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ABSTRACT Power Flow solution of realistic ill-conditioned systems has recently attracted huge attention.
Nevertheless, there are still some gaps in this field. For example, most of available references do not provide
exhaustive theoretical analysis about convergence properties of proposed approaches. In addition, efficient
solution of large-scale ill-conditioned systems is still an open topic. This paper tackles these issues by
comprehensively studying the suitability of the Mann Iteration Process for the solution of ill-conditioned
systems. A comprehensive theoretical analysis is provided, from which is demonstrated that the Mann
Iteration Process has with asymptotic stability, may achieve a high convergence rate and constitutes a
robust methodology, improving the contractive properties of the Newton-Raphson method. Moreover,
some interesting links with other Power-Flow approaches are obtained as by-product. Several numerical
experiments serve to confirm the theoretical findings and to compare the performance of the Mann Iteration
Process with other well-known PF solvers. In all cases, the results obtained with the Mann Iteration Process
are superior to that obtained using other methodologies, being able to efficiently solve various large-scale
ill-conditioned systems.

INDEX TERMS Power-flow analysis, ill-conditioned systems, large-scale systems, Mann Iteration Process.

I. INTRODUCTION
A. MOTIVATION
In power system analysis, Power-Flow (PF) supposes one of
the most important computational tool, finding applications
in control, operation and optimization of power systems,
among others [1]. PF is a mathematical problem, which
consists of solving the nonlinear equations that relate nodal
voltages with power flows through the lines. As any other
nonlinear problem, PF cases can be categorized as well or
ill-conditioned [2]. While the formers are easily solvable
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using standard solvers like the Newton-Raphson method
(NR) [3], the latter may suppose a challenge for conventional
techniques [4].

During decades, PF ill-conditioned cases were very infre-
quent. However, this trend is changing nowadays and
ill-conditioned PF problems are becoming more frequent
in power system operation [5]. The main reason for that
is an overall growing demand along the impossibility of
upgrading infrastructures, which is leading the power systems
to be operated close to their operability limits [6]. Never-
theless, other reasons are provoking ill-conditioning in PF
cases, like the increasing deployment of electronic devices
(FACTS and D-FACTS) [7], which contribute to modify the
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line impedances so that they provoke ill-conditioning of the
Jacobian matrix.

Due to the reasons above, the PF solution of ill-conditioned
systems is a hot topic nowadays, as evidenced by various
recent works [4]. Normally, this kind of cases is addressed
by using robust PF solvers, which present better numerical
stability than NR, which can be considered the standard
PF solution technique. Although many efforts have been
made in addressing this issue (see Literature Review), most
of the available literature lacks of an exhaustive theoreti-
cal analysis about the mathematical properties of the devel-
oped PF solvers. In this regard, it is necessary to check
the robustness and convergence properties of the numerical
techniques. As a sake of example, it is desirable that robust
methodologies meet the Contraction Mapping Theorem (e.g.
see [8]). However, this kind of analysis is infrequent in
the related literature. Moreover, it has been well-reported
in many references (e.g. see [9]), that most of available
robust PF solvers are very inefficient, which has limited
its application in industry tools. Finally, it is surprising
that, despite the vast literature available, many promising
nonlinear solvers have not been explored in PF studies yet.
This paper aims to give a first step at filling the gaps
above.

B. LITERATURE REVIEW
The first steps in PF solution of electrical networks were
given at 60-70’s, with the development of solution routines
based on Gauss-Seidel [1] and NR [3]. Posteriorly, some
authors focused on the inefficiency problems caused by
Jacobian calculation in Newton-based solvers thus applying
sparsity routines [10] and decoupled techniques [11], [12].
Since then, many advances have been made in the PF
calculation from different perspectives, developing lin-
ear models [13]–[15], applying or developing high order
Newton-like methods to the PF analysis [16], [17] or deriving
alternative formulations [18]–[20].

Ill-conditioning in PF problems was firstly reported
by Stott [21] and firstly addressing by Sasson [22] and
Iwamoto [23]. Both authors aimed at improving the con-
vergence characteristics of NR by posing minimization
techniques. However, the algorithm developed by Sasson
suffered of frequent local trapping issues. On the contrary,
the method posed by Iwamoto resulted very effective for the
first studied ill-conditioned cases, which motivated different
developments based on this technique [24], [25]. Certainly,
the Iwamoto’s method worked well in the first studied
ill-conditioned cases due to its small size (< 100 buses);
however, this method has been reported to be quite inefficient
in realistic large-scale ill-conditioned cases [2]. Moreover,
it also suffers of local trapping issues [1]. Other authors
tried to address PF calculation in ill-conditioned cases by
developing second Taylor expansions of the PF equations
[26], [23]. However, this idea was rapidly abandoned due to
the high computational cost of calculating the Hessian matrix
of the PF equations.

