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ABSTRACT A novel enhanced quantum particle swarm optimization algorithm for IIoT deployments is
proposed. It provides enhanced connectivity, reduced energy consumption, and optimized delay.We consider
heterogeneous scenarios of network topologies for optimal path configuration by exploring and exploiting
the hunts. It uses multiple inputs from heterogeneous IIoT into quantum and bio-inspired optimization
techniques. The differential evolution operator and crossover operations are used for information interchange
among the nodes to avoid trapping into local minima. The different topology scenarios are simulated to
study the impact of p-degrees of connectivity concerning objective functions’ evaluation and compared
with existing techniques. The results demonstrate that our algorithm consumes a minimum of 30.3% lesser
energy. Furthermore, it offers improved searching precision and convergence swiftness in the possible search
space for p-disjoint paths and reduces the delay by a minimum of 26.7%. Our algorithm also improves the
throughput by a minimum of 29.87% since the quantum swarm inclines to generate additional diverse paths
from multiple source nodes to the gateway.

INDEX TERMS Connectivity, energy consumption, Industrial Internet of Things, optimization, PSO, QPSO,
route configuration, throughput.

I. INTRODUCTION
With the advent of technologies for the Internet of
Things (IoT), machine-to-machine communication, and the
related ecosystem, a new paradigm of Industrial IoT (IIoT)
has recently emerged. As per Forbes [1], it is forecasted that
by 2025, more than 75 billion IoT devices will be connected
to the Internet, catering to the large number of applications,
including industrial, environmental, medical, and others. The
IIoT contains intelligent machines, robots, equipment, and
tools with multiple IoT sensors to monitor and control the
required parameters. The data received at the centralized
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controller or server is analyzed to enhance the efficiency of
industrial systems [2]. The IIoT may also comprise anything
related to industrial sectors such as factories, factory floors,
warehouses, shipyards, locomotives, trailers, cargo planes,
and similar. It can be deployed in diverse applications of man-
ufacturing, production, supply chain, quality assurance, pre-
dictive maintenance and control, optimization of resources,
and others. The emerging fields of artificial intelligence,
Big data, and Blockchain, there are huge prospects for IIoT
deployments to achieve the emerging paradigms of Factory as
a Service (FaaS), Machine as a Service (MaaS), Equipment
as a Service (EaaS), and others. Cloud-based data processing,
analytics, and storage may not have the scalability required
for IIoT as a huge amount of sensor data can incorporate
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the latency and pose storing challenges. IIoT solutions also
require energy efficient and resilient operations, enhanced
connectivity, co-existence, interoperability, and data security.
Hence in the recent past, the researchers have started working
on hybridized data processing at local and cloud levels to
reduce the network load. Edge and fog computing are used
for distributing the required information and intelligence to
the different layers in the network.

Most of the sensing applications require wireless access
to the Internet and connectivity to the cloud. IoT is depen-
dent on diverse communication technologies, viz. Wi-Fi,
ZigBee, Bluetooth, RFID, Cellular, LPWANs, 5G, and
others. It is employed in distinct networks and layered
structures where connectivity is the key issue. When these
technologies are used in an integrated manner in industrial
scenarios, connectivity between sensing devices and Inter-
net servers, service reliability, and productivity improves.
These multi-technology hybrid networks are particularly
relevant for complex applications which require different
IoT protocols [2].

The coordinator or gateway communicates the received
data to the cloud via the core network. The network servers
and related entities perform device management roles related
to the registration, security, allocating the resources, traf-
fic management [2]. Most of the existing approaches are
considered for homogeneous network scenarios. However,
some approaches based on heterogeneity have the challenges
of energy efficiency, connectivity among the networks, and
time criticality. One of the main objectives for heterogeneous
sensor node distribution in the multilevel IIoT framework
is to guarantee sensor nodes’ connectivity in the supervised
region over multiple hops withminimum delay and optimized
energy consumption. Sensor nodes are considered at the low-
est layer, whereas fog nodes and gateway are employed at
the higher layer. Though the sensor nodes have the capa-
bilities to communicate with their neighbors directly, they
have to be furnished with more complex processors that are
costly and uneconomical. Therefore, it is crucial to examine
accessibility and connectivity for low complex sensor nodes
for optimized and energy efficient network topology for
IIoT applications.

In this work, a unique enhanced quantum particle swarm
optimization (EQPSO) algorithm is designed for IIoT appli-
cations with enhanced connectivity, lesser delay, and energy
consumption. Themain objectives of our research are to com-
bine the network topologies for exploitation and converge
in the direction of optimal route configuration and maintain
diversity during the collaboration of sensor nodes. We con-
sidered a multi-layered heterogeneous network structure for
the IIoT environment. The framework includes low com-
plex sensor nodes and fog nodes with comparatively robust
computing and storage abilities. The novelty of our work
is in employing multiple inputs from heterogeneous IIoT
using a hybrid approach based on quantum and bio-inspired
optimization techniques for optimal routing. It achieves
energy efficiency, reliability, and scalability for wide-range

IIoT systems. We used robust optimization techniques to
interchanges the information efficiently for maintaining
multi-network topologies and attains the best objective func-
tion for the chosen connecting paths. The differential evo-
lution operator is used to avoid the group moving in small
ranges and dropping into local optima, which improves global
searchability. We have also incorporated crossover opera-
tor with quantum particle swarm optimization. It promotes
knowledge sharing among the individual particles of a group.

The structure of the papers is organized as: Section II
covers the related work to the node deployment. Section III
focuses on the QPSO, whereas Section IV presents the
development of enhanced QPSO. Section V presents the
framework for the proposed optimized IIoT deployment con-
sidering Quality of Service (QoS) parameters such as energy
consumption, delay constraints, and throughput. Finally,
section VI discusses results and performance evaluation,
whereas the paper is concluded in Section VII.

