancing and related problems,’’ Int. Trans. Oper.
Res., vol. 25, no. 4, pp. 1345–1359, Jul. 2018.

[15] S. Al-Shihabi and M. M. AlDurgam, ‘‘The contractor time–cost–credit
trade-off problem: Integer programming model, heuristic solution, and
business insights,’’ Int. Trans. Oper. Res., vol. 27, no. 6, pp. 2841–2877,
Nov. 2020.

[16] C. Reintjes and U. Lorenz, ‘‘Bridging mixed integer linear programming
for truss topology optimization and additive manufacturing,’’ Optim. Eng.,
vol. 22, no. 2, pp. 1–45, 2020.

[17] P. Brucker, S. Knust, A. Schoo, and O. Thiele, ‘‘A branch and bound
algorithm for the resource-constrained project scheduling problem,’’ Eur.
J. Oper. Res., vol. 107, no. 2, pp. 272–288, Jun. 1998.

[18] Z. Pei, M. Wan, Z.-Z. Jiang, Z. Wang, and X. Dai, ‘‘An approximation
algorithm for unrelated parallel machine scheduling under TOU electric-
ity tariffs,’’ IEEE Trans. Autom. Sci. Eng., vol. 18, no. 2, pp. 743–756,
Apr. 2021.

[19] N. Bianchessi, R. Mansini, and M. G. Speranza, ‘‘A branch-and-cut algo-
rithm for the team orienteering problem,’’ Int. Trans. Oper. Res., vol. 25,
no. 2, pp. 627–635, Mar. 2018.

[20] M. Colvin and C. T. Maravelias, ‘‘Modeling methods and a branch and
cut algorithm for pharmaceutical clinical trial planning using stochas-
tic programming,’’ Eur. J. Oper. Res., vol. 203, no. 1, pp. 205–215,
May 2010.

[21] F. Zaman, S. Elsayed, R. Sarker, D. Essam, and C. A. C. Coello, ‘‘Evolu-
tionary algorithm for project scheduling under irregular resource changes,’’
in Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2019, pp. 403–410.

[22] P. I. Adamu, H. I. Okagbue, and P. E. Oguntunde, ‘‘A new priority rule for
solving project scheduling problems,’’ Wireless Pers. Commun., vol. 106,
no. 2, pp. 681–699, May 2019.

[23] R. Klein, ‘‘Bidirectional planning: Improving priority rule-based heuristics
for scheduling resource-constrained projects,’’ Eur. J. Oper. Res., vol. 127,
no. 3, pp. 619–638, Dec. 2000.

[24] R. Zamani, ‘‘A competitive magnet-based genetic algorithm for solving
the resource-constrained project scheduling problem,’’ Eur. J. Oper. Res.,
vol. 229, no. 2, pp. 552–559, Sep. 2013.

131778 VOLUME 9, 2021



F. Mahmud et al.: GA for Singular RCPSP

[25] M. Asadujjaman, H. F. Rahman, R. K. Chakrabortty, and M. J. Ryan,
‘‘An immune genetic algorithm for solving NPV-based resource
constrained project scheduling problem,’’ IEEE Access, vol. 9,
pp. 26177–26195, 2021.

[26] J. Alcaraz and C. Maroto, ‘‘A robust genetic algorithm for resource
allocation in project scheduling,’’ Ann. Oper. Res., vol. 102, nos. 1–4,
pp. 83–109, 2001.

[27] R. Zamani, ‘‘An evolutionary implicit enumeration procedure for solving
the resource-constrained project scheduling problem,’’ Int. Trans. Oper.
Res., vol. 24, no. 6, pp. 1525–1547, Nov. 2017.

[28] F. Kong and D. Dou, ‘‘RCPSP with combined precedence relations
and resource calendars,’’ J. Construct. Eng. Manage., vol. 146, no. 12,
Dec. 2020, Art. no. 04020133.

[29] M.-Y. Cheng, D.-H. Tran, and Y.-W. Wu, ‘‘Using a fuzzy clustering
chaotic-based differential evolution with serial method to solve resource-
constrained project scheduling problems,’’ Autom. Construct., vol. 37,
no. 1, pp. 88–97, 2011.

[30] H. Zhang, X. Li, H. Li, and F. Huang, ‘‘Particle swarm optimization-based
schemes for resource-constrained project scheduling,’’ Autom. Construct.,
vol. 14, no. 3, pp. 393–404, Jun. 2005.

[31] Ö. H. Bettemir and R. Sonmez, ‘‘Hybrid genetic algorithm with simulated
annealing for resource-constrained project scheduling,’’ J. Manage. Eng.,
vol. 31, no. 5, Sep. 2015, Art. no. 04014082.

[32] S. Elsayed, R. Sarker, T. Ray, andC. C. Coello, ‘‘Consolidated optimization
algorithm for resource-constrained project scheduling problems,’’ Inf. Sci.,
vols. 418–419, pp. 346–362, Dec. 2017.