During 80-90’s PF ill-conditioned cases were few studied
because they were very infrequent in real life. However,
this trending changed in early 2000’s, due to the increment
of ill-conditioned problems observed in real cases. This
fact motivated Milano to apply the Continuous Newton’s
method to PF studies in [2]. The Continuous Newton’s
method establishes a common framework between systems
of nonlinear equations and autonomous dynamic systems.
On the basis of this analogy, it is determined that any
methodology suitable for solving dynamic systems, can be
successfully applied for solving PF problems. This was
demonstrated in [2], where two solvers based on the Forward
Euler method (FE) and the 4th order Runge-Kutta technique
(RK4) was developed. Results obtained with these solvers in
realistic ill-conditioned cases were promising, outperforming
other classical approaches. These good results motivated the
authors to further apply the Continuous Newton’s method by
developing solvers based on the Adams-Bashforth’s meth-
ods [27], Bulirsch-Stoer algorithm [28] and Runge-Kutta
formulas [9]. Despite their apparent advantages, the solvers
based on the Continuous Newton’s method may be still
inefficient in realistic cases and totally not competitive with
NR in well-conditioned problems. Indeed, while NR only
requires one Lower-Upper (LU) factorization each iteration,
RK4 requires four. In addition, the convergence order of
these methods is frequently linear, while NR converges with
quadratic converge rate.

The other category of solvers is based on the Levenberg
method [6], [7], [29]–[32]. By this technique, stability of NR
is improved by intentionally well conditioning the Jacobian
matrix. This is achieved by introducing the so-called damping
factor and the regularization matrix. The methods based on
the Levenberg procedure have a computational burden com-
parable to NR, requiring only an LU decomposition each iter-
ation, and their ability to manage with ill-conditioned cases
has been empirically proved [7], [31]. However, these tech-
niques may converge to a non-physical solution, as reported
in [33]. This is due to the damping factor modifies the PF
equations when its value is high. However, a high value of
the damping factor is necessary to ensure the stability of the
algorithm and the full-rank of the Jacobian matrix. This issue
is normally addressed by developing adaptive mechanisms
for the damping factor, so that it is firstly fixed high to
posteriorly be reduced as the algorithm evolves. Nevertheless,
there is not still a unified a formal framework for the treatment
of the damping factor in Levenberg-based solvers.

Instead of using conventional nonlinear iterative solvers,
other authors have tried to address PF ill-conditioned
problems from alternative point of views. Such is the
case of the metaheuristic-like solvers [34]; Continuation
approaches [6], [35], [36] and homotopy/holomorphic algo-
rithms [37]–[39]. Nevertheless, these solvers still present
serious problems. For example, continuation and metaheuris-
tic solvers have been reported to be computationally inef-
ficient [40], while the holomorphic approaches may lead to
non-physical solutions [41]. In addition, this kind of methods
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normally presents a rigid coding structure, which hinders the
simple integration of electronic devices, alternative formula-
tions or control routines.

Some PF solvers avoid the calculation of the Jacobian
matrix and thus its factorization. Such is the case of the
Forward-Backward Sweep algorithm [42] and the implicit
Z-bus formulation [43], [44]. These techniques have been
successfully applied to radial (or weakly meshed) distribu-
tion networks. However, while the Forward-Backward Sweep
method can be only applied to radial networks and frequently
requires many iterations to converge (see results in [45]), con-
vergence issues have been reported for the implicit Z-matrix
approach in systems with many PV buses [46].

C. CONTRIBUTIONS AND PAPER ORGANIZATION
A careful analysis of the most recent contributions confirms
that efficient calculation of ill-conditioned systems is still an
open topic, especially in realistic large-scale systems. Despite
that, the authors have detected that scarce efforts have been
made on applying some promising classical nonlinear iter-
ative solvers in PF analysis. In this regard, the Fixed Point
Iteration methods (FPI) may offer very good results. This
supposition is founded on the enhanced convergence char-
acteristics showed by this kind of techniques, which may be
frequently encountered in a huge amount of studies available
in the literature (see e.g. [47] and references therein).

To the best of our knowledge, only the reference [48]
has covered the application of FPI in PF analysis. How-
ever, this work is only limited to pose NR and the classical
Gauss-Seidel techniques in the form of FPI. Consequently,
applicability of other FPI in PF studies has not been studied
yet. With the aim to fill this gap, this paper deeply analyses
the applicability of the Mann Iteration Process (MIP) in PF
analysis.

FIGURE 1. Flowchart followed in the development of this paper.

In order to be rigorous, some relevant theoretical results
are found and posteriorly experimentally confirmed. As a
by-product, some interesting links with other existing
approaches are encountered. Suitability of MIP for PF
analysis is also discerned by comparing its robustness and
efficiency with other popular robust PF approaches in solving

several practical large-scale ill-conditioned systems. From a
methodological perspective, this paper contributes by devel-
oping a novel PF solver based on MIP, which is competitive
with other well-known techniques, which is demonstrated by
numerical results. For the sake of summarize, Fig. 1 shows
the flowchart following for the development of this paper.