II. RELATED WORK
The industrial IoT (IIoT) applications in different industries
aim to enhance the functioning of processes by optimizing
coverage, connectivity, energy efficiency, fault tolerance, and
reliability issues in IIoT [3]–[7]. Ghorpade et al. [6] have
analyzed fault tolerance approaches for the coverage and
connectivity improvement based on the sleep schedule, relay
node deployment, and node repositioning [7]. Meng [8] have
emphasized the key drawbacks of homogeneous communica-
tion between the nodes for IIoT and proposed a relationship
technique to improve auto-configuration by concentrating
on connectivity. Zero message quality-based communication
into the industrial systems is proposed in [9] for different
sensing applications. The approach improves the reliability,
but it is not suitable for a wide range IIoT framework as the
sensor nodes lying close to the gateway generally consume
more energy and drains earlier or may face temporal death
as they are involved in forwarding packets received from
the large number of end nodes, and ultimately affect the
network’s lifetime. The temporal death model for energy
harvesting of resources proposed in [10], [11] is based on a
3D stochastic method that uses the buffer queue and packet
blocking probability to define the dynamic strategy of energy
harvesting. Topology control is considered as a technique to
progress and maintain connectivity [12]. Several topology
control techniques are based on accessibility, accuracy [13],
[14], number of devices [15], the influence of transmission
range [16], duty cycle management [17], and clustering for
data aggregation [18]. Ghorpade et al. [19] have proposed
a topology control algorithm based on binary grey wolf
optimization to produce the reduced topology by preserving
network connectivity. It uses the active and inactive sensor
nodes’ schedule in binary format. In addition, it introduces a
fitness function to minimize the number of active nodes for
achieving the target of lifetime expansion of the nodes and
network [19].
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Fang [20] presented an Integrated Information Sys-
tem (IIS) based IoT framework for environmental moni-
toring, categorized in the four layers: perception, network,
middleware, and application. Yang and Chin [21] proposed
a direct and greedy search algorithm for deploying the mini-
mum number of sensor nodes while ensuring energy-efficient
coverage and connectivity. A single-phase manifold initiator
technique [22] has been offered for determining the link
cover set to fulfill the coverage and connectivity necessities
by calculating a connected set. However, both of the above
approaches fall into local maxima due to their inherited
greedy behavior. To avoid local maxima in greedy algo-
rithms, a nature-inspired genetic algorithm [23] decreases
the number of sensor nodes in a network sensor area with
obstacles [24].

Various metaheuristic techniques have been proposed to
find the optimal solution for coverage and connectivity issues
in the IIoT framework [25]. To avoid early convergence of
swarm, a concept of diversity is proposed in [26], [27]. Lower
and upper bounds of the achievable region are set for ensuring
the better search ability to get optimum solutions for real-time
applications. The duty cycle approach is used for scheduling
the smallest set of sensor nodes into activemode [28]. In addi-
tion to these, other approaches are based on localization [29],
geometry [30], and hybridization of direct information meth-
ods [31] to solve k-connectivity issues in wireless sensor
networks.

Rebai et al. [32] have proposed a combination of local
search genetic algorithm to decrease the number of posi-
tioned sensor nodes that attain maximum coverage for a
2D sensing area and forms a connected network [33].
Li et al. [34] have developed quantum ant colony mul-
tiobjective routing for monitoring complex manufacturing
environments by considering the nodes’ energy consump-
tion, transmission delay, and network load-balancing degree.
A range-free localization algorithm based on quantum par-
ticle swarm optimization (QPSO) is proposed to estimate
the distance among the nodes for the random and uni-
form deployment of nodes in heterogeneous wireless sensor
networks [35].

However, most of the existing node deployment
approaches are based on a basic disk coverage model, which
is unrealistic for implementing in actual industrial environ-
ments. Moreover, in these approaches’ spatial relationship of
the supervised physical characteristics, sensor nodes’ asso-
ciation, and network fault tolerance are ignored. As a result,
they fail to attain the global requirements of optimization.
Hence, there is a scope to improve the performance of the
metaheuristic algorithms because of the slower convergence
rate for optimal solutions. It can be achieved by altering
and enhancing the exploration and exploitation abilities of
the algorithms [36]. To address these issues, we propose
an enhanced PSO (EQPSO) algorithm for IIoT based on
quantum PSO, differential evolution operator and crossover
operator.

III. QUANTUM PARTICLE SWARM OPTIMIZATION
Particle Swarm Optimization (PSO) proposed by Clerc and
Kennedy [37] is based on the concept of swarm social
behavior, which results in a set of particles that spread into
the search space. PSO starts with the initial swarm popu-
lation called particles which explore arbitrary position plm
and velocity vlm in m-dimensional hyperspace for the par-
ticle. Every particle is determined using an objective func-
tion f (p1, p2, p3, . . . , pm) where f :Rm → R, represents the
number of sensors/particles exposed by other nearby sen-
sors/particles. For position update, each sensor node will
consider a certain number of other sensor nodes in its vicinity.
PSO attempts to attain maximal coverage determined by the
network connectivity [29]. PSO guides each particle for the
position updates in the search space by considering some
aspects of the global solution and best fitness locations with
one of the whole members of the swarm. The position update
process is continued until the desirable global best solution is
attained or performed the fixed number of iterations [36].

To determine the next position in each iteration, velocity
and positions are updated using (1) and (2), respectively.

