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ABSTRACT In this study, a framework that generates natural language descriptions of images within a
controlled environment is proposed. Previous work on neural networks mostly focused on choosing the
right labels and/or increasing the number of related labels to depict an image. However, creating a textual
description of an image is a completely different phenomenon, structurally, syntactically, and semantically.
The proposed semantic image annotation framework presents a novel combination of deep learning models
and aligned annotation results derived from the instances of the ontology classes to generate sentential
descriptions of images. Our hybrid approach benefits from the unique combination of deep learning and
semantic web technologies. We detect objects from unlabeled sports images using a deep learning model
based on a residual network and a feature pyramid network, with the focal loss technique to obtain predictions
with high probability. The proposed framework not only produces probabilistically labeled images, but also
the contextual results obtained from a knowledge base exploiting the relationship between the objects. The
framework’s object detection and prediction performances are tested with two datasets where the first one
includes individual instances of images containing everyday scenes of common objects and the second
custom dataset contains sports images collected from the web. Moreover, a sample image set is created to
obtain annotation result data by applying all framework layers. Experimental results show that the framework
is effective in this controlled environment and can be used with other applications via web services within
the supported sports domain.

INDEX TERMS Semantic image annotation, picture interpretation, ontology.

I. INTRODUCTION
Deep learning is a fascinating subfield of artificial intelli-
gence especially considering the outcomes. It can be used in
many fields including image and speech recognition, med-
ical diagnosis, automated trading strategies, learning asso-
ciations, and fraud detection [1]–[4]. Although the results
are impressive, it is obvious that deep learning has serious
difficulties in terms of the learning process when compared
to human learning. In connection with grasping the separat-
ing principles, experiments demonstrate that human subjects
obtain more successful results than visual recognition mod-
els [5], [6]. On the other hand, these models achieve outstand-
ing accuracy for restricted tasks such as face detection or iris
recognition [7], [8]. Most studies in visual recognition have
focused on labeling images with a fixed set of categories. This
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is similar to the unconnected pieces of a puzzle that need to
be properly aligned to visualize the whole picture.

Associated objects are the key to generate a description
that is longer than a single label. There are significant studies
in literature that aim to address the challenges of generating
image descriptions [9], [10]. The study by Karpathy and
Fei-Fei [6] differs from these models by proposing a model
that simultaneously reasons about the contents of images and
their natural language representations to generate the descrip-
tions of the image regions. However, this requires a compre-
hensive training process on large image-sentence datasets,
which are usually created with manual annotation showing
variety from annotator to annotator. Moreover, the immense
computational power required to train a model such as this
one is not cost-effective and limits the usage of hardware at
hand [11], [12].

In this work, we aim to extract textual descriptions from
visual images of selected sports domains (tennis, baseball,
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and skiing). The primary challenge towards this goal is that
datasets often use generic labels for objects. For example,
the balls used in different branches of sports (e.g. tennis balls)
are labeled generically as sports balls. Secondly, some objects
may be intertwined in the same location in the pictures and
may cause false prediction results obtained from the fully
connected layers of the class subnet. The final challenge is
concerned with obtaining the correct annotations which are
based on the semantic queries related to the detected objects,
their frequency distribution as well as their permutations.
Specifically, the contributions of this study are as follows:

• A framework is proposed firstly to identify the generic
objects in an image and then to find their specific anno-
tations with the aid of an ontology, i.e., a generically
detected ‘‘sports ball’’ is distinguished as a ‘‘tennis
ball’’.

• A sports ontology is developed which provides useful
annotations obtained from the relations between various
classes and their individuals to depict the images.

• Finally, keyword combination search is performed by
examining the image objects and ontology results,
returning the relevant image annotations.

Our work distinguishes the objects and their properties, i.e.
color and coordinates in an image using artificial intelligence
models. At this stage, the detected objects from an image can
be generic and no conceptual relation exists among them. The
sports ontology is essential in the framework to convert the
generic labels into specific labels, and to obtain annotations
based on the relationships between the ontology classes.
Compared with the previously developed image annotation
systems, the proposed system is ontology-driven, scalable,
intelligent, and efficient in terms of the training requirements.

The remainder of this paper is organized as follows.
Section II reviews the background information on image
annotation and its challenges concerning neural networks and
ontologies. Section III introduces the layers of the proposed
framework. Section IV is dedicated to the experiments and
evaluation of the system from the component as well as the
whole system perspective. Section V presents discussions
followed by the conclusions and future work in Section VI.

II. IMAGE ANNOTATION
A. TYPES OF IMAGE ANNOTATION
Our framework utilizes the bounding boxes approach and
anchor boxes as a set of predefined bounding boxes to
start the annotation process. This approach is high-level
and is adopted to label objects by many previous studies.
Various platforms already exist for image labeling tasks.
One conspicuous example is Amazon Mechanical Turk
(MTurk). Chen et al. [13] studied the automatic labeling
of 3D bounding boxes (3D Cuboids approach) in the context
of autonomous driving. Our work also utilizes the polygons
approach for the objects in an image where the bounding
boxes cannot be applied to prepare the custom image dataset.
Some of the approaches do not treat object-segmentation as

a pixel-problem (semantic segmentation is the process of
associating every single pixel in an entire image with a tag)
instead, they cast it as a polygon prediction task [14], [15].

B. CHALLENGES OF IMAGE ANNOTATION
Post-production of an image can be counted as one of the
major issues in this field since the required information is
applicable only during production time. Generic annotation is
another challenge since without a clear aim, it is ineffective in
annotating images.With the addition of automatic annotation,
this phenomenon is known in the literature as the semantic
gap. A semantic gap refers to the difference between the
high-level content descriptions required by the applications
and the low-level features provided by the image analysis
tools [16].

