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ABSTRACT Time Division Multiple Access-based Medium Access Control protocols tend to be the
choice for wireless networks that require deterministic delay guarantees, as is the case in many Industrial
Internet of Things (IIoT) applications. As the optimal joint scheduling and routing problem for multi-hop
wireless networks is NP-hard, heuristics are generally used for building schedules. However, heuristics
normally result in sub-optimal schedules, which may result in packets missing their deadlines. In this
paper, we present RECCE, a deep REinforcement learning method for joint routing and sCheduling in
time-ConstrainEd networks with centralised control. During training, RECCE considers multiple routes and
criteria for scheduling in any given time slot and channel in a multi-channel, multi-hop wireless network.
This allows RECCE to explore and learn routes and schedules to deliver more packets within the deadline.
Simulation results show that RECCE can reduce the number of packets missing the deadline by as much as
55% and increase schedulability by up to 30%, both relative to the best baseline heuristic. RECCE can deal
well with dynamic network conditions, performing better than the best baseline heuristic in up to 74% of the
scenarios in the training set and in up to 64% of scenarios not in the training set.

INDEX TERMS Routing and scheduling, multihop networks, deep reinforcement learning, time constraints,
IIoT.

I. INTRODUCTION
There is an ever-increasing deployment of wireless networks
for Industrial Internet of Things (IIoT) applications such as
electrical power management, pollution and gas monitoring
and factory automation. Some of these applications (gas or
fire detection, control systems in factories etc.) have strict
packet delivery time-constraints. The ramifications of packets
missing their deadlines (mandated by the application QoS
requirements) can be quite serious for such applications
(e.g., machine failure in manufacturing), and may even lead
to injury to humans. While several factors contribute to
packet delay, the Medium Access Control (MAC) delay is a
major factor. This delay can be made more deterministic by
using a Time Division Multiple Access (TDMA) approach
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at the MAC layer as in many IoT protocols such as Wire-
lessHART [1] and IEEE 802.15.4-TSCH [2].

The time sensitive operation of TDMAhinges on schedules
which assign time slots and channels to nodes that trans-
mit or receive data. The end-to-end packet delay in a multi
hop TDMA wireless network depends on such schedules.
A feasible schedule is one in which all packets are delivered
within their deadlines. Since optimal slot allocation in TDMA
networks is NP-hard [3], heuristics such as those proposed
in [4]–[6] are generally employed to find the schedules. How-
ever, heuristics generally result in sub-optimal schedules that
may cause packets missing their deadlines.

Generally, the goal of scheduling in time-constrained net-
works is to find a feasible schedule for a given network
scenario, but it may not always be possible to find a feasible
schedule for some network scenarios. In [7], the authors
propose a scheduling goal to minimize the number of packets
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missing the deadline and the time by which they miss it. This
goal does not just find a feasible schedule when possible or
minimize the average packet delay, but also tries to minimize
the extent by which a schedule falls short of being feasible
when it is not possible to find a feasible schedule. As this
is a finer goal when finding schedules for time-constrained
networks, we focus on this goal in this paper.

Reinforcement Learning (RL) and more recently, Deep
Reinforcement Learning (DRL), are attractive approaches to
solve problems that can be modelled as Markov Decision
Processes (MDP). RL is a learning method where the RL
agent learns a policy to maximize the expected cumulative
reward [8]. During training, the RL agent performs random
actions based on the system state and observes the reward.
After training for sufficient time, the agent can arrive at the
‘‘optimal’’ policy π∗, which gives the best action to take in
any given state, such that the expected cumulative reward is
maximized.When the state or action space is large, simple RL
may require extensive training and memory. Deep RL is an
approach to RL where the state-value function or the policy is
found by function approximation using deep neural networks.
RL and DRL have been shown to yield good performance for
decision-making problems, especially scheduling [7], [9] and
routing [10], [11].

In this paper, we present a Deep REinforcement
Learning-based scheme for Joint Routing and SCheduling in
Time-Constrained NEtworks (called RECCE). Unlike other
heuristics which consider the same criterion (e.g., laxity,
relative deadline) for scheduling in each TDMA time slot,
RECCE leverages DRL to apply varying criteria for forward-
ing packets in each time slot. While this approach is similar to
RLSchedule proposed in [7], a major difference is the choice
of routes followed by packets. While RLSchedule always
forwards packets along the best (shortest) route, RECCE
explores alternate routes while forwarding packets. This
helps RECCE find schedules and routes that reduce delay
due to queuing and node conflicts. Simulation results show
that in spite of not sticking to the optimal route, RECCE
performs much better than baseline heuristics in terms of the
percentage of packets missing the deadline and their delay
budget overshoot.