V t+1
lm = V t

lm+a1b1
(
Pbest tlm−P

t
lm
)
+a2b2

(
gbest tlm − P

t
lm
)
(1)

Pt+1lm = Ptlm + V
t+1
lm (2)

l = 1, 2, 3, . . . ,N;m = 1, 2, 3, . . . ,M.l,m represents an
index of the sensor. Ptlm and V t

lm are the mth component of
the position and velocity of the l th sensor in t th iteration.
b1 and b2 are the random numbers such that 0 ≤ b1, b2 ≤ 1.
Pbest tlm and gbest tlm are the best and global best positions
experienced by the l th sensor andwhole swarm topology [29].
a1 and a2 are confidence particles as in perception and com-
munity behavior. In the process of estimation sensor/particle
will take the weighted average position, which is deter-
mined [36] as

W t
lm=

a1 (b1)tlm Pbest
t
lm+a2 (b2)

t
lm gbest

t
lm

a1 (b1)tlm+a2 (b2)
t
lm

, 1 ≤ m≤M

(3)

PSO tends to be trapped into local optimization while solv-
ing complex multimodal problems. We have applied a swarm
behavior into IIoT with the help of pervasive intelligence,
smart devices, and other new approaches of merging com-
putational improvements into swarm behavior. Subsequently,
we will be benefited from establishing a complex setup on
the IIoT. Nevertheless, therewill bemany questions that are to
be answered.Will these steps be common for all the devices in
multimodal data communication or regulate specific devices?
Which form of swarm behavior turns out to be feasible on the
extensive networks that are spread over a vast region? Will it
activate an innovative phase of progression in an industrial
area? Generally, there are numerous PSO techniques that go
through the alterations in the velocity updating equations
for getting a robust optimal solution. We have studied these
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alterations methods reported in the literature to identify the
variation among the QPSO algorithms over the extensive
connection between the swarm behavior and the technique of
positioning sensor and fog nodes. Consequently, a network
progression can produce a technique of directing and han-
dling the connectivity of devices during the iterative process.

To improve PSO, Xi et al. [38] have proposed quantum
PSO (QPSO). It is assumed that the particle swarm system
satisfies quantum mechanics’ elementary proposition. Parti-
cle l moves in the δ probable well centered at the point W in
mth dimension with quantum basic actions characteristic [35],
and its state can be described [36] as

ψ
(
Pt+1lm

)
=

1
√
C
t
lm

exp

−
∣∣∣Pt+1lm −W

t
lm

∣∣∣
C t
lm

 (4)

where C is the characteristic length of the probable well δ,
and its value is directly related to an algorithm’s convergence
speed and searching ability [40]. The probability density
function of particle l is as given as

Q
(
Pt+1lm

)
=

1
√
C
t
lm

exp

−2
∣∣∣Pt+1lm −W

t
lm

∣∣∣
C t
lm

 (5)

To obtain the particle’s position, it has to be collapsed from
the quantum to the classical state. The position of the particle
is determined by

Pt+1lm = W t
lm ±

C t
lm

2
ln

1
r tlm

(6)

where W is the particle motion center and is called the
attractor of the particle. r is a random number with a uniform
distribution function ranging between 0 and 1. Parameter C
is determined as

C t
lm = 2γ

∥∥L tm − Ptlm∥∥ (7)

L tm =

N∑
l=1

Pbest tlm

N
(8)

γ is the contraction and expansion factor, which is to be
reduced while running an algorithm. L t = {L t1,L

t
2, . . . ..,L

t
m}

is the mean optimal position, representing the mean value of
the optimal position in the individual of all particles and the
expression.

IV. ENHANCED QUANTUM PARTICLE SWARM
OPTIMIZATION
In QPSO, every particle holds the weighted mean posi-
tion obtained by considering the individual earlier optimal
position and the optimal position of group history as its desir-
ability point. This computation method has the advantage
of simple calculations but holds the weighted mean position
and has two drawbacks. Apart from its own learning experi-
ence, each particle’s position depends on the group’s optimal
historical position. In addition to this, the possible dispersal
space of each particle’s attraction point progressively declines

during an algorithm’s development process [36]. It leads to
swift decay in the diversity of huge groups, which reduces
the algorithm’s ability to solve complex multiobjective opti-
mization problems, ultimately leading to its ability to jump
out of local optimization. Since the algorithm falls into the
local optimum in its final stage, it indicates that the particle’s
individual and global optimum positions are almost adjacent
to each other or maybe coincident [39].

Hence for improving the QPSO algorithm’s performance,
sufficient information about the individual and optimal global
positions of the particles should be utilized by choos-
ing an appropriate technique. To overcome this drawback,
a differential evolution operator is incorporated into QPSO.
A differential evolutionary algorithm proposed by Storn and
Price [41] is based on population differences. It uses compe-
tition and cooperation among individuals to solve optimiza-
tion problems. The proposed differential evolution operator
improves the population diversity and jumps out of the local
optimum. Enhanced QPSO algorithm aims to improve con-
trol of exploring and exploiting hunts by considering adjacent
relationships between the particles by a linear increase in
the connectivity of the swarm’s topology and carrying out
regulating mechanisms [36].

Position update in QPSO is performed by using

W t
lm = χPbest

t
lm + (1− χ) gbest

t
m (9)

AVbestm =
1
N

N∑
l=1

Pbest tlm (10)

Pt+1lm = W t
lm ± γ

∣∣AVbestm − Ptlm∣∣ ln( 1
r tlm

)
(11)

χ is a random number lying between (0, 1) ,W t
lm is the

random position between Pbest and gbest . By combining (3)
and (5), the position evolution equation changes to

Pt+1lm = χ
(
Pbest tlm − gbest

t
m
)
+ gbest tm ± γ

×
∣∣AVbestm − Ptlm∣∣ ln( 1

r tlm

)
(12)

Let a and b be the particles in the existing swarm distinct
from l, then the differential evolution operator (position dif-
ference between them) is

∅ = Pb − Pa (13)

Substitute ∅ to replace Pbest tlm − gbest tm of (12) and
randomness can be increased by adding a random number
(1− χ) to the second term gbest tm of (12). The new evolution
equation [36] is

Pt+1lm = χφm + (1− χ) gbest
t
m ± γ

×
∣∣AVbestm − Ptlm∣∣ ln( 1

r tlm

)
(14)

Differential evolution operator introduced in (14) helps
avoid the group moves in a small range and fall into local
optima, which is favorable in improving the ability of global
search. In the next phase, we have introduced a crossover
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operator with QPSO. These cross operations will promote
the information interchange among individuals in a group,
and those exceptional genes can be continued moderately,
accompanying the continuance of the evolutionary process.
Ultimately groups can progress in the desired route. The
position estimate Pt+1l of particle l is generated by using (3),
(7), (8), and (14). Later, the estimated position Pt+1l and
individual optimal positionPbest tl are separated for the gener-
ation of the test position Yml =