The remainder of this paper is organized as follows.
Necessary background for properly tackling the targets of this
paper is summarized in Section II. Convergence properties of
MIP are analysed in Section III. Section IV presents a study
about the stability of MIP. Section V presents some relevant
comments about the so-called evolution parameter (µ). Some
interesting links with other PF techniques are commented
and illustrated in Section VI. Several numerical experiments
with results are reported in Section VII. Finally, the paper is
concluded with Section VIII.

II. BACKGROUND
A. PF PROBLEM AND ILL-CONDITIONED CASES
The PF problem in polar coordinates (see Appendix A for
details), is defined as a set of n nonlinear equations as
follows:

g (x) = 0 (1)

where, g ∈Rn 7−→ Rn are the PF equations and x ∈ Rn is
the PF state vector. When the system (1) is well-conditioned,
its solution can be easily found by using conventional iter-
ative techniques like NR. However, when the problem is
ill-conditioned, most of PF solvers might experience conver-
gence difficulties. A formal definition of an ill-conditioned
system is given below.

Definition 1 [2]: Ill-conditioned system: solution of PF
does exist, however, it is not reachable using NR and a flat
start (e.g., all load voltage magnitudes equal to 1 and all
voltage angles equal to 0).

B. THEORETICAL BACKGROUND
Some relevant definitions and Theorems are provided in this
section.

Definition 2 [8]. Nonexpansive and Contractive Map-
pings: let C ⊂ Rn be a nonempty convex subset of a real
Banach space. A mapping T : C ⊂ Rn

→ Rn is called:
• Nonexpansive: if ‖T (x)− T (y)‖ ≤ ‖x−y‖ ,∀x, y ∈ C
• Contractive: if there exists a constant α< 1 such that
‖T (x)− T (y)‖ ≤ α ‖x− y‖ ,∀x, y ∈ C

Definition 3. Hyperbolic points: a fixed point x∗ of a map
T : C ⊂ Rn

→ Rn is hyperbolic, if the Jacobian of the
equation Ṫ = T (x)− x at x∗ has no eigenvalues with a zero
real part. In addition, a hyperbolic point is asymptotically
stable if all the eigenvalues of Ṫ at x∗ have a modulus ≤ 1.
A hyperbolic point can be:
• Sink: if all the eigenvalues of the Jacobian of Ṫ has a
negative real part.

• Source: if all the eigenvalues of the Jacobian of Ṫ has a
positive real part.
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One expects that fixed points of an iterative map to be
sinks, in order to ensure its stability. The following Theo-
rem provides a sufficient condition about a sequence {xk}∞k=0,
defined by an iterative map xk+1 = T (xk), for converging
to x∗

Theorem 1 [8]. Contraction-Mapping Theorem: suppose
that T : C ⊂ Rn

→ Rn maps a closed set C0 ⊂ C into itself
and that:

‖T (x)− T (y)‖ ≤ α ‖x− y‖ ,∀x, y ∈ C0 (2)

where,α < 1 is the Lipschitz constant. Then, for any x0 ∈ C0,
the sequence xk+1 = T (xk) converges to an unique fixed
point x∗ of T in C0, and∥∥xk − x∗∥∥ ≤ ( α

1− α

)
‖xk − xk−1‖ (3)

holds.
By Theorem 1, it is established that contractive mappings

present better convergence properties than expansive ones,
since the latter do not meet the premises of Theorem 1.
Moreover, it is worth mentioning that Theorem 1 estab-
lishes sufficient rather than necessary conditions, i.e. the
sequence xk+1 = T (xk) may converge to x∗ even if T is
not contractive.

C. MIP FOR PF ANALYSIS
With the aim of finding fixed points of nonexpansive map-
pings, Picard introduced the following iterative formula [49]:

xk+1 = T (xk) (4)

where the subscript stands for the iteration counter. Clearly,
most of PF solvers can be established in form of Picard
iteration. Thus, as sake of example, a NR iterative procedure
for solving the PF equations may be written as follows:

T (xk) = xk −
[
g′ (xk)

]−1 g (xk) (5)

where, g′ = ∇xg ∈Rn×n is the PF Jacobian matrix. It is
well-known that Picard iterations of some nonexpansivemap-
pings fail to converge even on a Banach space. In order
to enhance the convergence properties of (4), Krasnoselskii
introduced the following FPI [50]:

G̃ (xk) =
1
2
(xk + T (xk)) (6)

Intuitively, a more general version of (6) can be established
introducing a real parameter µ instead of taking it fixed.
This idea was explored in [51] arising in the so-called Mann
Iteration Process (MIP), which is given by:

G (xk) = (1− µk) xk + µkT (xk) (7)

In this paper, µ will be called evolution parameter.
As clearly seen, (6) and (7) are equivalent for µ = 1

2 . Now,
it is worth questioning if the solution of PF (namely x∗ such
that g

(
x∗
)
= 0) is a fixed point of (7), which is proved by

the following Theorem.

Theorem 2. Fixed points of MIP: let x∗ be a fixed point of
a mapping T : C ⊂ Rn

→ Rn such that T
(
x∗
)
= x∗. Then,

x∗ is also a fixed point of the mapping G : C ⊂ Rn
→ Rn

defined by (7).
Proof: Let us consider.

