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ABSTRACT The design of distribution use-of-system tariffs has been traditionally driven by long-term
cost recovery considerations. However, the emerging large-scale integration of distributed energy resources
motivates the value of tariffs that are more adaptive to short-term conditions, in order to exploit the inherent
flexibility of distributed energy resources and consequently increase the economic efficiency of distribution
network operation. This paper addresses the problem of short-term distribution use-of-system tariffs design
through a bilevel optimization model, capturing the interaction between a distribution system operator at
the upper level and prosumers with distributed energy resources at the lower level. In contrast to previous
relevant literature, this model considers a detailed representation of the power flow constraints, different
levels of temporal and spatial granularity in the designed tariffs, as well as discrete tariff levels for preserving
intelligibility. Furthermore, instead of relying on exogenous typical days, the developed model employs
a clustering approach to design tariffs that adapt to the forecasted conditions of the upcoming day. The
examined case studies demonstrate the impacts of different levels of tariff granularity on economic efficiency,
and test the performance of the proposed clustering approach through out-of-sample simulations involving
different scenarios regarding the selected number of clusters.

INDEX TERMS Bilevel optimization, clustering, distributed energy resources, distribution use-of-system
tariffs, flexible demand.

NOMENCLATURE
Indices and Sets:

i ∈ I(I+) Nodes (+ including the root).
ji ∈ I Branch that ends at node i.
ai ∈ I Parent node of node i.
k ∈ Ki Children nodes of node i.
d ∈ D Day-types.
t ∈ T Time periods in each day-type.
n ∈ N Tariff levels.

Parameters:

wd Number of days in each day-type d .

The associate editor coordinating the review of this manuscript and

approving it for publication was Anamika Dubey .

rji , xji Resistance, reactance of branch ji (�).
F ji Apparent power limit of branch ji (MVA).
ui, ui Lower, upper limit of the voltage at node i (V).
αi Demand shifting limit of prosumer at node i.
di,t,d Baseline demand of prosumer at node i and

period (t, d) (MWh).
pi,t,d PVoutput of prosumer at node i and period (t, d)

(MWh).
πe Energy price (e/MWh).
πn Tariff level n (e/MWh).
πDi Demand curtailment penalty factor at node i

(e/MWh).
πGi Generation curtailment penalty factor at node i

(e/MWh).
φi Power factor angle at node i.
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κ
↓

i,t,d Discomfort penalty of prosumer at node i asso-
ciated with shifting demand away from period
(t, d) (e/MWh).

κ
↑

i,t,d Discomfort penalty of prosumer at node i associ-
ated with shifting demand towards period (t, d)
(e/MWh).

κC Profit margin of DSO.

Variables:

d↓i,t,d Demand shifted away from period (t, d) for
prosumer at node i (MWh).

d↑i,t,d Demand shifted towards period (t, d) for pro-
sumer at node i (MWh).

cDi,t,d Demand curtailment at node i and period (t, d)
(MWh).

cGi,t,d Generation curtailment at node i and period
(t, d) (MWh).

πi,t,d Distribution use of system (DUoS) tariff at
node i and period (t, d) (e/MWh).

ui,t,d,n Binary variable of tariff level n at node i and
period (t, d).

Pj,t,d Active power flow on branch j and period (t, d)
(MW).

Qj,t,d Reactive power flow on branch j and period
(t, d) (MVar).

vi,t,d Square of the voltage at node i and period (t, d)
(V2).

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
The emerging large-scale integration of distributed energy
resources (DERs), including various types of flexible
demand, distributed generation, and energy storage [1]
shifts the scope of distribution network pricing to a task
with a shorter-term nature. In recent years, challenges and
opportunities related to the active management of DERs
are becoming increasingly relevant. Challenges relate to
respecting distribution network constraints in the presence
of non-dispatchable or variable DERs. On the other hand,
many of these DERs exhibit significant flexibility potentials,
thereby representing an opportunity for operating the grid
more efficiently. Compared to long-term distribution use-of-
system (DUoS) tariffs, new tariff schemes could reflect the
possibility to manage DERs at a shorter time scale. Such a
short-term management of DERs is becoming increasingly
possible due to advancements in monitoring, communication
and control technologies.

Traditionally, DUoS tariffs have been used as a means
to recover previous (sunk) and future planned (prospective)
investments in distribution assets, mainly based on long-term
incremental cost principles [2], [3]. An important consider-
ation has been to allocate these costs fairly among network
users [4], [5]. According to Eurelectric [6], in addition to
preserving revenue adequacy for the Distribution System
Operator (DSO) and being fair, predictable and intelligible

for the consumers, distribution network tariffs should also be
aligned with the principles of cost-reflectiveness (reflecting
the costs induced/saved by different users) and economic effi-
ciency (yielding the lowest possible investment and operating
costs). The same reference indicates that tariffs should reflect
more closely the marginal network cost and thus mobilize
price-based demand response. More recently, E.DSO [7] rec-
ommends similar priorities for new DUoS tariffs including:
cost reflectivity, incentives for efficient network use, trans-
parency and understandability, implementability, and limited
complexity.