{
ytl1, y

t
l2, . . . , y

t
lm

}
, the cross

equation is written as

Y t+1lm =

{
Pt+1lm , (rand)m < c, m = mrand
Pbest tlm, Otherwise

(15)

where (rand)m is a random number satisfying uniform dis-
tribution such that (rand)m ∈ [0, 1] and c is the crossover
probability. mrand is randomly and uniformly generated inte-
ger on [1,M ]. Lastly, the optimal position of the particle’s
individual history is updated as

Pbest t+1lm =

{
Y t+1lm , f

(
Y t+1lm

)
< f

(
Pbest tlm

)
Pbest tlm, Otherwise

(16)

where f (∗) is a compatible cost function. The value of
crossover probability plays an important role in an algo-
rithm’s searchability and convergence speed. Smaller prob-
ability values enable individuals in a group to hold further
their individual information and preserve a higher diversity of
the group, which is suitable for the global exploration of an
algorithm. On the contrary, the larger value of the probability
impulses individuals to acquire additional experimental infor-
mation in the group, consequently accelerating an algorithm’s
convergence speed [36].

By considering the crucial role of crossover probability c,
it is directly encoded into each particle to achieve adaptive
control. After extended encoding, particle l in the population
is defined

Ptl =
{
ptl1, p

t
l2, . . . , p

t
lm, c

t
l
}

(17)

Crossover probability for every particle in the population
is updated as

ct+1l

{
randm (0, 1) , randm (0, 1) <∝
ctl , Otherwise

(18)

α is the update probability of parameter c. For ease of
operations, we have introduced an additional binary vector
Bt+1l for every particle l.

Bt+1l =

{
bt+1l1 , bt+1l2 , . . . , bt+1lm

}
(19)

bt+1lm =

{
1, randm (0, 1) < ct+1l , m = mrand
0, Otherwise

(20)

Z t+1l =
1
M

M∑
l=1

bt+1lm (21)

By ignoring the influence of mrand , Z
t+1
l follows the bino-

mial distributionwithM parameters and probability ct+1l . The
probability ct+1l is calculated by

ct+1l =

{
BtlZ

t+1
l +

(
1− Btl

)
ctl , f

(
Z t+1l

)
< f

(
ctl
)

ctl , Otherwise
(22)

Btl is a random number satisfying uniform distribution with
0.9 ≤ Btl ≤ 1. In addition to this, reduction-extension
coefficient γ is structured so that; with the increase in the
number of iterations, γ decreases linearly.

γ = γmax −
t
T
∗ (γmax − γmin) (23)

T is the maximum number of iterations to be attained [36].
The systematic moves are defined to guarantee connec-
tivity with interparticle communication for the satisfy-
ing data exchange among the sensor nodes for distinct
topologies. Velocity update means the best sensor node loca-
tion of the restricted neighborhood to determine the adja-
cency with another sensor node neighborhood rather than the
whole swarm topology [29]. Hence, swarm network topol-
ogy in PSO can exceptionally regulate the performance of
the algorithm. Moreover, the proposed enhanced quantum
PSO (EQPSO) utilizes the entirely linked topology in which
all the sensor nodes are neighbors. It helps the sensor node
to link directly to a global best sensor node and influences it
concurrently.

Consequently, the swarm topology in EQPSO avoids
exploring additional regions of the search space and trap into
local optimum solutions. In the meantime, a sensor node of
QPSO utilizes the information received from all other sensor
nodes adjacent to it rather than that of the best one only. This
alteration improves the performance of QPSO bilaterally,
i.e., by assisting the sensor node to obtain information about
promising areas of search space and prohibiting the error in
sensors participating in the swarm’s movement so that algo-
rithm’s exploration abilities are enhanced. The novel EQPSO
algorithm improves the control of exploring and exploiting
hunts in the completely connected network topology to get an
optimal solution for IIoT. The process flow and pseudocode
of the proposed algorithm is as shown in Fig. 1 and Fig. 2,
respectively.

V. FRAMEWORK FOR IIOT DEPLOYMENT
Generally, an IIoT contains a network of several wireless
devices and technologies positioned in a wide area, mak-
ing it heterogeneous. We have considered a scenario in
which sensor nodes and fog nodes are deployed in IIoT
with fault-tolerant network topology in a heterogeneous layer
framework [42]. This framework comprises three layers; the
cloud back-end, the middle layer for fog nodes, and the last
layer for sensor nodes, as shown in Fig. 3.

The middle layer contains few resource-rich fog nodes.
The sensor nodes are inhibited by limited battery capacity
and ceaseless QoS constraints. Every sensor node can change
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FIGURE 1. Process flow of EDQPSO.

its transmission range by varying its power level inside the
network topology regulated by conclusive or non-conclusive
workload to communicate or receive a message [29]. We try
to find a solution that curtails power consumption while pre-
serving network connectivity and delay requirements. Actu-
ally, the transmission cost of a message between sensor nodes
depends on the distance among them but is independent of
the number of receiving sensor nodes. In a multi-hop net-
work, connectivity can be maintained without every sensor
transmitting at its maximum power. Most of the approaches
reported in the literature have performedworse in some cases.
We have identified the challenges in different IIoT setups
and tried to address them while ensuring network coverage
consistency by adopting the network topology control. It has
also been observed that the appropriate positioning of sensor
nodes is critical in most IIoT systems and influences network
coverage. The existing techniques assume that the specified
sensor node’s sensing range and transmission range are the
same. However, it is not applicable in wide range IIoT setups
because some of the sensor nodes have extended routing
capabilities, but they communicate through a short distance.
Therefore, adopting static routing for IIoT is more feasible to
achieve an energy-efficient, reliable and scalable network.