II. RELATED WORK
Scheduling for real-time data transmission has been studied
extensively (e.g. [4]–[6] and papers therein). The proposed
solutions generally have the goal of minimizing the average
packet delay or maximizing the schedulability, which is the
percentage of feasible schedules found. In this paper, our
main focus is on packets missing their deadlines and we
attempt to reduce their number and delay budget overshoot,
in case a feasible schedule, where all packets meet their
deadline, is not possible for a given network scenario. In case
feasible schedules are possible, we aim to identify the one
that minimizes the average packet delay. This goal is similar
to the one proposed in [7], but our approach is different from
that in [7], as discussed below.

Scheduling can be modelled as an MDP and RL (or DRL
for large and/or continuous action or state spaces) has been
used with success for job scheduling in data processing clus-
ters [9] or link-scheduling in cellular networks [12], [13],
for example. The DRL agent design depends on the network
type (e.g. cellular networks, mesh networks, vehicular ad
hoc networks) and the goal in mind (e.g. minimize end-to-
end delay, maximize link utilization). As we consider time-
constrained applications in wireless networks (e.g. control
applications in the IIoT) with the goal to minimize packets
missing the deadline, our research is different from the above-
cited studies.

The authors of [14] explore a deep deterministic policy
gradient (DDPG)-based approach for centralized scheduling
of data sources connected to a software defined network with
heterogeneous link access rates. The centralized controller
determines the pacing rates of the sources based on their
deadline-driven data transfer requests. We consider central-
ized scheduling with a much finer time granularity (TDMA
slots). In [7], the authors propose RLSchedule, a deadline-
aware centralized TDMA scheduling mechanism based on
Deep Reinforcement Learning. Our goal and scheduling
options are similar to that addressed in [7] but we consider
exploration of alternate routes, as discussed in Section I. Sim-
ulation results show that this approach meets the scheduling
goal better than RLSchedule.

There have been several solutions for optimal routing
based on reinforcement learning. An excellent survey of these
techniques is given in [15]. Of the work discussed in this
paper, [10] and [11] use RL to decide which pre-computed
path to follow to meet their scheduling goal (reducing the
average call holding time and reducing the energy con-
sumed).While these papers consider the choice of a route just
once per flow, [16] makes this choice at every node along the
route, using Dijkstra’s algorithm to determine the maximum
delay bound for any link. During the run-time phase, safe state
space exploration is done by eliminating links that exceed
the required delay bounds. RECCE also uses RL to choose
between pre-computed routes at each node, potentially letting
it switch between paths at any time slot. However, RECCE
considers TDMAwith constant link delay (one time slot) and
combines scheduling with routing to deliver data within the
deadline. To the best of our knowledge, the use of RL for joint
TDMA scheduling and routing in time-constrained wireless
networks has not been explored till now.

III. REINFORCEMENT LEARNING - BASICS
In this section, we present a very brief overview of RL
and then the DRL algorithm used by us – Proximal Policy
Optimization [17].

In reinforcement learning, a policy π is essentially a map-
ping from a system state s to an action a (if π is deterministic)
or the probability of an action a (if π is stochastic). The goal
of an RL agent is to learn the optimal policy π∗ where the
expected cumulative reward is maximized for every state.
This is done by performing random actions in each state
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during training and observing the reward. There are two main
approaches to RL —
• Value-based methods, where the Q-value (the state-
value function) of each state and action is calculated
during training. The optimal policy is determined by the
action that gives the maximum Q-value in a given state.

• Policy gradient methods, where the policy is directly
parameterized and the agent learns the optimal pol-
icy using deep neural networks and gradient descent
(or ascent).

Value-based methods (e.g., Q-learning or deep Q-learning)
are simple but sometimes, the Q-function can be too complex
tomodel. In such cases, policy gradient methods are preferred
as they converge to a good policy for a variety of envi-
ronments. Generally, policy gradient methods also converge
faster than deep Q-learning. For policy gradient methods,
the loss function is given by the following expectation [8]:

LPG(θ ) = Ê[logπθ (at |st )Ât ] (1)

Here, Ât is the advantage at time step t for a policy π with
a vector of parameters θ . A positive value of Ât means that
action at is better than others in state st . Using gradient ascent
on the above loss function pushes the policy more towards
actions that give more reward. However, if the step-size for
the loss function is too small, training can be very slow and if
it is too large, training can be unstable. PPO [17] is an actor-
critic method that alleviates this issue.