G
(
x∗
)
= (1− µk) x∗ + µkT

(
x∗
)

(8)

Since x∗ is a fixed point of T one can write.

G
(
x∗
)
= (1− µk) x∗ + µkx∗ (9)

Rearranging (9), the following equality is easily obtained:

G
(
x∗
)
= x∗ (10)

Which completes the proof. �
Trivially, it can be deduced that findings encountered in

Theorem 1 are also applicable to (6), since it is a particular
case of (7). It is worth mentioning that Theorem 2 establishes
the necessary conditions. Thereby, one can also claim that
MIP does not converge to x∗ if it is not a fixed point of T .
Therefore, by Theorem 2, it is easily concluded that x∗ has
to be a fixed point of T , since G would not constitute a PF
solver otherwise.

III. CONVERGENCE ANALYSIS
In this Section, the convergence order and local convergence
of MIP are studied.

A. ORDER OF CONVERGENCE OF MIP
The order of convergence is the characteristic of any FPI that
defines how quickly the iterative procedure converges to a
fixed point. For instance, it is well-known that NR (5) has a
quadratic order of convergence while other methods present
cubic or higher convergence rates [16], [17]. The following
Theorem is devoted to studying the order of convergence of
MIP, for which the Taylor expansion technique has been used
(e.g. see [52] for further details).

Theorem 3. Order of Convergence of MIP: let T : C ⊂
Rn
→ Rn be a map with order of convergence p. Then, p

is the maximum order of convergence attainable by the map
G : C ⊂ Rn

→ Rn defined by (7), and it is achieved with
µ = 1. Otherwise, its convergence remains linear.

Proof: Let us define the following error function:

ε (G (x)) = G (x)− x∗ (11)

Applying (11) to MIP gives:

ε (G (xk)) = (1− µk) xk + µkT (xk)− x∗

= (1− µk) ε (xk)+ µkε (T (xk)) (12)

Since T has an order of convergence p, one can write:

ε (G (xk))=(1− µk) ε (xk)+ µkε (xk)p + O
(
ε (xk)p+1

)
(13)

The proof is completed. �
By Theorem 3, it is claimed that the convergence order of

MIP is ruled by the mapping T . In this regard, MIP is not
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devoted to accelerating the convergence of T . Nevertheless,
in contrast to most of available robust PF solvers, which
present linear convergence (see e.g. [2] or [23]), MIP can take
advantage of convergence features of the mapping T , in order
to achieve high convergence speed. For example, let us sup-
pose that the mapping T is defined by NR (5), then, MIP may
achieve up to quadratic convergence. However, this finding
does not suppose any advantage with respect to NR or other
available solvers. Nevertheless, as shown in Section III.B,
MIP makes wider convergent T . In other words, MIP is
introduced for enhancing the robustness characteristics of T ,
while its convergence featuresmay be preserved and achieved
by just manipulating the evolution parameter. Immediately,
one can guess the main advantage of MIP compared with (6),
since the order of convergence of the latter always remain
linear.

B. ON THE CONTRACTIVE PROPERTIES OF MIP
Next, let us study the contractive properties of MIP.

Theorem 4. Contractive properties of MIP: let T : C ⊂
Rn
→ Rn be an inexpansive map. Let G : C ⊂ Rn

→ Rn be
a mapping defined by (7). Suppose that both T and G map a
closed set C0 ⊂ C into itself. Then, the following inequality
holds:

‖G (x)− G (y)‖ ≤ ‖T (x)− T (y)‖ ≤ ‖x− y‖ ,∀ x, y ∈ C0

(14)

Proof: By observing (7), one can write:

‖G (x)− G (y)‖ = ‖µ (T (x)− T (y))+ (1− µ) (x− y)‖

(15)

By triangular inequality, the following condition holds:

‖G (x)− G (y)‖ ≤ µ ‖T (x)− T (y)‖ + (1− µ) ‖x− y‖

(16)

Since T is nonexpansive, the worst case would be
‖T (x)− T (y)‖ = ‖x− y‖. Keeping this in mind, the
equality (17) holds

µ ‖T (x)− T (y)‖ + (1− µ) ‖x− y‖ = ‖x− y‖ (17)

Consequently, one can write:

‖G (x)− G (y)‖ ≤ ‖T (x)− T (y)‖ ≤ ‖x− y‖ (18)

Which completes the proof. �
In the light of the result of Theorem 4, the following ideas

can be deduced:
• If T converges, G also converges, since contractivity on
T necessarily entails contractivity on G.

• If T diverges, G may still converge. One can
observe that inequality (18) may be strict even when
‖T (x)− T (y)‖ = ‖x− y‖. In other words, G may
be contractive when T is strictly inexpansive. Conse-
quently, the mapping defined by (7) could meet the
premises of Theorem 1 even when T does not.

• A direct deduction from the preceding point leads to
assert that mapping G is always wider convergent than
mapping T .

• It is worth remarking that MIP is not globally conver-
gent. Theorem 4 establishes sufficient conditions for
convergence, if and only if x0 ∈ C0 (see Theorem 1).