C. NEURAL NETWORKS IN IMAGE ANNOTATION
The literature consists of many examples for the textual
representation of images with neural networks. In [6],
Karpathy and Fei-Fei present an alignment model based on
a combination of Convolutional Neural Networks (CNNs)
over image regions and bidirectional Recurrent Neural Net-
works over sentences. Socher et al. [17] propose a DT-RNN
model that uses dependency trees to embed sentences into
a vector space to retrieve images. Kiros et al. [18] focus
on an encoder-decoder pipeline to unify joint image-text
embedding models with multimodal neural language mod-
els. Finally, Krishna et al. [19] collect dense annotations of
objects, attributes, and relationships within each image for
models that need to understand the interactions and relation-
ships between the objects in an image.

D. ONTOLOGIES IN IMAGE ANNOTATION
The image annotation domain also includes studies present-
ing an ontology-based solution. Gu et al. [20], Bannour
and Hudelot [21], and Baier et al. [22] present automatic
approaches together with ontology usage. Im and Park [23]
propose a semi-automatic approach for image annotation
using semantic relationships between image tags. In their
study, Franzoni et al. [24] focus on the retrieval aspect of
images via context-based semantic similarity.

Also in [25] and [26], the researchers present tech-
niques for both annotation and retrieval processing of an
image.

The literature provides many solutions using neural net-
works and ontologies separately. On the other hand, the com-
bination of both is rather scarce in the image annotation
domain. The polytomous technologies behind these fields and
the unique ways of integrating them are the root causes of
why novel solution alternatives can still be produced today.
The proposed framework is one of these solutions which will
be detailed in the following section.

III. FRAMEWORK OF THE SYSTEM
In this section, the framework layers are introduced.
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FIGURE 1. The activity diagram of the framework.

A. OVERVIEW
The multi-tier framework consists of the following activ-
ities as illustrated in Fig. 1. AI layer is placed at the
bottom of the framework to detect the objects in pic-
tures using the pre-trained model and custom-trained mod-
els. Both models are RetinaNet using residual network
(ResNet-50) and feature pyramid network (FPN) as a
backbone but they differ in terms of the training pro-
cess and the datasets used in the training. Also in this
layer, the framework can determine which of the detected
objects are generic and return the coordinates of all detected
objects.

The merging layer is responsible for merging the detected
objects from the prediction results of both models by compar-
ing the coordinate and probability values. This way, we can
compare the annotation results obtained from the sports
ontology from two different perspectives. One perspective
adopts the usage of detected generic objects to specialize
them and retrieve annotation results in the ontology layer.
The other benefits from the training process with some spe-
cialized classes and as a result adopts the usage of some
specific object labels within the semantic queries to under-
stand the variance between the annotation results, if any.
Finally, the detected objects of an input image and the ontol-
ogy results are examined at the top layer (mapping layer)
for the sole purpose of obtaining the correct annotations
of an image. The input/output parameters to and from the
models are handled with a RESTful service as illustrated
in Fig. 2.

B. DETECTING OBJECTS IN PICTURES
The prediction process of our framework is performed using
RetinaNet which is a more advanced object detector com-
pared to the other object detectors mentioned in the literature.
It was originally proposed by Facebook AI Research (FAIR),
and today there are several versions available which differ
based on the backbone usage and model layer operations.

CNN’s have already been in use for a long time to extract
features with the convolution layers, and to execute the pro-
cess of striding a small kernel over a target array, obtaining the
sum of element-wise multiplication between the kernel and a
subset of equal size of the target array at that location [27],
[28]. These layers need to be placed on top of each other to
learn complex features, such as a nose, ear, eye, etc., without
knowing what they really are. They just learn to detect a
feature by processing many samples.

Therefore, achieving deeper networks has become a
must to overcome complex computer vision tasks. How-
ever, the computation also becomes complex when lay-
ers are added on top of layers creating a network with
many layers [29], [30]. To reduce computational complex-
ity, we adopted a 50-layer deep model (ResNet-50) in the
RetinaNet backbone which uses a residual block instead of
plain layers as the main base element. This allows the flow of
information from the initial layers to the final layers using
shortcut connections to skip some layers, and to perform
identity mapping.

Artificial neural networks are trained on training sets with
a set of weights. During the training process, these weights
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FIGURE 2. The proposed framework architecture.

are optimized and used as one of the basic components of
artificial neurons before predicting the final value. In the
case of the pre-trained model, we used already adjusted
weights obtained from the training process of the 2014 ver-
sion of the COCO dataset using training and testing images
with respective object labels. We also need to see how well
the custom-trained model trained itself through forward and
backward propagation until reaching some minima for error
value. The errors can be found via forward propagation
through the activation function:

ok := f (M k
+W k−2,k .ok−2) (1)

where, ok are the outputs of neurons in layer k, f is the
activation function for layer k, W k−1,k is the weight matrix
for neurons between layer k – 1 and k, and

M k
= W k−1,k .ok−1 + pk (2)

Backpropagation learning is required to update new values
of weights by using an extension to the stochastic gradient
descent algorithm for both the normal and the skip paths.
In this structure, the residual block notation can be expressed
as follows: [

A× A, C1
B× B, C2

]
× N (3)

where A× A and B× B specify the size of the kernel used in
that layer. In their study of deep residual learning for image
recognition, He et al. [31] call them filters. C1 and C2 refer
to the number of channels in that convolutional layer, and N
is the number of times this block is repeated for that residual
layer. The ResNet model used in this study is distinguished

TABLE 1. The 50-layer architecture of ResNet.

from the other ResNet models, such as 34-layer ResNet,
within the layers below, see Table 1.