Actor-critic methods are a third category of RL algorithms
that use both the above techniques to find the optimal policy.
There are several variants of actor-critic methods but in a
simple actor-critic method, the actor is the policy and the
critic is the state-value function. After the actor selects an
action at for a state st , the critic evaluates the policy. This
evaluation is in the form of an error and is given by [8]:

δt = rewt+1 + dV (st+1)− V (st ) (2)

Here, rewt+1 is the immediate reward, d is the discount
factor for the reward and V is the current value function
implemented by the critic. If the error is positive, then at
is considered a good action in state st , otherwise not. PPO
avoids large policy updates (on LPG(θ ) in Equation 1) at
any step by using a clipped surrogate objective loss function
([18]). Limiting the policy update stabilizes the training and
avoids convergence to local optima.

PPO has been proven to give good results while taking less
time for training as the environment becomes more complex,
compared to other policy gradient or actor-critic methods. For
more details on PPO, please refer to [17].

IV. NETWORK MODEL
We consider a network model similar to the one in [5] and [7].
The network has a set N of nodes, each with a half-duplex
radio that can transmit or receive in any of the M channels.
The notation used is summarized in Table 1. Links between
nodes may have weights to denote energy, link quality etc.
We consider that link weights denote the inverse log of the

TABLE 1. Notation.

link packet delivery ratio (PDR), which is the ratio of packets
correctly delivered to the destination to those generated at the
source. This makes the total length of the route proportional
to the end-to-end packet delivery probability. Note that while
TDMA eliminates any packet loss due to collisions, the deliv-
ery probability on any link can still be less than 1.0 due to
channel impairments such as fading.

In our network model, randomly selected nodes act as
sources and generate packets of data either periodically or
upon some event. The generated packets may take multiple
hops to be delivered to other network nodes (destinations).
The network has |F | flows (periodic or event-based) at any
given time, where each flow fi in the set F consists of a
packet that traverses from its source to destination. A flow fi
is characterised by:

• its source and destination nodes,
• the release time σi, which is the TDMA slot at which a
packet is generated at its source,

• the relative deadline deadlinereli which is the number
of slots after σi by which a packet has to reach its
destination,

• a priority pi ∈ W based on the application to which
the flow belongs. Here, W is the set of whole numbers.
As the value of pi increases, the priority decreases.
Hence, a flow with pi=0 has maximum priority.

• a period δi (harmonic, in slots), if the flow is periodic
and

• an ordered set of routes Ri, which consists of the
top γ shortest routes. Each member of the set Ri is
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the route
−→

Rji , where j ∈ {1, .., γ }. The routes in Ri are
found by using a shortest path algorithm such as Yen’s
algorithm [19].

The slot number bywhich a flow has to reach its destination
is its absolute deadline. This is denoted by deadlineabsi and is
given as:

deadlineabsi = deadlinereli + σi (3)

Route
−→

Rji has h
j
i hops from source to destination. At any

time slot t , the network has a set of transmissions that can be
scheduled. Transmission τi represents a packet at a particular
hop and —
• consists of a packet belonging to the ith flow at a node ui,
• depending on the route j chosen, has the next hop vji and
the remaining number of hops to the destination hr ji and

• at time slot t , has time remaining until deadline tri =
deadlinereli - (t-σi).

We assume that the flows have harmonic periods ([20])
randomly chosen between 2αmin and 2αmax . The relative dead-
line deadlinereli of each flow is assumed to be some fraction
(β) of its period. Hence, deadlinereli = β ∗ δi, where β ∈
(0, 1]. We also assume that the controller and the nodes are
synchronized using some standard mechanism (for example,
using messages in the control plane). This is a necessary
condition for all TDMA-based medium access control.

When scheduling is performed centrally, the scheduler
(e.g., network controller) has the scenario (the network topol-
ogy and flow) information. Based on this, it creates a route for
each flow and a schedule for the network using these routes.
For such a network scenario (denoted by ψ), the hyper-
period Tψ is the least common multiple of the individual
periodic flow periods. It is enough if the scheduler finds a
schedule for the hyper-period, as this schedule can just be
repeated for each hyper-frame until the network scenario
changes. Without RECCE, the route chosen is normally
the shortest route and the schedule is found using some
heuristic (e.g., Earliest Deadline First (EDF), Deadline
Monotonic (DM)).