FIGURE 2. Pseudocode for enhanced QPSO.

FIGURE 3. Industrial internet of things architecture.

We propose EQPSO to solve the IIoT deployment prob-
lem with distinct considerations for the framework [42] by
centralized and distributed routing for the different network
topologies. Centralized routing is appropriate for the net-
works in which the processing control trusts mostly on a
single device, which is accountable for the processing, coor-
dinating, and managing the identified activities. It allows
roaming inside the network, deals with energy management
and context information availability. Furthermore, it per-
mits an improved application design in terms of nodes
placement, application awareness, etc. In distributed routing,
the information is managed by every node, and decisions
are locally taken. The main features of distributed routing
are: autonomous devices can be included, every node shares
information to its adjacent node, and it is fit for distributed
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applications such as multiagent systems and self-organized
systems.

The establishment of p-disjoint paths for attaining con-
nectivity degrees greater than three and complete coverage
for sensor deployment is a crucial challenge due to smaller
battery capacities. Furthermore, we have considered a default
wireless network in which fog nodes and sensor nodes can
guarantee the desired connectivity degree through many to
one traffic patterns. Moreover, there is a need for frequent
information interchange about the route to avoid a sudden rise
in traffic and excessive energy consumption.

Our model is the directed graph that uses the concept of
disjoint node paths and p-connected networks. Paths are said
to be node disjoint if they do not have any common node,
and the sensor network is said to be p-connected if every
interior node of its graphical structure is connected with at
least p-node disjoint paths. Node disjoint paths are modeled
in graph G(P,Q) in two-dimensional space. P is the set of
sensor nodes and fog nodes, whereas links between them are
included in setQ.V ⊆ A represents a set of sensor nodes, and
W ⊆ B represents fog nodes. Every link inQ is assigned with
a non-negative number which QoS parameters among the
sensor nodes. au and av are two sensor nodes connected with
Euclidian distance dpu,v. All the sensor nodes are supposed to
be alike with power transmission range τR and sensing range
τS (τR ≥ τS ). Every sensor node identifies neighbors by send-
ingmessages periodically and gathering information about its
adjacent nodes’ energy consumption, distance, total latency,
and throughput. Hop (au, av) describes distance among sen-
sor nodes au and av. Q = {(au, av) |Hop (au, av) ≤ τR} ,
represents the set of all edges among the nodes au and
av with distance between them less than or equal to the
transmission range. pa (au, av) is path from node au to av,
which is an alternating sequence of nodes and links
between them. Set of alternative paths is P (au, av) ={
pa (au, av) ∈ P

/
∀pa (au, av) ∈ P,Hop (au, av) ≤ τR, u 6=

v = 1, 2, . . . ,V +W }. Q (au, av ∈ pa (au, av)) represents
node disjoint paths among (pa (au, av) , (aV , aV+W )) and
(e ∈ pa (au, av) , (aV , aV+W )) represents direct link among
two nodes. The communication rule for such direct links
among the nodes is described as below:

i Communication among sensor nodes: for any au, av ∈
V ⊆ A, even if dpu,v < τR, then au and av cannot
communicate with each other.

ii Communication among Sensor node and fog node: for
any au ∈ W ⊆ B and av ∈ V ⊆ A, even if dpu,v ≥ τR,
then au and av can communicate with each other.

In this way, p-disjoint paths in graph G and the objective
function can be determined by considering QoS parameters.
The p-disjoint paths are used to communicate the information
collected by sensor nodes to the fog nodes.

Network connectivity directly influences energy effi-
ciency. Hence, defining the relationship between the num-
ber of sensor nodes that remain dynamic and linked while
maintaining desirable QoS is essential. As a result,
we emphasize p-vertex fog node connectivity for obtaining

fault-tolerant network topologies as a transmission range
assignment in which every sensor node is connected with at
least one fog node by p-disjoint paths. In these situations,
an objective function’s main aim is to save energy attained by
curtailing transmission power and delay. To get an optimum
communication path, an objective function is applied to the
distributed sensor nodes having p-disjoint paths among them
and fog nodes.

A. MODELING QUALITY OF SERVICE FOR IIOT
The QoS optimization for IIoT in terms of energy, delay, and
throughput is planned. To get an optimal distribution scenario
with the minimal number of sensor and fog nodes, it needs to
define the distribution pattern. The neighboring correlation
between sensor and fog nodes is considered a constraint.
The set of disjoint sensors and another neighborhood of the
p-disjoint path is Du,v.

Du,v =
{
u, v 6= u| ‖au − av‖ ≤ TPa(u,v)

}
(24)

TPa(u,v) is the sensor transmit power for one hop. Con-
ditional adjacency matrix M of graph G (P,Q) guarantees
connections among two nodes,

M =


m11 m12 . . . m1|P|
m21 m22 . . . m2|P|
...

...
...

m|P|1 m|P|1 . . . m|P||P|

 (25)

muv =

{
1, if a (u, v) ∈ Du,v
0, Otherwise

(26)

The connectivity feature, the intermediary distance among
two sensor nodes along the chosen path, and the number of
hops is the constraints considered for addressing the topology
specifications. If dpu,v ≤ TPa(u,v) , then the binary connectivity
constraint defined in (26) identifies whether the sensor lies
within its transmission range or not. For a new association to
be included in directed graph G (P,Q) , (26) can be rewritten
as,

muv =


1, if

{
u, v 6= u| ‖au − av‖ ≤ TPa(u,v)

}
∈ Du,v ⊆ A

⋃
B

0, Otherwise

(27)

1) ENERGY CONSUMPTION
The IIoT energy consumption model is dependent on dissipa-
tion and gain during communication. During the processing
and sensing, power dissipation should be less than data trans-
mission or reception. Every sensor will have a transmission
range for communicating with adjacent nodes. By exploit-
ing the closest neighborhood, the subsequent hop will be
chosen by each sensor node. Energy consumption per bit is
calculated as

Easd =
B∪A∑

u,vεV∪W

(
E tPaV∪W + β0T

φ
Pa(u,v)

+ ErPaV∪W

)
Sp (28)
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where E tPaV∪W is the energy used by the transmitter, ErPaV∪W is
the energy utilized by the receiver, TPa(u,v) is the transmission
range, β0 is the multipath model of transmit amplifier of the
sensor, and Sp is the set of paths. φ is the energy drop due
to the loss in the path, assuming that the network link is
obstacle-free.

