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ABSTRACT Understanding the complex dynamics of global landslides is essential for disaster planners
to make timely and effective decisions that save lives and reduce the economic impacts on society. Using
NASA’s inventory of global landslide data, we developed a new machine learning (ML)–based system
for town planners, disaster recovery strategists, and landslide researchers. Our system revealed hidden
knowledge about a range of complex scenarios created from five landslide feature attributes. Users of our
system can select from a list of 1.295×1064 possible global landslide scenarios to discover valuable knowl-
edge and predictions about the selected scenario in an interactive manner. Three ML algorithms—anomaly
detection, decomposition analysis, and automated regression analysis—are used to elicit detailed knowledge
about 25 scenarios selected from 14,532 global landslide records covering 12,220 injuries and 63,573 fatali-
ties across 157 countries. Anomaly detection, logistic regression, and decomposition analysis performedwell
for all scenarios under study, with the area under the curve averaging 0.951, 0.911, and 0.896, respectively.
Moreover, the prediction accuracy of linear regression had a mean absolute percentage error of 0.255. To the
best of our knowledge, our scenario-based ML knowledge discovery system is the first of its kind to provide
a comprehensive understanding of global landslide data.

INDEX TERMS Strategic decision support tool for landslides, machine learning, anomaly detection,
regression analysis, decomposition analysis, knowledge discovery.

I. INTRODUCTION
Landslides are natural events that have adverse effects on
human life, infrastructure, the economy, and society [1].
To reduce the negative effects of landslides and increase the
level of disaster preparedness, in-depth research on global
landslides is essential [2].

In the past, strategic decision-makers needed a data sci-
entist to prepare the data, develop machine learning (ML)
models, and summarize the results. Depending on the com-
plexity of the problem, the data scientist may need an infor-
mation technology administrator to run high-performance
computing on infrastructure capable of handling the ML
load [3], enabling the data scientist to execute the ML
model and manually summarize the results for the strategic
decision-maker. This task delegation process can undergo
several iterations until the required model satisfies the needs
of the strategic decision-maker (see Fig. 1). The delays
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caused by this task delegation may become critical if addi-
tional roles (e.g., business analysts, data engineers, arti-
ficial intelligence (AI) engineers, statisticians, database
administrators, etc.) are introduced.

As shown in Fig. 1, the proposed system eliminates the
delays associated with task delegation. Users of the proposed
system can access secure cloud-based solutions for specific
scenarios using a range of mobile, tablet and other web-
enabled devices [5]. Because the system uses recently devel-
oped natural language processing algorithms, the user can
select a landslide scenario and obtain instant insights in plain
english texts [6]. The fully automated summarized insights
produced by the proposed system can support evidence-based
decision-making to save lives, protect infrastructure, and
reduce economic impacts on society.

In its current version, the system is connected to the
National Aeronautics and Space Administration (NASA)
landslide database, which contains 14,532 records of global
landslides covering 12,220 injuries and 63,573 fatalities
in 157 countries. From these data, 1.295 × 1064 possible
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FIGURE 1. Evidence-based decision-making allows town planners and
strategic decision-makers to implement effective landslide policies that
can save lives, protect infrastructure, and reduce economic impacts on
society.

scenarios can be constructed (see section III). From this vast
number of scenarios, 25 were randomly selected to demon-
strate the applicability of the system using laptops or web-
enabled mobile devices, with a clustering accuracy (area
under the curve (AUC)) of up to 0.951) and a prediction
accuracy (mean absolute percentage error (MAPE)) of up to
0.10.

Based on the existing literature [7]–[15], the proposed
system is the first to utilize clustering algorithms such as
automated anomaly detection (AUC up to 0.951) and decom-
position tree analysis (AUC up to 0.896) in the landslide
domain.

II. BACKGROUND
ML has been used in landslide research for landslide
detection [7], characterization [8], susceptibility assess-
ment [9]–[11], prediction [12], and early warning sys-
tems [13]. Themost commonML algorithms used are support
vector machines [7], [9]–[11], followed by logistic regres-
sion [7], [10], [11], random forests [7], [9], artificial neural
networks [9], [11], and Bayesian networks [9], [10]. The
performance ofML algorithms in landslide research is mostly
evaluated using AUC [7], [9]–[11] or MAPE [12]. AUC
is more suitable for measuring the performance of cluster-
ing algorithms, while MAPE is preferred for measuring the
accuracy of prediction algorithms [7], [9]–[12]. Therefore,
we evaluated ML algorithms using AUC and MAPE.