Inmost real-time TDMAprotocols such asWirelessHART,
the time slot is of sufficient duration to allow the transmission
of a packet and its acknowledgement between adjacent node
pairs. When the links are lossy, reliable data delivery is
normally performed through retransmissions following neg-
ative acknowledgements or timeouts. However, retransmis-
sions until the packet is successfully delivered may result
in indeterminate delay. To increase reliability and still have
bounded delay, some kind of over-provisioning is generally
considered in TDMA systems by either —
• allotting more than one – but a small fixed number – of
time slots for each transmission or

• making each time slot large enough to accommodate
a limited number of retransmissions between adjacent
node pairs.

This over-provisioning is a trade-off potentially resulting
in larger end-to-end delay for increased reliability. Hence,

we do not consider retransmissions in this version of RECCE.
Nevertheless, the second design choice above (longer time
slots) can be seamlessly accommodated by RECCE.

V. BASIC PRINCIPLES OF RECCE
RECCE uses Deep Reinforcement Learning to explore alter-
nate routes and scheduling strategies and learn the best
scheduling and routing policy. To do this, during training,
the DRL agent observes the system (network) state at time
slot t , denoted by the vector

−→
S t , takes actions from a set

of possible actions A, and observes the resulting reward.
The action taken, together with any packets generated or
delivered, result in a new state of the network for the next
time slot and this process is then repeated.

RECCE uses an actor-critic algorithm based on Proximal
Policy Optimization described in Section III, and learns in
episodes. Each episode in RECCE starts with slot 0 of a
hyper-frame and ends with slot Tψ−1. The DRL agent moves
to the end of the episode in steps, with each step representing
a time slot. As shown inAlgorithm 1, the length of the episode
depends on the periods of the flows in the chosen scenario ψ ,
as Tψ is the least common multiple of all the flow periods.
As it explores the state and action spaces, the DRL agent
refines its policy π , which is a map of the action to be taken
at a given state for maximum expected cumulative reward.
After running enough episodes, the agent arrives at an optimal
policy π∗, which provides the best action in any state so as to
maximize the cumulative reward.

A. STATE SPACE
In RECCE, each node nk ∈ N in the network has a tuple of
features (denoted by (x1tk , x2

t
k , x3

t
k , x4

t
k )), that represent the

state of transmissions queued at a given time slot t . Assuming
that Dt

k is the set of transmissions in the transmission queue
of nk at time slot t , these features are:

1) x1tk =
1
|Dt

k |
, the inverse of the transmission queue

length, if |Dt
k | > 0, −1 otherwise.

2) x2tk = min∀τi∈Dt
k
(tri), the minimum time remaining.

3) x3tk = min∀τi∈Dt
k ,∀j∈{1,..,γ }

(hr ji ), the minimum hops
remaining, and

4) x4tk = min∀τi∈Dt
k
(pi), the maximum priority, since we

consider pi = 0 to be greatest priority.

The system (network) state at time slot t ,
−→
S t , is the con-

catenation of the node features of all the |N | nodes. Hence,
the length of

−→
S t is 4|N |.

B. ACTION SPACE
During training, the DRL agent tries different criteria at each
time slot in the hyper-period T to choose up to M transmis-
sions. The criteria applied for choosing these transmissions
are based on popular heuristics as in [7]. This can be based
on one of the following six factors:

1) the relative deadline (Deadline Monotonic(DM))
2) the absolute deadline (Earliest Deadline First (EDF))
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3) the ratio of relative deadline to the total number of hops
(Proportional Deadline (PD))

4) the ratio of remaining time to the remaining number of
hops (Earliest Proportional Deadline (EPD))

5) the value of remaining time minus the remaining num-
ber of hops (Least Laxity First (LLF))

6) the node features (x1tk , x2
t
k , x3

t
k , x4

t
k )

In each of the first five cases, transmissions that yield
the minimum from one of these factors are chosen to be
transmitted. When the last criterion (node features) is con-
sidered, the node with minimum features is chosen based
on the criterion. A node feature tuple (x1tk , x2

t
k , x3

t
k , x4

t
k ) is

less than another tuple (x1tl , x2
t
l , x3

t
l , x4

t
l ) if x1

t
k ≤ x1tl &

x2tk ≤ x2tl & x3tk ≤ x3tl & x4tk ≤ x4tl . Then,
the transmission with minimum time remaining at this node
is chosen. In case more than one transmissions have the same
value for any chosen criterion, the transmission with highest
priority among them is chosen to be scheduled.