The rate of data transfer in unit time from the sensor
node au to av is the same as that of av to au, which is
represented byGuv. Hence, the overall consumption of energy
in transmitting and receiving per time unit is calculated by

Eau =
∑
vεA

muvGuv
(
E tPaV∪W⊂B∪A + β0T

φ
Pa(u,v)

)
(29)

Eav =
∑

uεB
⋃
A

muvGuv
(
ErPaV∪W⊂B∪A

)
(30)

Hence the total energy consumption from source to desti-
nation is

Easd =
∑

u,vεB
⋃
A

muvGuv
(
2
[
EPaV∪W + βrT

φ
P(u,v)

])
(31)

where βr is the multipath model of the response amplifier
of the sensor node. We have considered communication of
the sensed data between the set of sensors belonging to the
p-disjoint path, which can fluctuate through communication.
If the constraints are not fulfilled, it may disconnect adjacent
nodes and separate paths.

To guarantee the optimal number of hops between the
p-disjoint paths, we have considered one more parameter
called as intervening gap among two sensors along the chosen
path. It plays a crucial role in the design and performance
of the IIoT network. The intervening gap among two sensors
along the chosen path is given by

Hop = φ

√√√√da(u,v)

[
3βr

2EPa(u,v)

]
≤ TPu,v (32)

The constraint defined in (32) is a crucial configuration
and performance parameter in IIoT, which makes sure that
the optimum number of hops between the chosen p-disjoint
paths can be attained. The intervening gap among two sensor
nodes and hop count are directly associated with each other.

Theoretical hop count for the chosen p-disjoint paths is,

No.of Hops =
Total distance

ψopt (33)

ψopt
=

φ

√√√√da(u,v)

[
3βr

2EPa(u,v)

]
(34)

In the dynamic environment, the degree of network
connectivity varies subject to changes in the topology.
The parameter designed in (33) and (34) describes dynamic
objective functions with reference to lower and upper limits
for preferred solution space to decide the optimal pattern of
sensor positioning in the target region. With the evolution in
the optimization process, the established topology’s connec-
tivity degree is varied for reducing energy consumption.

2) DELAY CONSTRAINT
Delay can be classified into distinct types, viz. queuing, pro-
rogation, processing, transmission, retransmission, and idle.
The delay in delivery among two sensor nodes is represented
as ∇ (au, av). The average value of delay is calculated as

∇ = ∇que +∇prop +∇proc +∇trans +∇retrans +∇idle (35)

The optimal number of forwarding hops is determined
using (33) and (34) targets to decrease the desired transmis-
sion delay. This means that the sensor nodes may receive
the data through the many hops, but it collects and transmits
the data only once. Then the number of hops and delays are
optimized cooperatively. Every sensor node in the network
periodically computes the delay from one-hop neighbors.
When the overall QoS necessities are fulfilled at each hop,
the entire QoS controlled by the devices are attained [40].
The proposed technique uniformly splits the bounded
delay ∇bd at every hop as defined in (36).

∇ (au, av) = ∇sd
(
Sp
)

×
{
au, av|∀a=Du,v=au, av∈V∪W ⊆ B∪A

}
(36)

Overall delay due to data transfer from the source to a
destination over the set of path Sp is defined as

∇sd
(
Sp
)
=

∑
au,av∈V∪W⊆B∪A

∇ (au, av) (37)

Since the delay ∇ (au, av) is the time needed to effectively
communicate data once the initial sensor gets it, accordingly,

V∪W∑
au=1,av=1

∇ (au, av) ≤ ∇bd (38)

The bounded delay ∇bd depends on the number of hops
taken and delay of sensor node, which are additive and
denoted by ψ and ∇a, respectively. Hence,

∇bd = ∇
s
0 +∇

a+1
ψ1
+∇

a+2
ψ2
+ . . .+∇dψV+W (39)

Per hop delay from source to destination is

S∇a =
∇bd −∇

a

ψu
(40)

Then the constraint in (39) is defined as

V∪W∑
au=1,av=1

∇ (au, av) ≤ S∇a (41)

3) THROUGHPUT
Throughput is the whole quantity of successfully communi-
cated data packets along with the optimum number of hops.

Throughput =
[
∇trans

a

]
G∀u,v∈V∪W (42)
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B. ENHANCED QPSO FOR IIoT DEPLOYMENT
The population of swarm topology in positioning sensor
nodes and fog nodes is represented by employing complex
network connectivity to have better performance. The routing
technique is propelled to interchange complex computations
on each sensor node and report the objective function that
minimizes the energy consumption and delay. Accordingly,
making an appropriate choice, the sensor node’s relativity
degree increases or decreases with identical sensor node help.

Optimized IIoT connectivity deployment model aims at
minimization in energy consumption EF and delay ∇

(
Sp
)

while transmitting a data packet of length Guv bits with the
objective function defined as

min

 ∑
au,v∈V

⋃
W

EF

 (43)

min

 ∑
au,v∈V

⋃
W

∇
(
Sp
) (44)

Subject to,Easd, ∀u, v ∈ B ∪ A (45)

φ

√√√√da(u,v)

[
3βr

2EPa(u,v)

]
≤ TPu,v (46)

V∪W∑
au=1,av=1

∇ (au, av) ≤ S∇a (47)

da(u,v) ≤ TPu,v ≤ muvEauv ≤ Easdmax∀u,

v ∈ V ∪W (48)

Eauv represents energy utilized by sensor node au to link
with its adjacent sensor node av. It is assumed that the
p-distance path algorithm allocates the transmission range to
every sensor node by considering the hop distance calculated
by (32) for every neighbor; it helps to take advantage of the
diversity of swarm topology.