To overcome the degradation problem which usually
appears while trying to achieve deeper artificial neural
networks, preventing the accuracy to get saturated very
quickly is essential. Therefore, we adopted a residual learning
approach in the backbone to let every few stacked layers fit
a residual mapping instead of an underlying mapping. The
main difference between the residual blocks and plain blocks
is the usage of skip connections and performing identity
mapping as illustrated in Fig. 3.

Also, the ResNet-50 architecture differentiates from the
layer depth when compared to the less layered ResNet archi-
tectures. Each ResNet block is two layers deep in the 34-layer
ResNet, but in the ResNet-50, each ResNet block is three-
layer deep as shown in Table 1.

In terms of identity mappings, the easier approach is driv-
ing the weights of the multiple non-linear layers towards zero
instead of finding the identity mappings from the stack of
non-linear layers due to the usage of the non-linear CNN
layers stack. At the same time, 1×1 convolutions are applied
more than any other type of convolutions to make the residual
function and identity as the same dimension.

The positions in an image where object detectors are
applied are the main distinctions between various object
detectors. Two types exist based on where the classifier is
applied. If it is applied to a sparse set of candidate object
locations, the prediction results can be achieved faster. On the
other hand, if it is applied over a regular, dense sampling of
possible object locations, higher accuracy can be obtained.

The extreme foreground-background class imbalance dur-
ing the training of dense detectors is stated as the root cause
behind the performance results in [32]. A new type of loss
called focal loss was proposed by the same researchers to
reshape the standard cross-entropy loss by adding a factor
to down-weigh the loss assigned to well-classified instances.
In this way, the vast number of easy negatives which cause
the detector to be overwhelmed during the training process
can be prevented. Our study benefits from this approach with
the RetinaNet. It is a unified network composed of multiple
networks. The Feature Pyramid Network (FPN) from [33] is
used for computing a convolutional featuremap over an entire
input image in the RetinaNet, see Fig. 4.
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FIGURE 3. A building block of residual learning [31].

The framework architecture in this study uses the FPN on
top of a ResNet-50 architecture for the following reasons:

• Generating a multi-scale feature pyramid.
• Attaching two subnetworks: one for classifying anchor
boxes.

• And one for regression from anchor boxes to
ground-truth object boxes.

The anchor boxes are used as a set of predefined bounding
boxes for a resized input image with three aspect ratios 1:1,
1:2 and 2:1. At each spatial position, the classification subnet
predicts the probability of the object presence. The parame-
ters of this subnet are shared with all pyramid levels. Over the
feature map of a given pyramid level, four 3× 3 convolution
layers with filters are applied with ReLU activation following
each one.

Also per spatial location, sigmoid activations are attached
to the output of the binary predictions at the end. The subnet
design for box regression to regress the offset from each
anchor box to a nearby ground-truth object is identical to the
classification subnet except the termination condition. Both
have similar structures but different parameters.

Finally, the combined architecture of the model in the
framework for object detection and classification has 206 lay-
ers including the optimization operations on some layers with
a total of 36569662 parameters.

As mentioned before, the bounding boxes approach is
utilized together withmany different techniques andmethods,
such as anchor boxes in this study, see Fig. 5. These are
highly effective techniques when it comes to surrounding
objects in images along with a major disadvantage. If the
surrounded object does not fill the area inside the boundaries
completely, the box includes various samples of other parts
of the image which makes it difficult for our framework to
detect the color of the object. Therefore, we proportionally
shrink the boxes up to 80% after the detection process and
focus on the object’s center region by computing an additional
region for determining the object color. To work on this
region, an image color space function is coded within the
framework. This function receives hue, saturation, and value
as parameters and returns the object color by determining
threshold values. Also, a mean region matrix for RGB (Red,
Green, Blue) is coded to obtain the RGB provision of the
object color.

FIGURE 4. The RetinaNet architecture; ResNet (left), FPN (right) [32].

At the end of the AI layer of the framework, the results
such as the detected objects’ labels, their coordinates in the
input image, and their color values in various forms (BGR,
RGB, HSV) together with the color label computed from the
additional region is exported as a comma-separated values
file and stored on a server under a folder automatically created
based on the detection response time.

The two results of a sample image obtained from the
pre-trained model and the custom-trained model are given
in Fig. 6.

C. THE MERGING LAYER
The merging module in this layer is designed and imple-
mented to unify the pre-trained model predictions and
custom-trained model predictions based on the probability
values and objects’ box points (coordinates). In the exper-
iments, we need to observe the variance in the annotation
results obtained from the sports ontology with both the pre-
trained model’s detected objects, and the detected objects
after the merging process that uses the custom-trained model
results as a supplementary component.

To compare the detected objects of the models according
to the generic object list, additional filters are created. With
them, the difference between the object detection results
and the generic object list is computed, the arguments that
should change are extracted, and the data in the latest file
is retrieved. The filtered results from both models provide
a collection type result that is needed to compare each item
by matching object coordinates and probability values. The
execution outputs of this step for the sample in Fig. 7 are as
follows:
• The pre-trained model’s result: {index:0, object: ten-
nis racket, probability:97.863, box point [324, 5, 468,
428]}, {index:1, object: person, probability:99.752, box
point:[31, 20, 387, 641]}.