At each time slot, in addition to different scheduling crite-
ria, RECCE considers a next hop node vji which can be the
next hop of ui on any of the top γ routes. Thus, RECCE
explores at most γ next hops at each hop of a packet. The
set of possible actions at each time slot is denoted by A and
combining the number of scheduling and routing options,
|A| = 6γ .

C. REWARD
Since RL agents are trained to maximize the expected cumu-
lative reward, the reward design plays a major role in the
design of an RL agent. With our scheduling goal in mind,
the agent gathers rewards at each time step as follows:
• For every packet delivered to the destination, a reward
inversely proportional to the end-to-end delay is col-
lected.

• If a packet is deliveredwithin the hyper-frame inwhich it
is generated but not within its deadline, a large negative
reward ωmissed is collected.

• For every packet generated but not delivered within
the same hyper-frame, a larger negative reward ωlost is
collected, where ωlost � ωmissed .

This reward design helps the agent to find schedules and
routes such that the number of packets delivered within the
deadline is maximized and the end-to-end delay is minimized.

VI. RECCE IN PRACTICE
As DRL requires considerable time for training the agent,
it may not be practically feasible to train the agent on actual
running network deployments. We propose training the agent
offline as in [7] and [21]. To do this, the network controller
collects information about the frequently seen scenarios that
are gathered in the set 9. Then, as proposed in [7], the agent
may be trained in one of the following ways:
• The same scenario ψi ∈ 9 is considered for each
training episode to arrive at a customized policy π∗i for
this scenario.

• Alternately, if a random scenario from 9 is considered
for each training episode, a generalized policy π∗ can be
arrived at. This can then be applied to any scenario in the
set 9.

Algorithm 1 RECCE(9)
Input: Number of nodes |N |, Number of channels M ,

Network adjacency graph E and Flow information F for
each scenario in 9

Output: Generalized Policy model π∗ for the set
9

1: j = 0, t = 0
{/*j is a loop variable to count the number of updates
and t is the timeslot in the hyperframe*/}

2: Choose a random scenario ψ from 9

3: while j < max_updates do
4: k = 0

{/*k is a loop variable for batch updates*/}
5: while k < batch_size do
6: Calculate the node features to get the network state

−→
S t .

7: Perform action at from A and calculate reward as
per PPO

8: Increment k , t
9: if t = Tψ -1 then
10: t = 0
11: Choose a random scenario ψ from 9

12: end if
13: end while
14: Update policy π as per PPO
15: Increment j
16: end while

Since RECCE’s actions are based on popular scheduling
heuristics and the top γ routes, we expect it should perform
better than or at least as well as the best performing heuristic
for all scenarios considered in training. However, building a
general policy for a set of scenarios using DRL may result
in some loss of scheduling performance. To check how much
this is, we compared the performance (average over 100 non-
contiguous TDMA cycles) of the two above approaches
(titled RECCE-custom and RECCE-general) with that of the
best baseline heuristic. Figure 1 shows the performance of the
above two approaches in meeting the scheduling goal for a
small sample of ten scenarios. It can be seen that a customized
policy per scenario performs better than or as well as the best
baseline heuristic for all network scenarios, in terms of the
percent of packets delivered within the deadline. A general-
ized policy, on the other hand, can perform better than or as
well as the best baseline heuristic in 9 out of the 10 cases in
terms of percent of packets delivered within the deadline.

However, a building customized policy has some disadvan-
tages. As discussed in [7], building a customized policy for
each scenario requires more memory at the controller to store
all the policies. Also, a customized policy may not work well
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FIGURE 1. Performance of a customized policy vs a generalized policy.

for scenarios not in set 9. A generalized policy, on the other
hand, occupies much less space at the controller as only a
single policy needs to be stored and can also be applied to
scenarios not in 9 with some success.

A network controller may detect a changed scenario
because of:
• a change in the network topology, due to the dynamic
nature of a wireless network caused by changes in wire-
less connectivity or some limited node mobility or

• due to the occurrence of event-based flows.
Hence, we focus on the generalized policy approach for the

rest of this paper. In case the network controller encounters
new scenarios which are very different from the one in 9
and the existing policy cannot give satisfactory performance,
the agent can be retrained using the new set of scenarios to
revise the policy.