The theoretical efficiency benchmark in managing dis-
tributed energy resources is set by distribution locational
marginal pricing (DLMP) [8], [9]. DLMP by design coor-
dinates DERs optimally, so as to maximize operating
efficiency [10], while ensuring that detailed distribution net-
work attributes (including reactive flows, line losses and
voltage constraints [11]) are properly accounted for. From an
economic perspective, the centralized optimization of DERs
through DLMPs is equivalent to a market equilibrium under
perfect competition in a complete market that trades real and
reactive power at a nodal level. Despite its theoretical appeal,
the realization of DLMP stumbles upon a number of regu-
latory and implementation barriers in practice. Specifically,
the organization of a complete market at the traditionally
passively-operated distribution grid entails comprehensive
restructuring of DSO practices and massive monitoring, com-
munication and computation costs.

A possibly viable alternative, and the one that we focus on
in this paper, is the mobilization of DER flexibility through
DUoS tariffs that can vary in a shorter time scale than
traditional tariffs (with the latter commonly varying on a
year-ahead basis) but without requiring the organization of
a distribution-level market. In this context, we consider the
interaction between a DSO that directly sets DUoS tariffs
with different levels of temporal and spatial variability, and
the DERs that react to these tariffs. We formulate this inter-
action as a Stackelberg equilibrium problem which is recast
as a bilevel optimization model.

B. LITERATURE REVIEW
Bi-level optimization constitutes a rigorous methodologi-
cal framework for modelling non-cooperative interactions
between different entities. It has been employed successfully
in many power system applications, including strategic bid-
ding in electricity markets [12], [13], electricity suppliers’ /
aggregators’ pricing strategies [14], [15], and strategic gen-
eration investment planning [16], [17]. However, research
efforts on the application of bilevel optimization to the prob-
lem of DUoS pricing for the effective management of DERs
are still limited.

Specifically, previous works that apply this methodology
to the examined problem include [18]–[23]. We summa-
rize the main characteristics of this literature in Table 1.
In [18], a game-theoretical model is employed for designing
flat tariffs which aim at recovering sunk exogenous network
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costs. In [19], [20] the authors expand their analysis to a
full bilevel model where the decision-making problem of
a regulatory authority is expressed by the upper level and
aims at recovering network costs (sunk costs in [20] and
prospective costs in [19]). In [19], prospective network costs
are expressed as a simple linear function of the overall peak
power of the network. In [22], a bilevel model is presented for
designing volumetric and peak-power tariffs. Grid costs entail
load curtailment actions, nevertheless their recovery is not
addressed. In [21], [23] the authors address the introduction
of energy markets at the distribution level, and propose a
model for designing flat, volumetric, peak-power and fixed
tariffs. The authors consider prospective high and medium
voltage transformer capacity upgrade costs in [23].

Regarding the modelling and computational methodology
of the aforementioned literature, in [18], [20], [21], [23]
tariffs are designed through an iterative process using incre-
mental steps. This methodology can be applied in order to
optimise a flat tariff, because a single decision variable is
being optimized. This is in contrast to fully granular tariffs.
The analyses in [18]–[23] consider tariffs that have no spa-
tial or temporal granularity. Moreover, in these analyses the
power flow constraints of the network are not modelled in
detail. To summarize, [18]–[23] provide valuable insights into
the problem of tariff design from the point of view of cost
recovery and reducing network peaks.

Our analysis focuses on network tariffs that vary on
a relatively shorter time frame. We thus envision a DSO
that, in cooperation with the National Regulatory Author-
ity (NRA), chooses the tariffs with respect to forward (e.g.
day-ahead) predicted conditions. Authors in [24] discuss the
applicability of ex-ante hourly pricing such as day-ahead
pricing. It is argued that an ex-ante approach may stimu-
late greater participation in demand response initiatives than
ex-post pricing schemes where the users need to predict price
levels. The case study of the Georgia Power Company is
also detailed in [24], where a day-ahead price scheme with
hourly granularity is employed. According to [24], the pricing
scheme induces a remarkable increase in the responsiveness
of consumers to the price signal compared to real-time price
incentives.

In addition to resorting to shorter-term pricing, we are
interested in exploiting repeatable patterns in the behaviour of
DERs, in order to improve tariff design. There are examples
of pricing patterns based on seasonality such as methods
employed in the past by EDF [25]. Previous literature on
DUoS charges utilizes generic typical days, or typical days
representing seasons for determining tariff levels, as indicated
in Table 1. We expand on the topic by resorting to clustering
methods [26] for characterising observable day-ahead condi-
tions.

C. CONTRIBUTIONS
The present paper aims at addressing the following question:
How can a DSO design simple variable DUoS tariffs in order
to increase operating efficiency by exploiting the flexibility

TABLE 1. Summary of relevant literature. (F = Fixed, P = Peak-power/
capacity, V = Volumetric).

provided by DERs? We rely on the hypothesis that DERs
exhibit recurrent patterns which can help design correspond-
ingly simple tariffs. The contributions of this paper are the
following:

• We model the problem of designing DUoS tariffs as
a bilevel interaction between the DSO (upper level)
and prosumers with DERs (lower level). In contrast
to [18]–[23], this bilevel problem considers a detailed
representation of the distribution network power flow
constraints (using the LinDistFlow model) in order to
introduce temporal and spatial granularity in the derived
tariffs, as well as discrete price levels for preserving
intelligibility [6].

• In contrast to previous literature relying on exogenous
typical days, we employ a clustering approach for iden-
tifying daily patterns that capture the variability of dis-
tribution network conditions across a whole year. This
enables us to design tariffs that adapt to the conditions
of the upcoming day. The performance of this approach
is tested through out-of-sample simulations.