Existing landslide research using ML is based on the use
of R, Python and other statistical programming languages
that do not support the use of ML programs in the mobile
environment. However, to make the proposed solution avail-
able to strategic decision-makers via mobile, tablet and other
web-enabled devices, the proposed system was coded using
Microsoft .NET and Azure. Micrsoft documentation in [16],
provides the details of supportedML algorithms onMicrosoft
ecosystem.

Gaps in the literature on the use of ML algorithms in
landslide research include the following:

TABLE 1. ML algorithms used in existing landslide research.

1. Researchers require a complex understanding of ML
models [14].

2. ML is not being utilized to facilitate strategic decision-
making about disaster preparedness or risk manage-
ment [15].

3. The results obtained from existing ML-based landslide
research were not expanded in a natural language [14].

4. The potential for ML models to analyze the root cause
of landslides is not being harnessed [17].

5. ML models and data must be manually handled, mak-
ing knowledge discovery a time-consuming and labor-
intensive task [7]–[14].

6. Existing implementation ofML algorithms are not suit-
able for use in integrated cloud-based applications or
web-enabled mobile devices.

Table 1 shows the algorithms used in the literature and
whether they may be implemented in a .NET-based cloud
environment.

We have previously reported on the use of ML to solve
problems ranging from abnormality detection [18]–[20] to
person identification [21]. Here, ML is used in knowledge
discovery and analysis of the root cause of global landslides.

III. METHODOLOGY
The primary motivation for designing a new ML-based
knowledge discovery solution arose from the deficiencies in
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FIGURE 2. Methodology for knowledge discovery of global landslides
using automated machine learning.

existing ML-based landslide research. The proposed solution
has the following features:

7. System users (i.e., strategic decision-makers) do not
need a deep understanding of ML models. Using nat-
ural language processing [6], the information is trans-
lated into a language that the strategic decision-maker
can understand.

8. Multiple interactive interfaces facilitate strategic
decision-making on disaster preparedness and risk
management using multiple ML algorithms.

9. The insights obtained from one ML algorithm
(e.g., regression) may be expanded to other algorithms
(e.g., anomaly detection, decompression tree analysis).

10. Decompression tree analysis is used to analzye the
root causes of landslides. This is the first time that
decompression tree analysis has been used in landslide
research.

11. The solution is fully automated, and the appropriate
ML algorithm is automatically executed on the correct
set of data without the need for manual intervention
from data scientists, data engineers, statisticians or
database programmers, minimizing delays.

12. The solution is programmed using .NET, facilitating its
use in Microsoft Office 365 and Azure [5], [6], [16],
[22]. This will allow strategic decision-makers to
access the solution via laptops and mobile devices.

To develop the proposed solution, data were obtained
from NASA’s global landslide inventory [23] before being
cleaned and transformed prior to modeling. Data modeling
was then performed using best practice [24]. Finally, the
data were visualized and analyzed using ML algorithms
(see section III D). Fig. 2 shows the step-by-step process used
to generate AI insights into global landslide data.

A. OBTAIN AND PREPARE DATA
Data may be accessed from a range of sources, including
online databases, websites, Excel files, flat files, web-based
application programming interfaces, and even pdf files. After
identifying the data source, data integration tools (e.g. SQL
Server Integration Services or Power BI Query Editor) may
be used to facilitate the export, transformation, and loading of
data from the source into a data warehouse. Data transforma-
tion and cleaning, also known as data preparation, transform

FIGURE 3. Categorization of global landslide feature attributes.

FIGURE 4. The main facts (fatality and injury count) are filtered by
dimension (i.e., category, size, setting, trigger and country). The arrows
represent filter direction.

the data into the correct format for modeling or analysis using
ML. For this research, we obtained data from an online source
in a comma-separated values format [23]. The data were then
transformed into a suitable format, allowing a more rapid
analysis and better understanding of the feature attributes of
global landslides.

Fig. 3 shows the categorization of the data fields, while
Table 2 presents the detailed statistics of the landslide data.
Understanding the statistics of landslide feature attributes
is crucial before proceeding to the next step, namely data
modeling, visualization, and analysis using ML.