VII. SIMULATION RESULTS
We evaluated RECCE for different network scenarios. Since
we focus on a generalized policy for a set of scenarios 9,
we created seven different sets of scenarios, each with
100 different network scenarios (with different topologies
and traffic flows) as shown in Table 2.

TABLE 2. Scenario sets considered for simulation.

Each scenario consisted of |N | nodes randomly placed in
an area of 100m x 100m. Flows started and ended at randomly
chosen nodes in the network and the network links were
attached with weights equal to the log of the inverse of the
PDR, which is generated randomly. The PDR ranged from

0.7 to 1.0 in four scenario sets and from 0.5 to 1.0 in the other
three scenario sets, representing networks which have more
lossy channels. For each flow fi, an ordered set of routes Ri
(the top γ routes in terms of the maximum end-to-end packet
delivery ratio) were found using Yen’s algorithm [19].

In reality, the period δ and the ratio of deadline to period
β depend on the application’s QoS requirements. Since
scheduling is most difficult for frequent data generation
(small periods) and tight deadlines, we considered periods
from 24 to 25 and a deadline to period ratio of 0.5 and 0.75 to
prove the efficacy of RECCE.

Where applicable, we compared RECCE to five popular
baseline heuristics — deadline monotonic, earliest deadline
first, proportional deadline, earliest proportional deadline and
least laxity first [5]. In addition, we also compared it to the
conflict-free least laxity first (CLLF) scheme proposed in [5]
and a random policy, where a random action is performed at
each time slot. For all these scheduling schemes, the most
optimal route in terms of end-to-end PDR was considered.

We used a custom simulator written in C++ to simulate
the baseline heuristics. For training the DRL agent, we used
OpenAI Gym [22]. Particularly, wemodified and added to the
PPO implementation in [23]. The same packet-level abstrac-
tion was used for the baseline and DRL implementations. All
simulations were repeated for 100 simulation runs each and
the average values are reported. Unless otherwise mentioned,
the results presented are the overall results for the entire set
of scenarios.

A. EFFECT OF THE NUMBER OF ROUTES (γ )
RECCE considers the γ best routes (in terms of PDR) for
packet transmission. Thework presented in [7] considers only
the best route, while using DRL for scheduling. Exploring
sub-optimal routes may result in more packet loss (due to
channel conditions), but may also result in better delay by
avoiding nodes with conflicts or long packet queues. To study
how the number of routes effects the number of missed
packets, delay and also the total number of packets delivered,
we trained DRL agents varying γ from 1 to 3 for the same set
of network scenarios.

Figure 2 shows the cumulative distribution function (CDF)
of the average packet delay for different number of routes γ in
the case of two sample scenario sets (1 and 2, from Table 2).
These sets have a PDR ranging from 0.5 to 1.0 and 0.7 to
1.0 respectively. For γ = 2 and 3, it can be seen that in spite
of possibly choosing sub-optimal routes (i.e., links with more
packet loss), the percent of packets delivered in a hyper-frame
is comparable to that using just the optimal route (γ = 1, as in
RLSchedule [7]).

Figure 3 shows the CDF of the average packet delay for
packets that miss their deadline with the number of routes
γ for these scenario sets. It can be seen that exploring more
routes improves the performance of the scheduler in terms of
the average delay of the missed packets and the number of
missed packets.
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FIGURE 2. CDF of avg. Packet delay with the number of routes (N = 10,
scenario set nos. 1 and 2).

FIGURE 3. CDF of packet delay for missed packets with the number of
routes (N = 10, scenario set nos. 1 and 2).

Normally, schedulability is taken to be the percentage
of scenarios for which a feasible schedule can be found.
However, since we considered links with probabilistic packet
loss, different number of packets may miss the deadline for
each hyper-period, though the same schedule and route are
followed for a given scenario. To take this into account,
we ran the simulation for multiple (100 in our simula-
tions), non-contiguous hyper-periods per scenario. We define
schedulability for the entire scenario set as the number of
hyper-periods in which there are no packets missing the
deadline as a percent of the total number of scenarios in 9
multiplied by the number of hyper-periods considered.
Figure 4 gives this measure of schedulability for γ ∈
{1..3}. It can be seen from that exploring more routes is better
in terms of schedulability too. For the rest of the paper we set
γ to be 3, as this gives better performance in terms of packets
missing the deadline and schedulability.