• The custom-trained model’s result: {index:0, object:
tennis player, probability:92.541, box point:[26, 12,
439, 639]}, {index:1, object: women’s suit, probabil-
ity:64.881, box point: [50, 96, 386, 602]}.

• And after the merging process, the result: {index:0,
object: tennis player, probability:92.541, box point:[26,
12, 439, 639]}, {index:1, object: tennis racket, proba-
bility:97.863, box point[324, 5, 468, 428]}, {index:2,
object: women’s suit, probability:64.881, box point: [50,
96, 386, 602]}.
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FIGURE 5. (a) Samples with anchor boxes; (b) YOLOv3 detections; (c) RetinaNet detections.

FIGURE 6. (a) The pre-trained model detections; (b) the custom-trained model detections.

More specialized classes can be achieved with the merging
process for the detected objects from both models.

The merged detection results obtained after the merging
process for the sample image are illustrated in Fig. 7.

D. ONTOLOGY DEVELOPMENT
To obtain accurate and scalable image annotation, the ontol-
ogy layer was added to the framework. Ontologies contain

rich relationships amongst terms and in the framework,
the sports ontology exploits these relationships to consider
different objects and their joint probability. This layer pro-
vides an infrastructure to reach additional sub-classes for
three target sports classes and their relations among the
detected objects of an image.

Web Ontology Language (OWL) is used together with
Protégé, an open-source ontology editor, to build the sports
ontology, and HermiT reasoner to determine the consistency
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FIGURE 7. After the merging process results.

of the ontology and identify the subsumption relationships
between the classes. Overall, the sports ontology includes
268 axioms, 61 classes, 13 object properties, and 40 individu-
als. These are the core ontological components where classes
define an aggregation of things, individuals are instances of
classes, and properties link classes/individuals.

The advantages of using the sports ontology in our frame-
work are as follows:

• A common understanding of the structure among the
detected objects is provided.

• Domain knowledge reusability is gained with well-
defined concepts and their relationships.

• Change in the domain knowledge can easily be reflected
in the assumptions.

• Separation of issues between the domain and operational
knowledge is accommodated.

• The classification results can be distributed within a
multi-layer depth structure.

• Sentential descriptions of images can be achieved.

The ontology editor provides a tiered architecture. Views
such as tabs, widgets and menus feed from an object-oriented
model. The Protégé SPARQL Query extension is utilized to
write and execute semantic queries.

The semantic queries used to obtain results from the sports
ontology are classified under three types, see Table 2.

When defining concepts, sameness and uniqueness are
explicitly defined using ‘‘Equivalent to’’ and ‘‘Disjoint
with’’. Steps required for the sports ontology development
process are explained below:

1) A total of 61 classes are defined, where the classifica-
tions are distributed within 5-layers depth, see Fig. 8.

TABLE 2. Types of semantic queries.

2) 13 object properties are implemented in the ontology
such as the examples shown in Fig. 9.

3) Class individuals, instances of classes are declared and
can be retrieved with the following query, see Table 3.

4) Object properties are used to bind class individuals,
in other words, they help to draw inferences among the
different concepts by defining the relationship between
the concepts, see Fig. 10.

5) Triples are produced which formally represent the
‘‘Subject Verb Object’’ structure.

Queries are crucial in discovering the semantic relations
between the detected objects in the framework. SPARQL
queries can be used to obtain results from the ontologies. Such
an example can be seen in Table 4 and 5, which presents an
example query and its answer, respectively.

Using SPARQL queries, individuals’ object property asser-
tion annotations can be reached and exported under csv files
to be stored in the memory.

The pre-trained model produces some generic labels which
eventually become classification classes. The Person label
is such an instance of a generic label which will later be
determined specifically as a baseball batter.

E. ANNOTATION SIMILARITY CONTROL
Depicting a picture even with the results obtained from the
queries was not sufficient at this point. In some of the rela-
tions, especially many-to-many ones, queries produce inac-
curate annotations in the same exported file. Baseball player
type is an example representing such a situation. The types
of equipment, baseball gloves and baseball are both used by
two types of baseball players, which are baseball pitcher and
baseball catcher. Therefore, the file contains all the semantic
annotations belonging to both, see Table 6.

To ensure that the most related sentences are grouped
together and irrelevant sentences are eliminated, the Jaccard
coefficient and the Cosine similarity are used. Considering
words and their orders in sentences is the backbone to calcu-
late sentence similarity.
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FIGURE 8. The classification results and the hierarchical representation
of class dependencies among layers.

We use the two most mentioned statistical calculations
(sentence similarity based on a word set and sentence similar-
ity based on the vector) in our study for creating subgroups
from the ontology results. The following formulas for sen-
tence similarity based on a word set (Jaccard similarity) and
sentence similarity based on the vector (Cosine similarity) are
given, respectively [34]:

Jaccard
(
cx , cy

)
=
|k (cx) ∩ k

(
cy
)
|

|k (cx) ∪ k
(
cy
)
|

(4)

where, cxcy are sentences, k (cx) k
(
cy
)
are word sets of sen-

tences.

Cosine
(
cx , cy

)
=

∑i+j
n=1WxnWyn√∑i+j

n=1W
2
xn

√∑i+j
n=1W

2
yn

(5)

where, WxnWyn represent weights assigned to k (cx) k
(
cy
)
,

and the initial weight of words is 1. If a word occurs
more times in one sentence, the weight of the word is
accumulated.

FIGURE 9. The usage of an object property.

TABLE 3. Query example to obtain individuals of all the classes.