From the points above is deduced that MIP constitutes a
robust map, at least, more robust than T , which makes it suit-
able for PF calculation of ill-conditioned systems. Now, let us
enunciate the following conjecture, which will be empirically
validated in Section VII.
Conjecture 1: Lipschitz constant of the contractive map-

ping (7): let G : C ⊂ Rn
→ Rn be a map defined by (7).

Consider a closed set C0 ⊂ C If the following inequality

η =
‖G (xk−1)− G (xk)‖
‖xk−1 − xk‖

≤ 1− µ,∀x ∈ C0 (19)

holds, then G converges to an unique fixed point x∗ ∈ C0.
Equation (19) is an indirect way to calculate the Lipschitz

constant α of MIP. It is worth mentioning that inequality (19)
holds just in C0 where MIP is contractive. In addition, (19)
does not suppose a necessary condition for convergence
of MIP.

IV. STABILITY OF MIP
The stability ofMIP at x∗ such that g (x∗) = 0 is studied using
the Definition 3, by assimilating it to a dynamic system (see
[2] for further details). Without loss of generality, the map T
defined by (5) is considered.

Theorem 5. Hyperbolic points of MPI: let G : C ⊂ Rn
→

Rn be a map defined by (7). Let T : C ⊂ Rn
→ Rn be a map

defined by (5). Suppose that x∗ is a fixed point of G such that
g (x∗) = 0. Then, all the eigenvalues of the Jacobian of the
function Ġ = G (x)− x at x∗ have a real part equal to µ

Proof: the function Ġ of MPI is given by:

Ġ = µ (T (x)− x) (20)

By differentiating (20) with respect to x, one obtains:

∇xĠ = µ (∇xT (x)− I) (21)

where, I ∈ Rn×n is the identity matrix. In the case of T is
defined by (5), one can write:

∇xT (x) = I −∇x
[
g′ (x)

]−1 g (x)− [g′ (x)]−1 g′ (x)
= −∇x

[
g′ (x)

]−1 g (x) (22)

Substituting (22) into (21), one obtains:

∇xĠ = µ
(
−∇x

[
g′ (x)

]−1 g (x)− I) (23)

Evaluating (23) at x∗

∇xĠ
∣∣
x∗ = µ

(
−∇x

[
g′
(
x∗
)]−1 g (x∗)− I) = −µI (24)

The proof is completed. �
Result of Theorem 5 deserves various comments:
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• If the procedure described in (20)-(24) is applied to the
map defined by (5), it is obtained that all eigenvalues
at equilibrium point has a real part equal to −1 (see [2,
Sec. III.A]). Therefore, ifµk < 1, then it can be asserted
that all eigenvalues of MIP lie closer to the origin. From
this assertion, it is deduced that MIP is generally more
stable than NR.

• It is worth noting that (24) only holds at x∗. For
the remainder iterative procedure, one should con-
sider (23), fromwhich is deduced that all the eigenvalues
of its associated Jacobian have a real part propor-
tional to

[
g′ (x)

]−1 g (x). Here, the evolution parameter
plays a crucial role in order to counteract the effect
of these factors and keep the map G as stable as
possible.

V. CONDITIONS ON THE EVOLUTION PARAMETER
Now, some conditions about the evolution parameter are
established. Typically, the following two conditions are
imposed to µ (see e.g. [53]):

i.
∑
∞

k=0 µk = ∞

ii.
∑
∞

k=0 µ
2
k <∞

Basically, conditions (i) and (ii) forceµ ∈ (0, 1). However,
in PF analysis, other conditions can be deduced from the
results obtained in the provided Theorems:

a) In order to achieve high convergence speed, µ should
be increased to be equal to 1 (Theorem 3).

b) In order to keep the equilibrium point x∗ asymptoti-
cally stable, the evolution parameter has to be positive.
In addition, µk ≤ 1,∀k(Theorem 5).

c) In order to keep the mapping (7) as stable as possible,
the evolution parameter, at least for initial iterations,
should be inversely proportional to

[
g′ (x)

]−1 g (x) and,
in all cases, µ0 < 1 (Theorem 5).

From a-c, the following three conditions are imposed on
the evolution parameter:

iii. lim
k→∞

µk = 1

iv. µk ∈ (0, 1]
v. µ0 < 1

It is worth noting that conditions (iii)-(v) are more specific
than (i)-(ii). The formers have been imposed in order to obtain
the best performance of MIP in PF analysis. For example,
although by Theorem 5 it is recommend that µk < 1, this
point may be considered too much restrictive, since MIP
reaches its maximum order of convergence for µ = 1 (see
Theorem 3). Attending to deductions (a)-(c) and conditions
(iii)-(v), the following simple rule is proposed for updating
the evolution parameter.

µk+1 = min
(∥∥∥[g′ (x)]−1 g (x)∥∥∥−1

∞

, 1
)
, µ0 < 1 (25)

It can be easily observed that (25) addresses the
conditions (i)-(v).