B. EFFECT OF THE NUMBER OF CHANNELS (M)
To study the effect of the number of channels on the perfor-
mance of RECCE, we considered a small 10-node network

FIGURE 4. Schedulability with the number of routes, (N = 10, scenario set
nos. 1 and 2).

with 4 flows. As the DRL agent has a state space proportional
to the number of nodes |N |, the time taken for training
increases with the network size. In spite of this, RECCE is
applicable to larger networks as well, as we propose offline
training. Here, we consider small networks for proof of
concept.

Figures 5 and 7 show the CDF of the average packet
delay for Scenario set 2 with one channel and Scenario set 4
with 2 channels. The PDR ranges from 0.7 to 1.0 in both
cases. Since the schedules obtained by two or more baseline
heuristics are the same for some scenarios, their plots overlap.

FIGURE 5. CDF of avg. Packet delay (N = 10 (Scenario set no.2), M = 1).

Figures 6 and 8 show the CDF of packet delay for packets
missing the deadline for these scenarios. From these fig-
ures, it is evident that the percentage of packets missing
the deadline is more for fewer number of channels for all
scheduling policies. RECCE yields less packet delay with
fewer number of packets missing their deadline compared to
the best baseline heuristic (5.76%, compared to 12.78% given
by the best heuristic forM = 1). The random policy performs
the worst for both M = 1 and 2.

VOLUME 9, 2021 132059



S. Chilukuri, D. Pesch: RECCE: DRL for Joint Routing and Scheduling in Time-Constrained Wireless Networks

FIGURE 6. CDF of packet delay for missed packets (N = 10 (Scenario
set no. 2), M = 1).

FIGURE 7. CDF of avg. Packet delay (N = 10 (Scenario set no.4), M = 2).

It can be seen in Figure 5 that the total percentage of
packets delivered by RECCE within a hyper-frame is slightly
lower (by 2.5%) than the heuristic that delivers the maxi-
mum percentage of packets. This is because RECCE may
choose routes with more lossy links in some cases. For any
set of scenarios, the percent of packets delivered within the
deadline = (total percent of packets delivered − percent of
packets missing the deadline). As the number of packets
missing the deadline is improved by nearly 7% from Figure 6,
RECCE is still better in terms of the total percent of packets
delivered within the deadline.

C. EFFECT OF THE PACKET DELIVERY RATIO
RECCE explores routes other than optimal (in terms of packet
delivery ratio) for packet delivery. While the goal of RECCE
is to reduce the percent of packets missing the deadlines,
following routes with more packet loss may raise a concern
about the percentage of packets being delivered within a
hyper-frame.

To study the effect of poor channel conditions and pos-
sible choice of lossy routes on the performance of RECCE,
we considered two ranges of packet delivery ratios - one from
0.5 to 1.0 and the other from 0.7 to 1.0. For two network

FIGURE 8. CDF of packet delay for missed packets (N = 10 (Scenario set
no. 4), M = 2).

FIGURE 9. CDF of avg. Packet delay (N = 20 (Scenario set no.5), PDR
from 0.5 to 1.0).

FIGURE 10. CDF of packet delay for missed packets (N = 20 (Scenario
set no. 5), PDR from 0.5 to 1.0).

scenario sets (numbers 5 and 6 from Table 2) with 20 nodes,
the CDF of packet delay for all the scenarios in 9 is shown
in Figures 9 and 11. It can be seen that while poor channel
conditions reduce the number of packets delivered for all
policies, RECCE performs better in terms of the average
packet delay, while delivering almost equal percent of packets
compared to other policies (which all use only the optimal
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FIGURE 11. CDF of avg. Packet delay (N = 20 (Scenario set No.6), PDR
from 0.7 to 1.0).

FIGURE 12. CDF of packet delay for missed packets (N = 20 (Scenario set
no. 6), PDR from 0.7 to 1.0).

route). From Figures 10 and 12, it can be seen that the
percent of packets missing their deadlines is much better with
RECCE.

D. PERFORMANCE WITH UNSEEN NETWORK SCENARIOS
As discussed in Section VI, RECCE creates a generalized
policy using a set of (most frequently seen) network scenarios
9 for training. When the entire set of scenarios is consid-
ered, RECCE performs better than other baseline heuristics
when the scheduler applies the policy to scenarios in 9.
However, due to node mobility and dynamic channel condi-
tions, the network topology may change or the set of flows
may change due to event-based flows and the scheduler may
encounter scenarios that are not in 9.