• We perform detailed case studies with two objectives.
Firstly, we analyze the relationship between higher
temporal / spatial granularity of the designed tar-
iffs and operating efficiency, under different scenar-
ios for the extent of prosumer flexibility. Secondly,
we study the trade-off between a lower number of
daily pricing patterns, which translates into higher intel-
ligibility of the tariffs by end users, and a higher
number, which translates into higher economic effi-
ciency given the variability of distribution network
conditions.

It is important to distinguish here that this work is focused
on an arrangement where determining the energy retail price
is decoupled from the problem of setting the DUoS tariffs,
unlike [27]–[31]. In our work, DUoS tariffs aim at steering
basic patterns in consumption and generation in distribution
grids, while energy prices are assumed to be set exogenously
by an independent retailer. Therefore, we focus our previous

132930 VOLUME 9, 2021



P. Pediaditis et al.: Bilevel Optimization Model for Design of DUoS Tariffs

FIGURE 1. Structure of proposed bi-level optimization model.

literature review on works that target the design of DUoS
tariffs.

II. PROBLEM FORMULATION
A. MODEL ASSUMPTIONS
The main assumptions of the proposed model are outlined
below:

1) PROBLEM STRUCTURE
The examined DUoS tariff design problem is modelled as
a Stackelberg game using bilevel optimization. The upper
level expresses the decision-making problem of the DSOwho
designs tariffs in order to maximize the operating efficiency
of the distribution network. The latter is measured by the
total cost of demand curtailment and generation curtailment
actions which the DSO needs to resort to in order to preserve
the security of the network. Curtailment costs are used as
an approximation of prospective investment costs induced
by network congestion effects. The lower level expresses the
decision-making problem of prosumers who optimize their
demand response actions in response to the DUoS tariffs
devised by the DSO as well as the energy tariffs offered by
their supplier. Considering that the focus of this paper lies
in the design of DUoS tariffs and for the sake of simplicity,
we assume energy tariffs to be fixed and constant in time and
location, though our modelling framework can accommodate
more general assumptions.

Fig. 1 illustrates the coupling of the two problems. The
DSO communicates the DUoS tariffs to the prosumers,
whereas the prosumers react to those tariffs. Thus, the DSO
observes their response (demand shift).

2) TARIFF TYPE
As illustrated in Table 1, DUoS tariffs can be classified
into volumetric (e/MWh), peak-power/capacity (e/MW) and
fixed (e) tariffs. In this paper, we focus on volumetric tariffs
that can generally vary per hour and node (although we exam-
ine various scenarios of different temporal and locational
granularity in the case studies). Furthermore, we assume that
these tariffs involve a set of discrete price levels. This assump-
tion is in tune with tariff intelligibility for both the DSO

FIGURE 2. Illustration of part of the distribution network.

and the end users [6], [25], [32], [33]. Finally, considering
the principle of revenue adequacy [6], we impose that the
designed tariffs recover the total operating costs of the DSO.

3) PROSUMER MODELS
The prosumers, represented by the lower level of our
model, own and operate PV generation and flexible demand
assets. Demand flexibility is represented through a generic,
technology-agnostic model. The model captures the ability
of prosumers to shift the operation of their loads in time.
We assume that such shifts are energy neutral within the
examined daily horizon and that they entail a quantifiable cost
of discomfort [15].

4) NETWORK MODEL
The power flow constraints of the distribution network
are represented through the LinDistFlow model [34], [35].
We employ Fig. 2 in order to describe notation. The set
of distribution nodes is denoted by I+, while the subset I
does not include the root node. Since we are assuming a
radial network, we can also denote the set of branches as I.
We denote by ji the branch ending at node i. Finally we denote
by ai the parent node of node i and by Ki the set of children
nodes of node i.

B. MATHEMATICAL FORMULATION
Each period of the model is denoted by (t, d) and corresponds
to a particular hour t and day d .

1) UPPER LEVEL
The upper level expresses the decision-making problem of the
DSO. It is formulated as follows:

min
VUL

J u

= min
VUL

∑
d∈D

wd
∑
t∈T

∑
i∈I

(
πDi,t,dc

D
i,t,d + π

G
i,t,dc

G
i,t,d

)
(1a)

where,

VUL = {πi,t,d , ui,t,d,n, cDi,t,d , c
G
i,t,d ,Pji,t,d ,Qji,t,d , vi,t,d }

subject ∀i ∈ I, t ∈ T , d ∈ D to:

Pji,t,d = di,t,d − d
↓

i,t,d + d
↑

i,t,d − pi,t,d − c
D
i,t,d

+ cGi,t,d +
∑
k∈Ki

Pjk ,t,d (1b)

Qji,t,d = (di,t,d − d
↓

i,t,d + d
↑

i,t,d − pi,t,d − c
D
i,t,d

+ cGi,t,d ) tanφi +
∑
k∈Ki

Qjk ,t,d (1c)
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P2ji,t,d + Q
2
ji,t,d ≤ F

2
ji (1d)

vi,t,d = vai,t,d − 2(rjiPji,t,d + xjiQji,t,d ) (1e)

v2i,t,d ≤ vi,t,d ≤ v
2
i,t,d (1f)

0 ≤ cGi,t,d ≤ pi,t,d , (1g)

0 ≤ cDi,t,d ≤ di,t,d − d
↓

i,t,d + d
↑

i,t,d (1h)