VI. LINKS WITH OTHER APPROACHES
A. LINKS WITH EULER METHOD AND ZHANG DYNAMICS
Equation (20) can be conceived as a set of autonomous dif-
ferential equations as follows:

Ġ = µ (T (x)− x) , x (0) = x0 (26)

Again, if map T is defined by (5), the function (26) can be
written as follows:

Ġ = µ
(
x−

[
g′ (x)

]−1 g (x)− x) = −µ [g′ (x)]−1 g (x)
(27)

Rewriting (27) in the form of discrete map, one obtains:

xk+1 = xk − µk
[
g′ (xk)

]−1 g (xk) (28)

Equation (28) corresponds to the integration of func-
tion (27) using the Forward Euler methodology taking µk
as step size. Immediately, one can find a link with the
Zhang dynamics [54]. In this case, (28) corresponds with [55,
eq. (13)] using linear activation function and a step size equal
to µk .

B. DIFFERENCES WITH HOMOTOPY
A further insight on the equation (7) may lead to deducing
that MIP is actually a homotopy method, due to its striking
similitude with the linear homotopy (see [56, Sec. I]). Never-
theless, if the conditions marked in [57, Th. 3] are observed,
it can be deduced that MIP is not a homotopy method, since
some conditions of this Theorem are not met by (7). An even
clearer difference can be found using theDavidenko’smethod
[57], which computes the variation of x as a function of the
evolution parameter as follows:

dx
dµ
= − [∇xG]−1 ∇µG (29)

By evaluating (29) at x∗ for equation (7) one obtains:

dx
dµ

∣∣∣∣
x∗
= 0 (30)

Equation (30) says that, at the equilibrium point x∗, the
state vector x does not vary. In other words, x∗ is a fixed
point of (7), which is a distinctive feature of FPI maps. On the
other hand, if one evaluates (29) at x∗ for the linear homotopy
using, for example, the Newton formula for the easier system
[55], the following result is obtained:

dx
dµ

∣∣∣∣
x∗
= −

[
g′
(
x∗
)]−1 g (x0) (31)

Equation (31) indicates that x∗ is not a fixed point of
the linear homotopy, in other words, the linear homotopy is
not a FPI. Indeed, homotopy methods find the solution of
g (x) following a connected curve between two different sys-
tems (easy and difficult ones). Therefore, unlike FPI which
undoubtedly describe an iterative map, homotopy techniques
does not actually iterate. In that sense, MIP clearly defines an
iterative map rather than a homotopy.
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Algorithm 1 PF Solution Procedure Using MIP
1: Let x0, ε, kmax and µ0 < 1 be given
2: Initialize iteration counter k ← 0
3: while ‖g (xk)‖∞ ≥ ε do
4: xk+1← Solve (7)
5: if ‖g (xk+1)‖∞ < ε

6: break #Convergence
7: endif
8: µk+1← solve (25)
9: k ← k + 1
10: if k > kmax
11: break #Fail
12: endif
13: end
14: return solution xk

VII. NUMERICAL EXPERIMENTS
This Section presents various numerical results which aim
at validating MIP for PF calculation, along to check their
mathematical characteristics empirically. To this end, the PF
calculation using MIP is summarized in Algorithm 1 using
pseudocode. Here, ‖g‖∞ has been imposed as convergence
criterion. Moreover, the iterative procedure is considered
failed if the iteration counter k surpasses a predefined thresh-
old namely kmax, which normally indicates divergence. Sim-
ilar procedures have been used for other solvers considered
in the simulations, simply replacing the MIP mapping (7) by
the corresponding numerical iterative scheme.

FIGURE 2. Value of ratio η in the IEEE 9-bus system.

A. EMPIRICAL VALIDATION OF CONJECTURE 1
This Section is devoted on empirically validating the
Conjecture 1. To do that, the ratio η is evaluated for different
values of the evolution parameter. In this case, µ has been
taken constant during the iterative procedure, hence line #8 of
Algorithm 1 has been omitted. Fig. 2 plots the value of η
manifested when MIP with the mapping T defined by (5) is
used for solving the IEEE 9-bus system [58], from a flat start
during the first 10 iterations. In all cases, MIP successfully
converged. Clearly, it is observed that in all cases η ≈ 1− µ
after 5÷ 6 iterations.

FIGURE 3. Value of ratio η in the 3012-bus snapshot of the Polish
Transmission system at winter 2007-08 evening peak.

Next, the performance of MIP is analysed in the 3012-bus
snapshot of the Polish Transmission system at winter 2007-08
evening peak [59]. This system has been documented as
ill-conditioned in some references (see e.g. [28] or [33]).
Fig. 3 is analogue to Fig. 2 for this case. As observed,
for µ = 0.7 frequently η > 0.3, which has supposed
divergence. In remainder cases, η often traced a random
pattern for initial iterations. Nevertheless, it tends to be
stable and equal to 1 − µ, which has led to successful
convergence.