To evaluate the performance of RECCE for such scenarios
unseen during training, we apply the policy created by the
DRL agent to a different set of scenarios 9 ′. Scenarios in 9 ′

have the same parameters (N, M, αmin, alphamax , β and PDR
range) as those in 9, but have different network graphs and
flow end-points. Figure 13 depicts the relative performance

FIGURE 13. Performance of RECCE for scenarios unseen during training.

(average over 100 runs) of RECCE for scenarios in sets9 and
9 ′ compared to the best baseline heuristic. Two scheduling
strategies are deemed to perform equally if they (with a
difference of ±5%) —
• deliver the same percent of packets within the deadline,
and

• have the same average delay.
The percentages are calculated relative to the number of
packets generated.

A scheduling strategy is considered better than the other
if it —
• delivers a larger percent of packets (by at-least more than
5%) within the deadline OR

• delivers the same percent of packets (with a difference
of±5%) within the deadline but has an average delay of
less than 90% compared to the other strategy.

Ideally, the RL agent should be better than or equal to the
best baseline heuristic in 100% of the cases, as the scheduling
actions are based on the baseline heuristics. However, due to
the approximation introduced by deep RL for the generalized
policy, RECCE may not reach this goal, as discussed in
Section VI. It can be seen that RECCE gives better or equal
performance in 67% to 87% of the scenarios (Figure 13, sce-
nario set nos. 4 and 5 respectively) for scenarios from9. The
advantage of a generalized policy is that RECCE performs
reasonably well for scenarios unseen during training as well
(from 47% for scenario set no. 2 to 78% for scenario set no. 5).

E. EFFECT OF THE NUMBER OF NODES (N)
Typical industrial deployments of sensor and actuator
networks tend to consist of small networks eachwith less than
100 nodes and a gateway, as it increases reliability and real-
time performance [5]. To evaluate the scalability of RECCE,
we considered three different network sizes (N = 10, 20
and 50). Figures 5, 11 and 15 show the CDF of average packet
delay for these network sizes with a PDR of 0.7 to 1.0. In all
three cases, RECCE is better than the best baseline heuristic.
From Figures 6, 12 and 16, it can also be seen that RECCE
is better in terms of the percentage of missed packets and the
CDF of their delay.
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FIGURE 14. Schedulability for different scenario sets.

FIGURE 15. CDF of avg. Packet delay (N = 50 (Scenario set no.7), PDR
from 0.7 to 1.0).

FIGURE 16. CDF of packet delay for missed packets (N = 50 (Scenario set
no. 7), PDR from 0.7 to 1.0).

F. SCHEDULABILITY WITH RECCE
While RECCE addresses the problem of minimizing the
missed packets, a broader goal of scheduling is generally
to improve the schedulability. Please note that we con-
sider packet loss on the links when reporting schedulability,

as discussed in Section VII-A. Figure 14 depicts RECCE’s
performance with this metric. It can be seen that the schedu-
lability decreases as the number of nodes increases for all
scheduling policies. This is because we consider packet loss
while measuring schedulability and the routes are longer in
larger networks, increasing the probability of packets getting
lost along the path.

It can also be seen that RECCE results in greater schedu-
lability (up to 30% compared to the best baseline) than all
the baseline scenarios, for all scenario sets. The reason for
this is that RECCE reduces the number of packets missing
the deadline, so that a larger percent of scenarios become
feasible.

VIII. CONCLUSION
In this paper, we presented RECCE, a joint routing and
scheduling scheme using deep reinforcement learning for
time-constrained wireless networks. RECCE creates a cen-
tralized routing and scheduling policy with the goal of reduc-
ing the number of packets missing their deadlines and their
delay overshoot. To this end, RECCE trains a DRL agent on
a set of frequently-seen network scenarios to choose from
popular baseline scheduling criteria and the top γ routes at
each TDMA time slot. Simulation results show that RECCE
performs well in terms of packets missing their deadlines,
reducing up to 55% missed packets and increasing schedu-
lability by up to 30%, relative to the best baseline heuristic.
When individual scenarios are considered, RECCE can deal
well with dynamic network conditions, as it performs better
than the best baseline heuristic in up to 74% of the scenarios
in the training set and in up to 64% of scenarios not in the
training set.
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