F. THE MAPPING LAYER
The aim of this module which is developed in Python is
to infer from the detected objects and the ontology results.
As illustrated in the proposed framework architecture (Fig. 2),
the module requires a pre-constructed keyword mapping
and query results as well as the detected objects obtained
from both pre-merging and post-merging, to produce separate
annotations as outputs. The keyword mapping file stores the
detected objects and their corresponding annotation results
based on the following criteria:
• Frequency distributions of the detected objects in
exported results of the semantic queries.

• A keyword can be a single detected object or can be a
combination of multiple objects.

• When the keywords and the result files obtained from
the sports ontology are matched, each detected object in
a keyword is counted separately.

• The cumulative count is considered.
• The file with the highest frequency of a keyword is
prioritized.

• The other associated result files are sorted according to
the frequency score when linking the result files and the
keywords.

The ‘‘term’’ is used for each element of a keyword and term
frequency (TF) measures how frequently a term occurs in a
file:

TF (x) =
Number of times× appears in a file∑n

i=1 termi
(6)
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FIGURE 10. Overview of the ontology layer.

TABLE 4. The query for the question ‘‘Who plays in baseball field?’’.

TABLE 5. The answers and its semantic annotation result.

One of the challenges here is one cannot know the order of
the detected objects before the prediction process. Therefore,
an ordering function is implemented to find the permutations
of the detected object set and match them with the corre-
sponding combination results. This way, the keyword com-
bination file is not required to store every ordered alternative.

Assume that after the prediction process, the detected
objects set from merging are {tennisracket, tennisplayer,
women’ssuit}. The mapping module starts to generate
alternative permutations for 3 (x) by 3 (y) which are;
{tennisracket, women’ssuit, tennisplayer}, {tennisplayer,
tennisracket, women’ssuit}, {tennisplayer, women’ssuit, ten-
nisracket}, {women’ssuit, tennisracket, tennisplayer}, and
{women’ssuit, tennisplayer, tennisracket}. In the follow-
ing step, the mapper matches them with the corresponding

TABLE 6. An example of exception cases.

combination result which is {tennisplayer, tennisracket,
women’ssuit} for this case.

The number of the detected objects set elements is denoted
by x, and y is the parametric number to determine variations
(the initial value of y is equal to x but after each recursion, its
numerical value decreases by 1).

The process steps are summarized in Fig. 11.

IV. EXPERIMENTS
A. THE SAMPLE SELECTION ALGORITHM AND THE
TESTING STRATEGY
This study aims to produce generalizable knowledge by mak-
ing statistical inferences about the population. The research
takes place in a controlled and constructed setting to draw
firm conclusions about cause and effect.

The pseudo-code of the sample selection algorithm and the
search terms are given in Fig. 12 and Table 7.

Validation testing with a black-box testing technique, deci-
sion table, is adopted as the testing strategy. The steps of
decision table testing are as follows [35]:

1) Analyse the given test inputs and list out conditions.
2) Calculate the number of possible combinations.
3) Fill columns of the decision table with combinations.
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TABLE 7. The search terms.

4) Find out cases.
5) Obtain the expected result.

For this study, the decision table structure for validation
testing consists of the following components, see Table 8.

Input:
• Expected objects: object names.
• Detected objects: object names.
• Objects in result: object names.
• Match: yes, no.
Output:
• Action: action 1 (correct count + 1),

action 2 (false count + 1).

Also, the same technique is used for the validation of the
annotation results obtained from the pre-merging and the
post-merging annotations.

B. DATASETS AND ONTOLOGY
The two RetinaNet models used for object detection and
prediction adjust themselves via different training processes.
The pre-trained model benefits from the adjusted weights
obtained using the COCO 2014 dataset [36]. The test split of
this dataset contains only images with no annotations. There-
fore, the validation split is essential for the final adjusted
weights. Another issue that is confusing about this dataset
is the number of labeling text files and the number of image
files in val2014. There are 40504 image files in the validation
folder but only 40137 text files for labels of the validation
images. Basically, the numbers do not match. The valida-
tion can only be done with the images that have respec-
tive labeling text files. The training folder of the COCO
2014 dataset contains 82783 images and 80 object categories.
Many of these categories are related to the sports domain
which are eventually used by our framework [37]. For the

FIGURE 11. The mapping process steps.

experiments, we created another supplementary dataset with
more specific sports object categories.

The purpose of this second dataset is to compare and
understand the variance in the annotation results with specific
objects aligned after (post-merging annotations) and before
the merging process (pre-merging annotations). In total, our
custom sports image dataset [38] includes 1200 sports pic-
tures obtained from the internet and 2120 objects were drawn
plus tagged for 1200 images using VoTT software [39], see
Fig. 13.

The training process of the custom model was conducted
on 80% of the custom sports dataset (960 images) and the
remaining 20% was used for validation (240 images). The
distribution of classes is given in Table 9.

The sports ontology [40] was used in the experiments
together with these datasets.

C. TRAINING CHALLENGE
When training models with custom datasets that usually con-
sist of significantly fewer images and classes when compared
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FIGURE 12. The pseudo-code of the sample selection and annotation.

to the datasets suitable for generic usage, excessive learning
over some classes almost always occurs.

The main reason we use RetinaNet in our framework is
to prevent this scenario (easy negatives) as much as possible
with the aid of focal loss. Since one of the models is trained
on the custom image dataset, further investigation reveals that
the validation loss is lower than the training loss, see Fig. 14.

There are three main reasons for this result. First, dropout
was applied, a regularization technique to generalize better
to the data outside the testing set. Secondly, the training loss
was measured during each epoch, while the validation loss
was measured after each epoch. In other words, the place of
the training loss should be shifted 1/2 an epoch to the left. The
third reason is the test set size.