πi,t,d =
∑
n∈N

ui,t,d,nπn (1i)∑
n∈N

ui,t,d,n = 1, and (1j)∑
d∈D

∑
t∈T

∑
i∈I

wdπi,t,d (di,t,d − d
↓

i,t,d + d
↑

i,t,d

− pi,t,d − cDi,t,d + c
G
i,t,d ) = (1+ κC )J u (1k)

The objective function (1a) minimizes the total operating
cost of the DSO over the analyzed yearly horizon. This cost is
expressed as the sum of demand curtailment costs (first term)
and generation curtailment costs (second term). Constraints
(1b) and (1c) express the nodal active and reactive power
balance constraints, respectively. Constraints (1d) enforce the
apparent power limits of each branch. Constraints (1e) repre-
sent the relationship between nodal voltage magnitudes and
adjacent power flows, while constraints(1f) enforce voltage
limits for each node. Constraints (1h) and (1g) express the
curtailment limits of generation and demand at each node.
Constraints (1i)-(1j) capture our assumption that the tariff
levels are discrete. Finally, constraint (1k) imposes the recov-
ery of the total operating cost of the DSO (augmented by a
profit margin) from the collected network charges. The profit
margin of the DSO is chosen as a margin above costs that
creates a reasonable return which can be employed as an
incentive to improve DSO performance on tasks not related
to operational cost, e.g. customer services. Our formulation
allows for the NRA to set any profit margin, including no
margin at all.

2) LOWER LEVEL
The lower level expresses the decision-making problem of the
prosumers. It is formulated as follows:

min
VLL

J l
= min

VLL

∑
d∈D

wd
∑
t∈T

∑
i∈I

[
(πe + πi,t,d )

(
di,t,d

− d↓i,t,d + d
↑

i,t,d − pi,t,d
)

+ κ
↓

i,t,dd
↓

i,t,d + κ
↑

i,t,dd
↑

i,t,d

]
(2a)

where,

VLL = {d↓i,t,d , d
↑

i,t,d }

subject ∀i ∈ I, t ∈ T , d ∈ D to:

(ζ
i,t,d

, ζ i,t,d ) : 0 ≤ d
↓

i,t,d ≤ αidi,t,d (2b)

(η
i,t,d

, ηi,t,d ) : 0 ≤ d
↑

i,t,d ≤ αidi,t,d , and (2c)

(γi,d ) :
∑
t∈T

(−d↓i,t,d + d
↑

i,t,d ) = 0, ∀i ∈ I, d ∈ D (2d)

The objective function (2a) minimizes the total operating
cost of the prosumers. This cost is expressed as the sum
of the total electricity payments (first term, including both
energy costs and network charges) and the discomfort cost
associated with demand shifting (second and third terms).
The demand shifting flexibility of the prosumers is expressed
by constraints (2b)-(2d). The non-negative variables d↓i,t,d and

d↑i,t,d represent the shifting of demand away from and towards
period (t, d) for prosumer i, relative to its respective baseline
level di,t,d . Following [15], the upper limits of such demand
shifting actions correspond to a ratio αi of the baseline level.
This is expressed by constraints (2b)-(2c). Finally, constraints
(2d) ensure that demand shifting is energy neutral within a
daily horizon.

3) FORMULATION OF THE MATHEMATICAL PROGRAM WITH
EQUILIBRIUM CONSTRAINTS (MPEC)
The upper level and lower level problems are coupled.
The DUoS tariffs determined by the upper level problem
affect the objective function (2a) of the lower level prob-
lem. Moreover, the demand shifting actions determined
by the lower level problem affect constraints (1b)-(1c)
and (1h)-(1k) of the upper level problem. In order to solve
this bilevel optimization problem, the lower level problem is
replaced by its Karush-Kuhn-Tucker (KKT) conditions [36],
which can be expressed as follows ∀i ∈ I, t ∈ T , d ∈ D:
Primal constraints:

(2b), (2c), (2d) (3a)

Dual constraints:

ζ
i,t,d

, ζ i,t,d , ηi,t,d
, ηi,t,d ≥ 0 (3b)

Complementary slackness:

ζ
i,t,d

(−d↓i,t,d ) = 0 (3c)

ζ i,t,d (d
↓

i,t,d − αdi,t,d ) = 0 (3d)

η
i,t,d

(−d↑i,t,d ) = 0 (3e)

ηi,t,d (d
↑

i,t,d − αdi,t,d ) = 0 (3f)

Gradient of the Lagrangian:

(d↓i,t,d ) : wd
(
(πe + πi,t,d )+ κ

↓

i,t,d

)
− ζ

i,t,d

+ ζ i,t,d − γi,d = 0 (3g)

(d↑i,t,d ) : wd
(
πe + πi,t,d )+ κ

↑

i,t,d

)
− η

i,t,d
+ ηi,t,d + γi,d = 0 (3h)

The KKT conditions are inserted as constraints to the
upper level problem. We thus convert the original bilevel
optimization problem to a single-level equivalent MPEC,
which is formulated as follows:

min
VMPEC

J u (4a)

where,

VMPEC = VUL ∪ VUL
∪ {ζ

i,t,d
, ζ i,t,d , ηi,t,d

, ηi,t,d , γi,d }

subject to: (1b)-(1k), (3) (4b)
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4) LINEARIZATION OF COMPLEMENTARITY CONDITIONS
The complementary slackness conditions (3c)-(3f) involve
bi-linear terms which can be expressed in the generic form
δp = 0, with δ and p representing dual and primal terms,
respectively. The Fortuny-Amat linearization approach [37]
replaces each of these conditions with the following set of
mixed-integer linear conditions: δ ≥ 0, p ≥ 0, p ≤ zM ,
δ ≤ (1 − z)M . Here, z is an auxiliary binary variable and M
is a sufficiently large positive constant. For example, (3c) can
be linearized as follows ∀i ∈ I, t ∈ T , d ∈ D:

d↓i,t,d ≤ z
ζ

i,t,dM (5a)