[33] F. Zaman, S. Elsayed, R. Sarker, and D. Essam, ‘‘Scenario-based solution
approach for uncertain resource constrained scheduling problems,’’ in
Proc. IEEE Congr. Evol. Comput. (CEC), Jul. 2018, pp. 1–8.

[34] C. Fang and L. Wang, ‘‘An effective shuffled frog-leaping algorithm for
resource-constrained project scheduling problem,’’ Comput. Oper. Res.,
vol. 39, no. 5, pp. 890–901, May 2012.

[35] K. Ziarati, R. Akbari, and V. Zeighami, ‘‘On the performance of bee
algorithms for resource-constrained project scheduling problem,’’ Appl.
Soft Comput., vol. 11, no. 4, pp. 3720–3733, Jun. 2011.

[36] F. Mahmud, F. Zaman, R. Sarker, and D. Essam, ‘‘Memetic algorithm for
heterogeneous project scheduling problems,’’ in Proc. IEEE Symp. Ser.
Comput. Intell. (SSCI), Dec. 2020, pp. 1–8.

[37] N. Christofides, R. Alvarez-Valdés, and J. M. Tamarit, ‘‘Project scheduling
with resource constraints: A branch and bound approach,’’ Eur. J. Oper.
Res., vol. 29, no. 3, pp. 262–273, Jun. 1987.

[38] J. E. Kelley, ‘‘The critical-path method: Resource planning and schedul-
ing,’’ Ind. Scheduling, vol. 13, no. 1, pp. 347–365, 1963.

[39] S. Rostami, S. Creemers, and R. Leus, ‘‘New strategies for stochastic
resource-constrained project scheduling,’’ J. Scheduling, vol. 21, no. 3,
pp. 349–365, Jun. 2018.

[40] D. E. Goldberg and J. H. Holland, ‘‘Genetic algorithms and machine
learning,’’ Mach. Learn., vol. 3, no. 2, pp. 95–99, Aug. 1988.

[41] V. Valls, F. Ballestın, and S. Quintanilla, ‘‘Justification and RCPSP: A tech-
nique that pays,’’Eur. J. Oper. Res., vol. 165, no. 2, pp. 375–386, Sep. 2005.

[42] K. Y. Li and R. J. Willis, ‘‘An iterative scheduling technique for resource-
constrained project scheduling,’’ Eur. J. Oper. Res., vol. 56, no. 3,
pp. 370–379, Feb. 1992.

FIROZ MAHMUD received the B.Sc. and M.Sc.
degrees in computer science and engineering from
Rajshahi University of Engineering and Technol-
ogy (RUET), Rajshahi, Bangladesh, in 2009 and
2017, respectively. He is currently pursuing the
Ph.D. degree with the School of Engineering
and Information Technology, University of New
South Wales (UNSW) Canberra, Canberra, ACT,
Australia. His current research interests include
constrained optimization, evolutionary algorithms,

multiobjective optimization, and machine learning.

FORHAD ZAMAN received the Ph.D. degree
from the University of New South Wales (UNSW)
Canberra, Canberra, ACT, Australia, in 2017.
He worked as a Research Fellow with UNSW
Canberra, from 2017 to 2019, where he is cur-
rently an Adjunct Lecturer with the School of
Engineering and Information Technology. His
current research interests include power system
operation and control, active bidding strategy in
the electricity market, evolutionary algorithms,

multiobjective optimization, handling real-life uncertainty, and game theory.

ALI AHRARI received the Ph.D. degree in
mechanical engineering fromMichigan State Uni-
versity, East Lansing, MI, USA, in 2016. He is
currently a Postdoctoral Research Associate with
the University of New South Wales Canberra,
Canberra, ACT, Australia. His research interests
include evolutionary algorithms and engineering
optimization. He is currently a member of the
IEEE CIS Task Force on Multimodal Optimiza-
tion. He has won GECCO Competition in multi-

modal optimization, in 2016 and 2017, and the ISCSO Student Competition
in structural optimization, in 2017 and 2018.

RUHUL SARKER (Member, IEEE) received
the Ph.D. degree from Dalhousie University,
Halifax, NS, Canada, in 1992. He is currently
a Professor with the School of Engineering and
IT, and the former Director with the Faculty
Postgraduate Research, University of New South
Wales Canberra, Canberra, ACT, Australia. He has
authored a book titled Optimization Modelling:
A Practical Approach. His current research inter-
ests include evolutionary optimization and applied

operations research. He is a member of INFORMS.

DARYL ESSAM (Member, IEEE) received the
B.Sc. degree in computer science from the Univer-
sity of New England, Australia, in 1990, and the
Ph.D. degree from the University of New South
Wales, Australia, in 2000. Since 1994, he has
been with UNSW Canberra, where he is currently
a Senior Lecturer. His research interests include
genetic algorithms, with a focus on both evolution-
ary optimization and large scale problems.

VOLUME 9, 2021 131779