D. IMAGE AND OBJECT PREDICTION MATCH EVALUATION
There are two versions of the prediction model. One uses pre-
trained weights on the COCO dataset (the pre-trained model),
and the other uses the weights obtained from the training
process with the custom image dataset (the custom-trained
model).

The undetected and generic objects are the root cause of
why we propose the framework as a hybrid solution. Both
models failed to detect some of the expected objects in
images. The interactions between the expected objects in the
samples and the undetected objects from the perspective of
the pre-trained model are visualized below, see Fig. 15.

The ten sample images and their detection results were
recorded using the structure of Table 8, and the results are
summarized in Table 10 and 11. The success percentage (SP)
is calculated according to the following formula:

SP =

∑n
i=0 true detected objectsi∑n
i=1 expected objectsi

× 100 (7)

Several correlation coefficients are used to understand var-
ious correlation types between the variables in this study. The
types are as follows:
• The Pearson’s correlation coefficient (r)

TABLE 8. The decision table structure for validation testing.

FIGURE 13. An instance of object drawing and tagging.

• The Spearman’s rank correlation coefficient (ρ)
• The Kendall rank correlation coefficient (τ )
• Cramér’s V (ϕc) coefficient

The correlation analysis with different coefficients is given
in Fig. 16.

Pearson’s (r) is used to measure the linear correlation
between variable pairs and ranges between−1 and+1, which
indicates a total negative linear correlation and total positive
linear correlation, respectively.

Zero value is used to represent no linear correlation.
The highest positive linear correlation belongs to the
expected object number (ExpectedObj) and the custom-
trained model’s undetected object number (CTMUndetect).
The second highest belongs to the pre-trainedmodel’s generic
detected object number (PTM_GDetect) and its true detected
object number (PTM_TDetect). The third highest positive
linear correlation belongs to the pre-trained model’s unde-
tected object number (PTMUndetect) and the custom-trained
model’s undetected object number. In terms of the negative
linear correlation, the highest one belongs to the pre-trained
model’s undetected object number and the custom-trained
model’s true detected object number (CTM_TDetect).

Spearman’s (ρ) is used to observe the monotonic correla-
tion between variable pairs. In terms of catching nonlinear
monotonic correlations, it is better than Pearson’s r. It ranges
between −1 and +1 where −1 indicates a total negative
monotonic correlation, 0 indicates no monotonic correla-
tion, and 1 indicates a total positive monotonic correlation.
We observe that the negative monotonic correlation between
the pre-trained model’s undetected object number and the
custom-trained model’s true detected object number narrows
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FIGURE 14. The plot of the custom-trained model loss on the training and
validation datasets.

FIGURE 15. The interaction diagram between the expected objects and
the pre-trained model’s undetected objects.

by 0.125 when compared to Pearson’s r. Also, the positive
monotonic correlation between the pre-trained model’s unde-
tected object number and the custom model’s undetected
object number has decreased when compared with the pos-
itive linear correlation value between these variables.

In Kendall’s (τ ), τ is given by the number of concordant
pairs minus the discordant pairs divided by the total number
of pairs. This rank correlation coefficient measures the ordi-
nal association between variable pairs. -1 indicates total neg-
ative correlation, 0 indicates no correlation, and 1 indicates
total positive correlation. The results of this rank coefficient
support the finding of the other rank correlation coefficient
(Spearman’s) with insignificant margin changes.

For Cramér’s V, the bias-corrected measure (proposed by
Bergsma) is used in this study to measure the association for
nominal random variables.

It ranges from 0 (indicates independence) to 1 (indi-
cates perfect association). Here, the strongest association
belongs to two variable pairs which are PTM_TDetect-
CTM_TDetect pair and CTMUndetect-PTM_FDetect (the
pre-trained model’s false detected object number) pair.

In the three out of four correlation analyses, an invalid
coefficient occurred for the custom-trained model’s generic
detected object number variable. This is caused by the class

TABLE 9. Distribution of the class instances.

structure of the custom image dataset; it contains only specif-
ically labeled objects. Therefore, the custom-trained model
did not detect any generic objects, and this is an expected
outcome for this variable.

E. IMAGE AND SENTENCE MATCH EVALUATION
The proposed framework produces annotation results for an
image from two different stages. One annotation result file is
generated using the detected objects that belong to the pre-
merging stage.

The other result file is generated using the detected objects
obtained after the merging process.

The annotation results for the samples are summarized
below, see Table 12 and Table 13.

The percentage of finding the expected objects in sen-
tences increased more where the annotation results were
obtained successfully. The number of false sentences found
in the annotation results is reduced after the merging process.
On the other hand, the number of true sentences found in
the annotation results increased except for sample #8. Also,
correct annotation results were achieved after the merging
process for samples #2 and #6 whereas it was not possible
to reach any annotation result for these samples before the
merging process.

The correlation analysis with different coefficients is given
in Fig. 17.

According to Pearson’s (r) the highest positive linear cor-
relations are between the true sentence number obtained from
the pre-merging stage annotation results (PreMP_TS) and
the false sentence number obtained from the post-merging
stage annotation results. Also, The PostMP_FS variable
has the second highest positive linear correlation with the
expected object number (ExpectedObj) variable.

The third highest positive linear correlation belongs to the
false sentence number obtained from the pre-merging stage
annotation results and the true sentence number obtained
from the post-merging stage annotation results. The high-
est negative linear correlation is between the true sentence
number obtained from the post-merging stage annotation
results and the false sentence number obtained from the
post-merging stage annotation results. This outcome proves
and highlights the increment of the true annotation results
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TABLE 10. Object detection results and success percentage of the pre-trained model.