Due to the differential evolution operator used, every
swarm contributes to the process of optimization. It can
improve the convergence rate of hunt space by producing
and grouping new subswarms to help in escaping from local
optima and aiming for the global solution.

In addition, every sensor can enhance collective learning
behavior by interchanging the information to the neighbors.
After requesting the information interchange, every sensor
calculates the disjoint paths and updates local path data. As a
result, new promising paths are created corresponding to
objective functions defined in (43) and (44).

The process for generation of subswarm from the complete
set of sensor nodes by perceiving the objective function with
respect to the communication cost is also discussed. If the
sensor node is linked with the neighboring node, it is merged
into a new subswarm. Later, every subswarm individualisti-
cally upgrades its velocity.

After initializing each swarm of the sensor nodes, it is
identified by the next adjacent sensor node. Every sensor gets
linked with the other sensor created in the new subswarm.

These operations are continued until the network topology is
created. It leads to the initialization of velocity and position
for every sensor node, and then every sensor estimates the
objective function. While estimating the objective function,
the sensors have connectivity during each iteration.

Individual information interchange influences these sen-
sors. The personal and global evaluated position allows the
sensors to choose the next hop towards the ultimate evaluated
position within the search domain’s scope in every iteration.

As a result, the sensor diverts from the constraint field
and rarely converges to the constraint field’s ultimate eval-
uated position. The influence of objective function EF on the
personal best and global best positions is represented by the
particle-wise multiobjective matrix-vector multiplication by
using the symbol ∗. The position update is defined as

Pt+1lm = χ
EF ∗ φm + EF ∗ (1− χ) gbest tm ± γ EF

∗
∣∣AVbestm − Ptlm∣∣ ln( 1

r tlm

)
(49)

Each sensor node benefits from cross operations intro-
duced into EQPSO, and it takes advantage of information
interchange to avoid trapping into local minima.

The efficiency of EQPSO is determined by the number
of steps required to an optimal region O(R). The process
assesses the distribution of the number of steps required
to attain O(R) by correlating the expected value and the
moments of the distribution. The total number of steps
required to reach the optimal region is calculated as S (R) =
inf {x/gx ∈ O(R)}. The variance V [S (R)] and expected value
E[S (R)] are determined by using

E [S (R)] =
∞∑
x=0

xkx (50)

V [S (R)] =
∞∑
x=0

x2kx −

(
∞∑
x=0

xkx

)2

(51)

Actually, E [S (R)] is dependent on the convergence of∑
∞

x=0 xkx . EQPSO converges globally if
∑
∞

l=0 xkx = 1. The
time is measured by using the number of evaluations of the
objective function. The key advantage of this technique is
that it demonstrates correspondence among the processor
and computation time with the increase in complexity of the
objective function. Time complexity is computed by com-
bining Range function Rf (x) = x tx and a linear parameter
L (x) =

∑M
m=0 xm ≥ 0 for N particles.

VI. RESULTS AND PERFORMANCE EVALUATION
Wehave carried out simulations to generate network topology
and design the objective functions to test and analyze the
proposed algorithm’s performance. The performance of the
proposed algorithm is evaluated and compared with other
quantum-based algorithms such as Quantum Ant Colony
Optimization (QACO) [34] and Quantum Particle Swarm
Optimization (QPSO) [35]. We implemented these algo-
rithms in MATLAB to obtain their results with the same
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TABLE 1. Parameter settings.

FIGURE 4. IIoT node deployment scenario.

TABLE 2. Simulation metric.

settings for comparison as we used for our results. The param-
eter settings are given in Table 1.

Several sensor nodes and fog nodes are uniformly dis-
tributed over a 2D area of 2000m × 2000m and pro-
duced homogeneous and heterogeneous connectivity among
the sensor nodes. Furthermore, sensors are placed at a
distance

√
2τS without overlapping and with or without holes

by using deterministic deployment, as shown in Fig. 4.
Diverse scenarios of topologies are simulated to study the

impact of p degrees of connectivity concerning the number
of evaluations of objective functions with reference to energy
consumption, delay, and throughput. It is assumed that energy
consumed by every sensor node for transmitting or receiving
data packets is 40nJ/bit , in the meantime transmitter utilizes
an additional 90pJ/bit . The transmission range fluctuates
between 10m to 40m, the proportion of transmission range
and sensing range fluctuates between 0:4 to 1:9 to assure the
connectivity between the sensor nodes and fog nodes while
satisfying the constraints of the algorithm. The details of the
simulation metrics are as given in Table 2.

The impact of applying swarm techniques on het-
erogeneous multi-tiered layered IIoT topology is illus-
trated in Fig. 4. A particle’s connectivity increases since
the quantum swarm allow a sensor node to choose a

FIGURE 5. (a). Energy consumption for 100 sensor node. (b). Average
delay for 100 sensor nodes. (c). Throughput with 100 sensor nodes.

new neighborhood. It occurs throughout the exploration pro-
cedure to retain the trace of every particle’s searching ability,

VOLUME 9, 2021 134031



S. N. Ghorpade et al.: Novel Enhanced Quantum PSO for Optimal Network Configuration

and then suitable alterations are made on the connectivity
of particle. Adding new sensor nodes to the network leads
to increased hops that are essential to describe an event.
EQPSO algorithm tries to find the optimal number of hops
to minimize energy consumption and delay. EQPSO updates
position twice per iteration.

It can be noticed that with the increase in the number of
iterations, energy consumption decreases. Figure 5 (a) shows
that the proposed algorithm consumes less energy than QPSO
and QACO, as its objective function is to locate p-disjoint
paths while recovering from the fault-tolerance error mes-
sages due to the big size of the search space. We have also
analyzed the influence of the number of hops and the inter-
change of messages for fault tolerance among sensor nodes
and fog nodes. QPSO searches for p-disjoint paths within its
accessible neighborhoods based on communication history.
On the contrary, QACO and EQPSO searches paths directly
within its accessible neighborhoods.