ζ
i,t,d
≤ (1− z

ζ

i,t,d )M (5b)

5) LINEARIZATION OF REVENUE ADEQUACY CONSTRAINT
The revenue adequacy constraint (1k) involves four bi-linear
terms πi,t,dd

↓

i,t,d , πi,t,dd
↑

i,t,d , πi,t,dc
D
i,t,d , and πi,t,dc

G
i,t,d . The

first two are linearized by using a subset of the KKT con-
ditions of the lower level problem. Concretely, by exploiting
Eqs. (2d), (3c), (3d), (3e), (3f), (3g) and (3h), the sum of these
two terms is replaced by the following linear equation:∑
d∈D

wd
∑
t∈T

∑
i∈I

πi,t,d (−d
↓

i,t,d + d
↑

i,t,d )

= −

∑
d∈D

∑
t∈T

∑
i∈I

[
wd
(
πe(−d↓i,t,d + d

↑

i,t,d )+ κ
↓

i,t,dd
↓

i,t,d

+ κ
↑

i,t,dd
↑

i,t,d

)
+ ζ i,t,daidi,t,d + ηi,t,daidi,t,d

]
(6)

The last two bi-linear terms are linearized through binary
expansion. For example, for πi,t,dcDi,t,d , one can write:

πi,t,dcDi,t,d =
∑
n∈N

ui,t,d,nπncDi,t,d (7a)

This expansion results in the multiplication of the binary
variable ui,t,d,n with the continuous variable cDi,t,d . We there-
fore introduce the auxiliary variable zDi,t,d,n, where

ui,t,d,ncDi,t,d = zDi,t,d,n (7b)

0 ≤ cDi,t,d − zi,t,d,n ≤ M1(1− ui,t,d,n) (7c)

0 ≤ zi,t,d,n ≤ M1ui,t,d,n (7d)

Thus, we obtain:

πi,t,dcDi,t,d =
∑
n∈N

πnzDi,t,d,n (7e)

After the linearization of the complementarity conditions
and the revenue adequacy constraints, the MPEC is trans-
formed to aMixed-Integer Quadratic Program (MIQP) which
can be tackled by commercial solvers.

C. CLUSTERING
As we discuss in Section I-B, we rely on representative day-
types in order to reduce the number of tariff options presented
to prosumers. Concretely, tariffs are designed for each day-
type, instead of every single day of the year. Each day can

then be assigned to a day-type that is closest to it in simi-
larity, based on observable day-ahead conditions. The corre-
sponding day-ahead network tariffs are then communicated
to prosumers.

However, as explained in Section I-C, and in contrast to
previous literature that relies on exogenous typical days,
we employ a clustering approach for determining the rep-
resentative day-types based on historical data. Each day in
our dataset corresponds to one data point, characterized by a
number of dimensions (features). In this paper, we employ
derivative features for clustering. Specifically, the chosen
features are based on centralized optimal power flow (OPF)
calculations on the historical data that quantify: a) the extent
of thermal and voltage limit violations (i.e. the extent of vio-
lating constraints (1d) and (1f)), when demand curtailment,
generation curtailment, and demand shifting are not allowed,
and b) the extent of optimal demand shifting (i.e. the optimal
values of the decision variables d↓i,t,d and d↑i,t,d ) and demand
/ generation curtailment when such actions are allowed.

Next, we use the k-means algorithm [38] in order to clus-
ter the days into k clusters. Each representative day-type is
comprized of 80% of the average active and reactive power
of loads and PV generation for each cluster and 20% of
the respective average values of the 5% worst days of the
cluster. The latter is measured in terms of curtailment costs
as produced by the centralized OPF calculations. In other
words, we enhance the significance of the worst days in the
clusters.

D. TESTING SETUP
The overall testing setup employed in our paper is illustrated
in Fig. 3. It includes the following modules:

1) CENTRALIZED OPF
In this model, the DSO optimizes the demand shifting
actions of the prosumers directly. This module is used for a)
extracting the derivative features of our clustering approach
(Section II-C), and b) for benchmarking our overall proposed
approach relative to the theoretically optimal cost of the DSO.

2) CLUSTERING
This module implements our proposed clustering approach
for devising representative day-types (Section II-C).

3) NETWORK TARIFF DESIGN (NTD) MODEL
This module involves the MIQP that is formulated in
Section II-B for designing network tariffs by modelling the
interaction of the DSO and prosumers. The model is solved
for each of the representative day-types, as determined by the
proposed clustering approach.

4) FORECASTING
The day-ahead forecasting module determines the day-type
to which the following day is assigned. The forecasting
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FIGURE 3. Illustration of testing setup.

approaches employed in our paper are described in
Section III-A.

5) PROSUMER MODEL
This module simulates the decision-making problem of the
prosumers and corresponds to the lower level problem of
Section II-B. The inputs to the model are the network tariffs
that are assigned to each day. The outputs are the optimal
demand shifting actions of the prosumers.