TABLE 11. Object detection results and success percentage of the custom-trained model.

obtained by the framework while the false annotation results
decreased.

The positive monotonic correlation value produced by
Spearman’s (ρ) changes (increases) between the PostMP_FS
variable and the ExpectedObj variable when compared to
Pearson’s (r). On the other hand, the value decreases between
the PreMP_TS and the PostMP_FS variables for the same
correlation type.

Kendall’s (τ ) results support the findings of Spear-
man’s (ρ) with decreased values. To obtain the associa-
tion, Cramér’s V (ϕc) coefficient was observed again and
the strongest association for nominal random variables is
found to be between the true sentence number obtained from
the post-merging stage annotation results and the true sen-
tence number obtained from the pre-merging stage annotation
results (PreMP_TS). From the recorded data and analysis,
our framework produces promising annotation results both
from the pre-merging stage and from the post-merging stage.
At the same time, it is observed that the generic objects
decreased to zero when the annotation results were examined.
As a result, an invalid coefficient is detected when analyzing
the correlation between the variable pairs that include the
generic object variable, such as the generic object number

in sentences obtained from the pre-merging stage annotation
results and the post-merging stage annotation results.

V. DISCUSSION
A. GENERAL AND SAMPLE-BASED EVALUATION
From a broader perspective, the results prove the correla-
tion between the number of detected objects and annotations
by comparing their means. There is a positive correlation
between the number of true predicted objects with a mean
of 0.31 and correct annotation results with a mean of 0.75.
Annotation accuracy is increased with the aid of some spec-
ified objects after the merging process. The pre-merging
stage annotation results achieve significant success in some
samples too. The lowest percentage of increment is 14.28%
belonging to sample #9, the highest percentage of increment
is 75.0% which belongs to sample #7. In the post-merging
stage annotations, the lowest percentage increment is 22.23%
which belongs to sample #4, the highest percentage increment
is 50.0% belonging to sample #2, #6, and #7. In addition to
these, there was no generic object found before and after the
merging process annotation results. The annotation results
belonging to the pre-merging stage and the post-merging
stage differs inmany samples, such as sample #3, #4, and #10.
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FIGURE 16. Correlation analysis of the variables from Table 10 and Table 11; (a) Pearson’s (r); (b) Spearman’s (ρ); (c) Kendall’s (τ );
(d) Cramér’s V.

Most of the studies reviewed reveal that the concept of
image annotation is perceived in a wide variety of ways.
These studies especially include proposals for choosing the
right labels and/or increasing the number of related labels.
With the help of the sports ontology, which defines the seman-
tics between objects and their annotations, the framework
achieved much better results, reaching the accurate sentences
(not just multiple accurate tags) to depict the given picture in
a controlled environment.

From the sample level, the custom-trained model achieves
33.34%, more than the pre-trained model when it comes to
image and object prediction match evaluation. The obtained
annotation results include correct sentences that have all the
expected objects, and as a result, the expected objects can be
found 100.0% in the annotation results even with 2 generic
objects (sports ball and person) detected and predicted by
the pre-trained model and even with 2 false objects (baseball
pitcher and baseball batter) predictions by the custom-trained
model. The results obtained for some of the sample images
with their explanations will be described in the following
paragraphs.

The two classification labels ‘‘baseball field’’ and ‘‘home
plate’’ do not exist in the pre-trained model’s classification

labels. Therefore, the model did not detect any objects for
sample #2. On the other hand, the custom-trained model
detected and predicted one (baseball field) of the two
expected objects. However, the annotation results of the
post-merging stage include the missing object in the sen-
tences. The relations between the classes in the ontology
enable this outcome. As a result, the expected objects can be
found 100.0% in the annotation results.

In sample #4, a different case occurs. Although the anno-
tations obtained from both stages (pre-merging and post-
merging) are correct, the percentage of finding the expected
objects in sentences is 55.56%. The root cause behind this
result is that there is no distinction between an object and
its plural form in the sports ontology. Therefore, the mapper
could not find any combination of all the detected objects and
retrieved the nearest combination results.

There was an unexpected generic object (person) recorded
from the post-merging stage of sample #5. Just by detecting
from a half-portion of a body (legs), the pre-trained model
predicts a person in the image within a different coordinate
than the expected one. A key error was raised in sample #6.
The AI model only detects and predicts one object (per-
son) for this image. To obtain semantic annotation results,
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TABLE 12. The pre-merging stage annotation statistics of the samples.

TABLE 13. The post-merging stage annotation statistics of the samples.

a generic object needs to be compared with at least one more
object predicted from an image.

Sample #7 presents the exception case given in Table 6.
The similarity checks clear the ambiguity between the
object classes that use the same objects. Our framework
successfully separates the baseball pitcher from the base-
ball catcher and retrieves the annotation results for the
Baseball_Pitcher and the other object classes within the
picture.

One of the samples (sample #8) highlights the overfitting
situation for the skier case. Generally, the skier’s knees are
bent in the images. The size and distribution of the custom
image dataset can cause the custom-trained model to learn
some of the training classes excessively. In this case, the AI
model predicts the skier as a baseball catcher (their knees are
also bent in images).

Finally, a different situation was encountered in sample #9.
Some of the data frames used for the colors were returned
missing the value marker. Sample #9 differs from the other
visuals; it is a painting instead of a photo. The ranges between
some color values are too narrow in terms of floating-point.
This can easily cause such an unexpected situation. In the
following sub-sections, the proposed framework will be com-
pared with other systems from an ontological multi-layer

system perspective, as well as from the perspective of systems
that utilize artificial intelligence methods.