From the results reported above, Conjecture 1 may be
empirically validated. Basically, this conjecture establishes
that the Lipschitz constant of MIP is equal to α = 1 − µ
(see Theorem 1). It is also remarkable that the Theorem 1 and
Conjecture 1 establish sufficient rather than necessary condi-
tions for convergence. As observed in Fig. 3, MIP is able to
converge even when eventually η > 1. In this latter case,
one can simply deduce that MIP is not contractive during the
whole iterative procedure.

B. COMPARISON WITH OTHER PF SOLVERS
Now, the effectiveness and efficiency of MIP for PF cal-
culation is checked by comparing its performance with the
following benchmark solvers:

• NR in polar coordinates.
• Iwamoto’s method in polar coordinates [24].
• 4th order Runge-Kutta PF solver (RK4) [2].
• Reverse Bulirsch-Stoer PF solver (RBS) [28].
• Krasnoselskii method defined by (6) and mapping T
defined by (5).

• MIP-NR defined by (7), mapping T defined by (5) and
µ0 = 0.5.

NR is typically considered as the most standard PF solu-
tion solver, while the Iwamoto’s method is often consid-
ered as a benchmark robust technique. On the other hand,
both RK4 and RBS might be considered representative of
modern robust PF techniques. It is worth mentioning that
both RK4 and RBS involve several parameters within their
iterative procedures. In this work, these parameters have been
tuned following the guidelines provided in their respective
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TABLE 1. Total number of iterations for base cases.

references. Furthermore, all considered solvers have been
coded in Matpower v7.0 [60].

The 3012-bus snapshot of the Polish Transmission system
at winter 2007-08 evening peak [59], and the 13659-bus por-
tion of the European Transmission system from the PEGASE
project [61], [62], are used as benchmark cases. These sys-
tems have been reported as ill-conditioned in some references
(see e.g. [28] or [33]). In addition, they are clearly large-scale
and can be considered realistic enough for covering the
targets of this work.

Table 1 reports the total iterations required by the con-
sidered PF techniques for solving the studied systems from
a flat start. As expected, NR failed in all cases due to the
ill-conditioning character of the studied systems. RK4 failed
in solving the 3012-bus case. On the other hand, the
Iwamoto’s method converged to the low voltage solution
instead of the high voltage one in the 13659-bus system.
Oppositely, RBS, Kranoselskii and MIP converged to the
stable (high voltage) solution in all the studied systems. In all
cases,MIP required less iterations than remainder techniques.
It is worth mentioning that the results obtained in the studied
systems may be considered a confirmation of Theorem 4,
since divergence of NR (mapping T ) has not necessarily
implied divergence of MIP.

FIGURE 4. Convergence profile for the 3012-bus system using MIP
with ε = 10−6.

Fig. 4 plots the convergence profile and the value of the
evolution parameter in the 3012-bus system using MIP with
ε = 10−6. It is clearly seen that MIP achieves quadratic
convergence when µk = 1, which may be considered as an
empirical validation of Theorem 3.

FIGURE 5. Convergence curves in the 13659-bus case with ε = 10−3.

To get a better overview on the convergence features of the
different PF solvers, Fig. 5 plots the convergence curves of
the studied methods in the 13659-bus case with ε = 10−3.
As seen, NR failed due to the residual grew during a large
number of iterations. On the other hand, RBS showed the best
convergence rate before the 8th iteration, when the conver-
gence of MIP was accelerated because the increased value
of the evolution parameter, as appreciated in Fig. 3, thus
leading to quadratic convergence, outperforming RBS and
converging in just 8 iterations.

TABLE 2. Total number of iterations for limit cases.

The performance of the studied solvers have been also val-
idated under stressing conditions. To that end, Table 2 reports
the total number of iterations for limit load cases. As in
other references (e.g. see [28] or [63]), the loading level in
the studied systems has been progressively increased until
achieving the operability limit. In this case, NR failed in all
the studied systems, RK4 successfully solved the 3012-bus
case, however, it converged to the low voltage solution in the
13659-bus case while RBS failed to solve the 13659-bus case.
In contrast, the Iwamoto’s method along the Krasnoselskii’s
solver and MIP were able to correctly solve all the stud-
ied systems. Convergence features of MIP were deteriorated
because the stressing operating conditions, employing more
iterations compared to the base case. Nevertheless, it is less
affected by the convergence tolerance than other methods.
This is the case of RBS, which increases its iteration counter
by three when the convergence tolerance was reduced to
10−6, while the iteration counter of was only increased by
one. Moreover, MIP has turned out to be more reliable cor-
rectly solving all the studied cases while RBS failed in the
13659-bus system.

It is also interesting how the studied PF solvers perform
in the presence of control limits. On typical example are
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TABLE 3. Total number of iterations with reactive limits.

the reactive limits of generators (PV buses). To this end,
a simple PV-PQ switching mechanism [64] can be incor-
porated to the solution routines of the studied techniques,
which basically consists on converting to PQ those PV buses
in which a reactive limit has been violated, taking the hit
limit as reactive power injection of the new PQ bus, thus
repeating the PF solution procedure until achieve a feasible
solution. Table 3 reports the total iterations for this case.
As expected, NR failed in all the cases. RK4 failed in the
3012-bus case while the Iwamoto’s solver converged to the
low voltage solution in the 13659-bus case. The remainder
solvers successfully converge in all the considered cases.
In this scenario, MIP showed superior convergence features
thus notably outperforming the remainder solvers.