This new swarm reinforces the optimal number of
p-disjoint paths to achieve lesser energy consumption. The
results show that the proposed algorithm consumes around
47.1% and 30.3% lesser energy than QPSO and QACO,
respectively. FromFig. 5 (b), it can be noticed that the average
delay of packet transmission along the chosen p-disjoint
paths by the proposed algorithm is lesser than QACO and
QPSO. However, QACO performs better for fewer iterations
and degrades performance with an increasing number of
iterations.

Although the number of sensor nodes and fog nodes are
constant, the number of hops decreases with the increase
in the transmission range. The number of nodes chosen by
EQPSO inside the subswarm is lesser than the total number
of sensor nodes and variables. It qualifies sensor node in
terms of further choice of p-disjoint path that satisfies the hop
availability condition. This helps the sensor node to improve
the connectivity, which ultimately helps EQPSO to inter-
change fewer control messages for topology maintenance
than QACO and QPSO. Hence, EQPSO offers improved
searching precision and convergence swiftness in the possible
search space for p-disjoint paths than QACO and QPSO.
The impact of a number of hops on the objective functions

defined in (43) and (44) is presented in Fig. 5(c) in terms of
throughput. For QACO and QPSO, minimizing delay at the
cost of increased hops leads to a proportionate increase in the
number of sensor nodes and fog nodes, resulting in reduced
throughput.

EQPSO can solve network connectivity issues to attain
optimal solutions with fewer fitness function estimations due
to its feature of creating new subswarms and utilizing them
to form a group with the new particle in the search space.
As a result, new paths are created to improve the proposed
algorithm’s ability to escape from local optima to improved
network connectivity.

We have also investigated another scenario that needs
instruction from multiple resources after particular inter-
vals. Our algorithm generates results for all links among the

FIGURE 6. Energy consumption with distinct connectivity.

sensor nodes and fog nodes positioned while execut-
ing QACO, QPSO, and EQPSO. Metric considered for
generating the IIoT framework’s topologies is an information
exchange for fault tolerance among sensor nodes and fog
nodes. The simulations for optimizing energy usage, delay,
and throughput for p-connectivity values equal to 3, 4 and 5
with respect to the number of evaluations are carried out.
Results for all three algorithms are shown in Figs. 6, 7, and 8.

The performance of the proposed algorithm improves with
the increase in connectivity between sensor nodes and fog
nodes. If the connectivity is two or less, then informa-
tion sharing happens only among adjacent sensor nodes.
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FIGURE 7. Delay with distinct connectivity.

Consequently, topology has less availability of information
for the predefined connectivity. As a result, it explores and
creates fewer diverse paths while evaluating the objective
functions. Whereas topologies generated through higher con-
nectivity p = 3, 4, 5 have complete sharing of the informa-
tion among the sensor and fog nodes, which helps generate
additional diverse paths. It has been observed that the EQPSO
performs better than QACO and QPSO since quantum swarm
inclines to generate additional diverse paths from multiple
source nodes to the gateway. Due to the accessibility to

FIGURE 8. Throughput with distinct connectivity.

entire information among the sensor nodes and fog nodes,
EQPSO needs lesser communication among the nodes to get
the desired connectivity.

We have investigated the performance of EQPSO for ring
and mesh patterns by deploying optimal topologies with
increased connectivity for achieving coverage and connec-
tivity. Connectivity is increased steadily from 5 to 10. The
results of energy consumption, delay, and throughput for
ring and mesh topology using QACO, QPSO, and EQPSO
is shown in Fig. 9(a) and Fig. 9(b).

Energy consumption for the proposed algorithm is
minimized by 18.78% and 14.08% compared to QACO
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FIGURE 9. (a). Energy Consumption, Delay and Throughput for Ring
Topology with distinct connectivity. (b). Energy Consumption, Throughput
and Delay for Mesh Topology with distinct connectivity.

FIGURE 9. (Continued.) (a). Energy Consumption, Delay and Throughput
for Ring Topology with distinct connectivity. (b). Energy Consumption,
Throughput and Delay for Mesh Topology with distinct connectivity.
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and QPSO. Average delay is also curtailed by 25.29%
and 14.02% in comparison with QACO and QPSO. It also
improves the throughput by approximately 30.70% and
13.66%, representing better performance in finding an opti-
mal solution than QACO and QPSO, respectively.

It is observed that for ring and mesh deployments, the
optimal energy consumption, delay, and throughput of the
proposed algorithm are improved when the degree of con-
nectivity is increased. The information to be shared among
the nodes for fault tolerance is available with the nodes.
For ring topology, the information sharing occurs between
the neighboring nodes only whereas in mesh, it is shared to
a group. Hence, mesh performance is comparatively better
as they have information of additional disjoint paths for
communication.

To determine the complexity, we considered the variance
V [S (R)], standard deviation, and average error by setting
O (R) = O

(
10−5

)
, γ = 0.75, and χ = 0.66. It has been

observed that EQPSO shows a robust correlation among S (R)
and N with the constant coefficient value 0.9998 for all the
evaluations.

VII. CONCLUSION
Most Industrial Internet of Things applications require strict
reliability and extremely low delay in real-time communi-
cations between different devices, focusing on improving
energy efficiency. To achieve it, we propose a novel enhanced
quantum particle swarm optimization algorithm based on
quantum and bio-inspired techniques for IIoT networks. Our
algorithm combines the heterogeneous network topologies
for exploitation and converges in the optimal route direction,
and maintains diversity during the collaboration of nodes.
The results show that the proposed algorithm has better
energy efficiency, reliability, and scalability than the existing
approaches. This was achieved by using efficient information
exchange, differential evolution and crossover operators to
configure the optimal path. The proposed algorithm is useful
for optimized deployments of sensor and fog nodes in IIoT
environments.
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