B. COMPARISON WITH OTHER ONTOLOGICAL
MULTI-LAYER SYSTEMS
In [20], the researchers propose a solution by combining
the decision tree (DT) method and an ontology to exploit
the benefits of object-based image analysis in the domain of
geographic images. DT has a serious advantage in obtaining
high accuracy with the training data. Nevertheless, a major
drawback occurs with unseen data which can easily cause
terrible results. They compare classification results with and
without the ontology. The outcome is a 1.63% increment over
classification with the ontology usage when compared with
the usage of DT alone. The proposed framework’s minimum
success percentage increment value over the sample set out-
performs their increment and our framework also includes
formal sentential descriptionswhich are not generated in [20].

The study by Bannour and Hudelot [21] proposes the
automatic building of multimedia ontologies for the sole
purpose of identifying and formalizing the semantic relation-
ships between the concepts with a different dataset, Pascal
VOC’2009. From the image classification perspective, their
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FIGURE 17. Correlation analysis of the variables from Table 12 and Table 13; (a) Pearson’s (r); (b) Spearman’s (ρ); (c) Kendall’s (τ );
(d) Cramér’s V.

results are above average. However, it would not be correct
to compare the performance results obtained on two different
datasets. Even though their results are promising for the
correct alignment of tags for ontologies and images, they do
not generate sentences that depict an image. Another research
presented in [25] focuses on investigating the retrieval pro-
cess of similar images considering their annotations and skips
the annotation process completely. Another major difference
is their study uses a dissimilarity measure for term com-
parison instead of the similarity calculations for sentence
comparison used in this study (Jaccard and Cosine simi-
larity). In a systematic review study [41], image retrieval
concept in the domain of remote sensing imagery is inves-
tigated under important categories such as fusion-oriented,
geo-localization and disaster rescue. It also offers solutions
to image retrieval which are applicable to other fields for
matching different image types as in [42].

In terms of semantic segmentation, literature provides
some proposed solutions based on the combination of various
techniques. The studies presented in [43] and [44] stand
out in this regard; [43] focuses on high-level inference and
fills the gap with knowledge-guided ontological reasoning
where a deep semantic segmentation network (DSSN) fails.
The method proposed in [44] is beneficial when massive

quantities of training data is a concern where the testing data
resembles the training data. Both studies help to improve the
robustness of semantic segmentation.

C. COMPARISON WITH SYSTEMS BASED MAINLY ON
ARTIFICIAL INTELLIGENCE
As mentioned before, most of the studies in the image
annotation domain focus on choosing the right labels or
increasing the number of related labels to depict an image.
One such instance is presented in [45]. To obtain a rel-
evant label set, the researchers follow label correlations
that include symbiotic and semantic relationships. Another
research by Zhang et al. [46] investigates tag refinement to
improve the annotation performance. A useful approach,
a joint CNN and RNN framework is proposed in [47] for
capturing long-term dependencies. Yet, it does not contain
a solution that generates text automatically for image anno-
tation. References [48] proposes the use of label correla-
tion to improve the discriminating power of the classifiers.
In terms of obtaining descriptive sentences, it does not exhibit
a structure. Although all of these studies produce promis-
ing results in their respective fields, they differ from this
work in terms of the goal of obtaining complete textual
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descriptions from a picture. Only [6] differs from the other
artificial intelligence-based systems mentioned here by gen-
erating natural language descriptions of images similar to
this study. The comparison of the overall annotation results
reveals that the accuracy obtained from the proposed frame-
work outperforms the previous studies within the controlled
environment.

D. LIMITATIONS
Although we achieve encouraging results, the framework is
subject to ontology domain restrictions. The sports ontology
only provides annotations based on the defined classes and
their individuals. For the object color detection part, concen-
trating on the center of an object achieves the best results from
well-proportioned shapes. Tennis rackets are one of the many
examples of such a condition, they are composed of three
parts which are head, shaft, and handle. The combination of
these parts does not contain every pixel in a bounding box
because of its shape. Along with the tennis racket, there are
a lot of background image components in a bounding box.
Lastly, in the custom-trained model using ResNet-50 and
FPN, we faced overfitting due to the incompetent number of
dataset elements.

VI. CONCLUSION AND FUTURE WORK
A novel framework is proposed that translates generic
objects into specific objects and generates natural language
descriptions of images based on deep learning techniques and
ontologies. Several studies are found to be highly focused
on methods/techniques. Yet in terms of the most effective
method, a consensus has not been reached. It is for this
reason that a variety of methods, techniques, tools, and pro-
cesses coexist in most of the examined studies. Similarly, the
proposed framework combines two neural network models
with identical layers, different hyperparameters, and different
training approaches. Also, the framework includes a merging
module to unify the two models’ predicted objects based on
probability values and coordinates for preventing incorrect
annotation results and obtain more sentences if possible.
In addition to these, a unique sports ontology is developed
containing expected object classes, their relations, and anno-
tations. Lastly, a mapping module on top of the other mod-
ules generates keywords from the predicted objects obtained
before and after the merging process separately to match
with the relevant ontology results. The evaluation of the sys-
tem’s performance on both classification and sentence simi-
larity shows that the proposed framework achieves promising
results in terms of sentence similarity within the controlled
environment.

For future work, the findings of this study can be utilized
to support web image annotation projects, to construct image-
description datasets automatically, and for the automatic gen-
eration of various ontologies. Interdisciplinary approaches
such as this study should also be considered in developing
new solutions.
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