6) DSO MODEL
This module simulates the decision-making problem of
the DSO and corresponds to the upper level problem of
Section II-B. Its inputs are the demand shifting actions of the
prosumers. The outputs are the optimal curtailment actions
and operating costs of the DSO.

The combination of modules 4-6 constitutes an out-of-
sample testing procedure. We simulate daily operations as
follows. Given the network tariffs for each day-type, we per-
form the following steps for each day of the year (see Fig. 3):

a) Identify the day-type to which the day belongs. This is
performed using forecasting, as described in Section III-A.

b) Use the Prosumer model in order to obtain the optimal
demand shifting actions. This model considers the energy
prices and the DUoS tariffs that have been broadcast to
prosumers.

c) Use the DSO model in order to quantify the optimal
curtailment actions of the DSO. These curtailment actions
are influenced by the demand shifting actions of prosumers.
The model is used for computing the out-of-sample operating
costs of the DSO.

III. CASE STUDIES
A. DESCRIPTION AND INPUT DATA
The case studies aim at applying the proposed model in
order to demonstrate the impacts of different levels of tem-
poral/spatial granularity in the designed tariffs on cost effi-
ciency. In this context, we have implemented and compared
three cases for the designed tariffs:

FIGURE 4. Illustration of rural medium voltage feeder employed in the
case studies. Passive and active prosumers are indicated by brown and
green color, respectively. Orange color indicates network branches and
nodes with regular congestion.

- Flat: This constitutes the simplest, business-as-usual
case, where the network tariffs are fixed for every hour of
the day and every network node. This case is implemented
by introducing the following additional constraint (8) in the
MIQP model of Section II-B:

πi,t,d = πi′,t ′,d , ∀i, i
′
∈ I, t, t ′ ∈ T , d ∈ D (8)

- Hourly: In this case the tariffs can vary by hour but are
fixed for every node in the network. This case is implemented
by introducing the following additional constraint (9) in the
MIQP model of Section II-B.

πi,t,d = πi′,t,d , ∀i, i
′
∈ I, t ∈ T , d ∈ D (9)

- Hourly-Loc: This constitutes the case with the highest
spatial-temporal granularity. In this case, the tariffs can vary
by both hour and network node. This case is implemented
through the MIQP model of Section II-B without any modi-
fications.

Furthermore, we consider two alternative cases for the
forecasting approach employed in our out-of-sample testing
(Fig. 2):
-Persistence (S): According to persistence forecasting,

we assume that the type of the next day is identical to the type
of the current day. This case is meant to represent the simplest
forecasting approach that can be adopted by DSOs and thus
provides a lower bound for out-of-sample cost efficiency.
-Perfect (F): This idealized benchmark assumes perfect

forecasting. In other words, we assume that we can perfectly
anticipate the day type to which the following day belongs.
This case is meant to represent the most advanced forecasting
approach that can be adopted by DSOs and thus provides a
higher bound for out-of-sample cost efficiency.

The case studies are carried out on a model of a rural
medium voltage distribution feeder in Greece (Fig. 4) with
12 prosumers. Table 2 summarises basic input data, while the
full dataset, including the technical characteristics of the net-
work (resistances, reactances, apparent power limits) as well
as profiles of baseline demand and PV output of the 12 pro-
sumers, are included in a supplementary document [39].

Table 3 presents the maximum demand and PV generation
values of all prosumers. The demand curtailment penalty of
active and passive prosumers is differentiated in the case
study. Nevertheless, assuming an equal curtailment penalty
does not affect the emerging trends in the results.
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TABLE 2. Basic input data for the case studies.

We first analyze the network using the available historical
demand and PV output data. We find that the following
network congestion effects emerge regularly: a) the thermal
limits of the branches between nodes 13-15 are breached
during midday and evening hours due to high demand, b)
the thermal limit of the branch between nodes 27 and 28 is
breached during midday hours due to high PV output, c) the
lower voltage limits of nodes 30, 31, 32 and 33 are breached
during evening hours due to high demand (see also Fig. 4).

We assume that prosumers at nodes 8, 12, 19, 22, 24,
and 30 are passive. This implies that they do not exhibit
demand shifting flexibility. The demand shifting limit of the
remaining (active) prosumers is assumed to be identical and
varies between 0% and 30% in the scenarios that we exam-
ine below. The discomfort penalty associated with shifting
demand towards a particular period (t, d) is assumed to be
proportional to the baseline demand at (t, d). This implies
that prosumers feel less comfortable about shifting demand
towards periods during which they already operate many of
their loads. On the other hand, the discomfort penalty asso-
ciated with shifting demand away from a particular period
(t, d) is assumed to be inversely proportional to the base-
line demand at (t, d). This implies that prosumers feel less
comfortable about shifting demand away from periods during
which they operate few of their loads. The profiles of these
penalties for each prosumer with demand shifting flexibility
are included in the supplementary document [39].

The proposed model has been implemented in Julia [40]
using the package JuMP [41] and solved using the opti-
misation software Gurobi [42] on a computer with a
4-core 2.6 GHz Intel(R) XCore(TM) i7-4720HQ processor
and 16 GB of RAM.