Along with the iteration number, the execution time
is widely used as indicator for comparing PF solvers.
In this regard, all considered methods have been run under
Windows 10 on a 64-bit i5-9400F Intel Core personal
computer (2.90 GHz, 8 GB of RAM). Table 4 provides the

TABLE 4. Execution time for base cases (ms).

TABLE 5. Total LU factorizations for base cases.

TABLE 6. Execution time for limit cases (ms).

TABLE 7. Execution time for with reactive limits (ms).

execution times (in milliseconds) for base cases. These times
have been calculated as the average value of 100 simulations,
in order to avoid the influence of other computational activ-
ities. As observed, MIP was the most efficient technique.
The reason behind these good results, is the low computa-
tional cost required by MIP. In this sense, the computational
burden of a numerical solver is quite proportional to the
total number of LU factorizations computed in the solution
procedure, since it is by far the heaviest calculation [2]. In this
sense, MIP can be considered quite efficient, only requiring
a LU factorization each iteration being so comparable to NR.
Table 5 reports the total LU factorizations required by the
different solvers for solving the base cases of the studied
systems. As seen, MIP required much less computations
than the others methods. Same conclusions can be extracted
for the other scenarios analysed, whose results are reported
in Tables 6 and 7.

VIII. CONCLUSION AND FUTURE WORKS
This work aims to fill some gaps found in the avail-
able literature about PF calculation of realistic large-scale
ill-conditioned systems. Firstly, it was identified that efficient
calculation of this kind of systems is still an open topic.
Secondly, in most of the available literature, the robustness
properties of different PF approaches are empirically demon-
strated on the basis of the results obtained, without providing
sufficient theoretical analysis, which it is believed to be fun-
damental. Finally, despite that a vast literature about solution
of systems of nonlinear equations is available, the applica-
bility of many promising classical nonlinear solvers in PF
analysis has not been studied yet.

In this paper, first step at filling this gap is given by
profusely studying the suitability of MIP for PF calcula-
tion of ill-conditioned systems. Firstly, a rigorous theoreti-
cal analysis has been provided by which has been proved
that MIP presents the same order of convergence of T ,
its contractive properties have been derived and asymptot-
ical stability proved. Secondly, some interesting links and
differences with other approaches have been commented.
In this sense, it has been demonstrated that MIP has some
similtudes with homotopy approaches, however, in contrast
to homotopy methods, MIP supposes an iterative mapping.
Finally, several numerical experiments served for empirically
confirming the theoretical findings and to compare the per-
formance of MIP with other well-known PF solvers. The
results obtained have confirmed that MIP constitutes a robust
methodology with superior contractive properties compared
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with other benchmark robust methodologies. In addition, its
efficiency has been clearly manifested, outperforming other
conventional and modern PF approaches.

Due to the promising results obtained, MIP should be
taken into account and deeply explored for PF calculation
of realistic large-scale ill-conditioned systems. In that sense,
its suitability in other related problems like the Continuation
Power Flow [35] or contingency analysis [65] should be
analysed in future works. Maybe, the main issue relative to
the PF calculation using MIP is its local convergence, which
entails sensitivity with respect the initial guess x0. Some
globally convergent mechanisms might be applied within the
MIP procedure in future studies in order to overcome this
difficulty. Finally, this work has been limited to study the
mappingT defined by (5), however, any othermappingwhich
the PF solution is a fixed point may be used. This idea opens
the door to consider other alternative mappings like the high
order Newton-like techniques [16], [17], [45].

APPENDIX A. PF EQUATION IN POLAR COORDINATES
In polar form, voltage angles at PV and PQ buses, along
voltage magnitudes at PQ buses constitute the PF variables,
so that, the PF state vector is given by:

x =
[
δPV | δPQ

∣∣VPQ
]T (32)

where, δPV∈Rng is the vector of voltage angles at PV buses,
δPQ ∈ Rng is the vector of voltage angles at PQ buses and
VPQ ∈ Rnl is the vector of voltage angles at PQ buses. On the
other hand, ng ∈ N and nl ∈ N represent the total number of
PV and PQ buses, respectively.

The nonlinear relationships between the power nodal injec-
tions and nodal voltages are given by:

g (x) =
{
gP,For all buses
gQ,For PQ buses

(33)

gPi = Pschi −
n∑
j=1

|Vi|
∣∣Vj∣∣ ∣∣Yij∣∣ cos (θij − δi + δj) (34)

gQi = Qschi −
n∑
j=1

|Vi|
∣∣Vj∣∣ ∣∣Yij∣∣ sin (θij − δi + δj) (35)

where, Pschi ∈ R and Qschi ∈ R are the active and reactive
power injected at ith bus, respectively. Vi 6 δi ∈ C is the
complex voltage at ith bus. Yij 6 θij ∈ C is the ijth element of
the admittance matrix.
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