B. DESIGN OF TARIFFS WITH DIFFERENT LEVELS OF
GRANULARITY
In this section, we consider 4 representative day-types in
our clustering approach (k = 4). We present the results
of the NTD module (Fig. 3) for each of the 3 variations
of DUoS tariffs. Figs. 5-7 present the optimal curtailment

TABLE 3. Maximum demand and PV generation of all prosumers.

actions of the DSO for each of the representative day-types,
under the Flat (Fig. 5), Hourly (Fig. 6) and Hourly-loc (Fig. 7)
schemes. The demand shifting limit, αi, of flexible prosumers
is assumed to be equal to 20%. For the same case, Figs. 8-10
present the optimal network tariffs, under the Flat (Fig. 8),
Hourly (Fig. 9) and Hourly-loc (Fig. 10) cases, respectively.
Finally, Table 4 presents the total curtailment costs of the
DSO for each of these 3 schemes. The table further reports
the theoretically optimal curtailment costs, as determined
by the centralised OPF. The results in the table consider
4 different demand shifting limits (0%, 10%, 20%, and 30%)
for active prosumers. We discuss 3 prosumers in our analysis
as indicative of the overall patterns in our case study, and
because of their proximity to the key congested locations.

The calculated tariffs under the Flat tariff case are illus-
trated in Fig. 8. By design, flat tariffs fail to provide an eco-
nomicmotivation to prosumers for mobilising their flexibility
in shifting demand. This results in congestion. Consequently,
the total curtailment costs are equal to their value under a
scenario without demand flexibility (αi = 0%), irrespectively
of the actual demand shifting limit of the active prosumers (as
indicated in Table 4). No curtailment is required for the first
day-type, as indicated in Fig. 5. Note that the first day-type
corresponds to the largest cluster, and consists of 154 days.
The second day-type, which consists of 148 days, involves
mostly summer days with high PV output leading to conges-
tion of the branch between nodes 27 and 28. This, in turn,
necessitates the curtailment of PV output at node 28. The
third and fourth day-types involve significantly fewer days,
i.e. 37 and 26 days, respectively. These day-types are char-
acterised by high demand and low PV output. This leads to
both thermal and voltage congestion effects. Consequently,
it is necessary to curtail demand at nodes 17 and 32.

Under the Hourly scheme, tariffs with temporal variation
are determined by the NTD module for the three representa-
tive day-types characterised by congestion effects. The need
for generation / demand curtailment in these day-types is
indicated Fig. 6. The hourly tariffs mobilise demand shifting
and thereby reduce curtailment, as indicated in Fig. 6. The
associated costs are also reduced, as indicated in Table 4.
Concretely, in the second representative day-type, higher
prices apply in the high-demand periods 21-22 and lower
prices apply in periods 14-16 when the system experiences
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FIGURE 5. Demand (dem.) and generation (gen.) curtailment under the
Flat tariff case and a demand shifting limit of 20%.

FIGURE 6. Demand (dem.) and generation (gen.) curtailment under the
Hourly tariff case and a demand shifting limit of 20%.

FIGURE 7. Demand (dem.) and generation (gen.) curtailment under the
Hourly-loc tariff case and a demand shifting limit of 20%.

high PV output. This is indicated in Fig. 9. Consequently,
the tariff induces demand shifting towards the latter periods.
This results in lower PV curtailment, as indicated in Fig. 6.
The only exception to this beneficial effect of the Hourly
case, relative to the Flat case, is observed during hours
14-15 of the fourth representative day-type. During these
hours, the required demand curtailment for the prosumer at

FIGURE 8. Flat network tariffs under a demand shifting limit of 20%.

FIGURE 9. Hourly network tariffs under a demand shifting limit of 20%.

FIGURE 10. Hourly-loc network tariffs under a demand shifting limit of
20%.

node 17 is increased. The reason behind this effect lies in
the absence of locational granularity in the designed tariffs.
Consequently, it becomes impossible to balance network con-
gestion effects associated with prosumers at different nodes.
In this particular example, a lower tariff is introduced during
hours 14 and 15 in order to mobilise demand shifting towards
these hours by prosumers at nodes 32 and 33. This aims

132936 VOLUME 9, 2021



P. Pediaditis et al.: Bilevel Optimization Model for Design of DUoS Tariffs

TABLE 4. Total curtailment costs (in e) for k = 4 clusters.

TABLE 5. Total use-of-system costs of all prosumers (in e) for k = 4
clusters.

TABLE 6. Execution times for each scheme.

to address voltage congestion effects occurring later in the
day. However, this lower tariff also induces demand shifting
towards the same hours by prosumers at nodes 16 and 17.
This, in turn, aggravates the thermal congestion effects on
the branches between nodes 13-15. Thus, such a short-term
local aggravation might occur as often as days of day-type
4 emerge (26 per year).

Under the Hourly-loc scheme, this challenge is addressed
by introducing locational, in addition to temporal, granularity
in the designed tariffs. The resulting tariffs are presented
in Fig. 10. These tariffs induce locationally differentiated
demand shifting actions. As a result, this further reduces cur-
tailment, as demonstrated in Fig. 7, and the associated costs,
as demonstrated in Table 4. For the example of the fourth
representative day-type, which we discuss above, the tariff
offered to the prosumer at node 17 does not include a lower
value at hours 14 and 15 anymore. It is worth noting that the
total curtailment costs under this tariff are almost identical
to the benchmark value of perfect coordination, as we can
observe in Table 4. Finally, although the tariff pattern includes
frequent changes, this is not expected to drive communication
speed and reliability concerns, since the tariffs are computed
and communicated annually, while the specific tariff for the
following day is chosen in the day ahead horizon.

Table 5 presents the total use-of-system costs of all pro-
sumers under each of the examined tariff schemes and
demand shifting scenarios. The emerging trends follow the
trends of the total curtailment costs (Table 4): the prosumers’
use-of-system costs are reduced as the granularity of the
employed tariff scheme is enhanced and the demand shifting
flexibility is increased.

TABLE 7. Out-of-sample total curtailment costs (in e) and efficiency (%)
for k = 4 and a demand shifting limit of 20%.

We conclude this analysis with Table 6, which presents
the required execution time for each of the examined sce-
narios. The results demonstrate that the Hourly tariff scheme
exhibits higher execution times than the Hourly-loc tariff
scheme, because the model attempts to balance conflicting
network congestion effects at different locations through a
locationally uniform tariff (i.e., through fewer degrees of
freedom). It should be also noted that the reported execution
times (in the scale of hours) are deemed acceptable since the
DUoS tariff design task is performed once every year in our
examined framework.

Finally, we have performed a meta-analysis to investigate
the error introduced by the employment of the LinDistFlow
model, with respect to a complete, non-linear AC power flow
model for the net injections induced by the calculated tariffs.
The results have indicated that the LinDistFlow model does
not introduce a significant loss of accuracy; for example,
the loss of accuracy in voltage for the last node (33) during
the most congested day-type 4 is 0.5%.

C. OUT-OF-SAMPLE VALIDATION
This section presents the results of the out-of-sample testing
approach that is described in Section II-D. Starting from the
case with k = 4 clusters, Table 7 presents the out-of-sample
curtailment costs of the DSO. We assume a demand shifting
limit of 20% for active prosumers. We report results for
each of the 3 tariffs, and each of the 2 examined forecasting
approaches. The table also presents the benchmark results of
perfect coordination that are determined by the centralized
OPF. We define the cost reduction of each scheme as the
savings in yearly curtailment costs relative to the flat tariff.
The optimal cost reduction is that achieved by the centralized
OPF, performed daily. We define the cost efficiency of a tariff
as the percentage (%) of the optimal cost reduction achieved
by the tariff in the validation runs.

The out-of-sample results exhibit the same trends as the
results produced by the NTD module in Section III-B. Con-
cretely, we observe a reduction in curtailment costs, and
thus an increase in the % efficiency, as we move towards
more granular tariff designs. Furthermore, as expected,
the curtailment costs are reduced when we assume a perfect
forecasting approach compared to a simple persistence fore-
casting approach, since the latter is naturally characterized by
forecasting errors. The only exemption lies in the Flat case,
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TABLE 8. Cost efficiency (%) using the proposed methodology for
different numbers of clusters and a demand shifting limit of 20%.

where demand shifting flexibility is not mobilized. Conse-
quently, the forecasting approach does not affect the results.

In addition, we perform a sensitivity analysis on the num-
ber of representative day-types (k) that are employed in our
clustering approach. The results are presented in Table 8.
Under a perfect (F) forecasting approach, as the number
of clusters increases, the efficiency of both Hourly and
Hourly-loc tariffs is enhanced. This is due to the fact that
additional clusters allow for a more complete representation
of the varying operating conditions in the designed tariffs.
Note, however, that the incremental gain is reduced as k
increases. Under a simple persistence forecasting approach
(S), such a gain is not always emerging, since a higher number
of clusters aggravates forecasting errors.

Finally, we consider a case where the representative
day-types are based solely on seasons [23]. Seasonal tariffs
have been considered before in practice, see for example [25].
In the seasonal case, days are simply grouped according to
the season of the year to which they belong, without using
any learning techniques. Representative day-types for each
season are constructed using the k-means clustering method-
ology that is explained in the last paragraph of Section II-C.
Therefore, the first two rows of Table 8 correspond to 4 clus-
ters and they demonstrate that the more advanced cluster-
ing approach proposed in Section II-C achieves significant
benefits with respect to the simpler seasonal approach under
perfect forecasting.

IV. CONCLUSION
Considering the emerging large-scale integration of DERs
and relevant opportunities around exploiting their flexibility
to increase the economic efficiency of distribution network
operation, this paper has focused on the problem of designing
DUoS tariffs that are more adaptive to short-term operating
conditions. We have addressed this problem through a bilevel
optimization model, capturing the interaction between a DSO
designing the DUoS tariffs at the upper level and prosumers
with PV generation and flexible demand DERs who react to
the tariffs at the lower level. In contrast to previous works, this
model considers a detailed representation of the distribution
network power flow constraints, different levels of temporal
and spatial granularity in the designed tariffs, as well as

discrete tariff levels for preserving intelligibility. Further-
more, instead of relying on exogenous typical days, the devel-
oped model employs a clustering approach to design tariffs
that adapt to the forecasted conditions of the upcoming day.

The results of the examined case studies have demonstrated
that tariffs with higher degrees of temporal and spatial gran-
ularity can effectively mitigate the implications of network
congestion effects and enhance the economic efficiency of
distribution network operation, thus constituting a policy
worth considering by NRAs and DSOs. Furthermore, the pro-
posed clustering approach is validated through out-of-sample
simulations, demonstrating that a higher number of clusters
enhances the economic efficiency of tariff schemes with
temporal and spatial granularity, provided that an effective
forecasting approach is adopted.
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