B. MODEL DATA
Data modeling is the most important stage in the process of
knowledge discovery using ML. With effective data model-
ing, ML-driven solutions can produce powerful insights with
minimal delays. During this phase, the relationships among
different sets of data with the correct cardinality are drawn.
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TABLE 2. Data distribution of global landslide attributes. Fig. 4 shows that the data obtained in this study were
arranged in a star schema [24], with the main factual data
(fatality and injury counts) in the center, surrounded by the
following dimensions: category, size, setting, trigger, and
country. This arrangement enabled the analysis of the main
facts by category, size, setting, trigger, and country using
one-way filtering. The benefits of the star schema over other
data modeling techniques (e.g., flattened tables, snowflakes)
is that it provides faster and more accurate results [24].

In our system, we created the scenario (S) using five
dimensional features: category (G), size (I), setting (E), trig-
ger (T), and country (C). Therefore:

S = {x, y, z,m, n, p, q|x ⊆ G, y⊆ I, z⊆E,m ⊆ T, n ⊆ C}
(1)

G = {landslide,mudslide, rock_fall, debris_flow, complex,
rotational_slide, translational_slide,
riverbank_collapse, creep, snow_avalanche, lahar,
earth_flow, topple, other, unknown} (2)

I = {small,medium, large, very_large, catastrophic,
unknown} (3)

E = {∅, above_road, natural_slope, urban, burned_area,
below_road, above_river,mine, deforested_slope,
retaining_wall,engineered_slope, bluff , above_coast,
other, unknown} (4)

T = {∅, downpour, rain, continuous_rain,
tropical_cyclone,monsoon, snowfall_snowmelt,
construction,mining, earthquake,flooding,
freeze_thaw, dam_embankment_collapse,
leaking_pipe, volcano, vibration, other,
no_apparent_trigger, unknown} (5)

C = {UnitedStates, India,Myanmar,Philippines,Nepal,
China,Colombia, Indonesia,UnitedKingdom,

Canada,Macedonia,Malaysia,Brazil,Pakistan,
CzechRepublic,NewZealand,Vietnam,Australia,
Japan,Mexico,Uganda,Thailand,Bangladesh,
TrinidadandTobago, SriLanka,Guatemala, Italy,
Peru,CostaRica,Congo,Kenya,Kyrgyzstan,
Switzerland,Fiji, Jamaica,Germany,Panama,
Georgia,Honduras,Rwanda,Ecuador,Austria,
Bulgaria,Nicaragua,PapuaNewGuinea, Ireland,

Tajikistan,Azerbaijan,Norway, etc.} (6)

Equations (4) and (5) contains null values represented by ∅.
To calculate the number of possible scenarios, we first

needed to calculate the possible filter options for each dimen-
sion. For example, if A = {slide, fall, topple}, the following
filter combinations are possible:

1. {slide}
2. {fall}
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TABLE 3. Filter options for global landslide size.

3. {topple}
4. {slide, fall}
5. {slide, topple}
6. {fall, topple}
7. {slide, fall, topple}

Therefore, for A, there are seven possible filter settings, rep-
resented by (2|A| − 1), which is the formula used to calculate
the power set of the attribute minus 1 (i.e., P (A)− 1), where
|A| is the cardinality of A. One is deduced because the power
set also includes an empty set, and the selection of an empty
set is not supported by the proposed system.

Hence, the total number of possible scenarios for our global
landslide can be calculated as:

|S| = (2|G|−1)X (2|I |−1)X (2|E|−1)X (2|T | − 1)X (2|C| − 1)

= 1.296× 1064 (7)

The purpose of this study is not to produce an exhaustive
list of global landslide data covering all 1.296 × 1064 sce-
narios. However, we demonstrate the ability to dynamically
discover knowledge based on automated ML algorithms for
any possible scenario out of 1.296× 1064 scenarios.

C. VISUALIZE DATA
Once the data modeling was complete, we used category,
size, setting, trigger, and country to filter the factual data to
drive the ML-based knowledge discovery. A wide range of
visualizations, including slicers, Bing Maps, key influencers,
decomposition analysis, and anomaly detection on a line chart
were used in the dashboards. Changing the value of each filter
(e.g., landslide size to small, medium, or large) filtered the
fact table containing the number of injuries and fatalities,
in turn changing the key influencers, anomaly detection,
or decomposition analysis. Table 3 shows how a change in
a filter such as landslide size affects the number of injuries
and fatalities.

Table 3 shows that the total number of fatalities caused
by medium-sized landslides was higher than that caused by
large landslides. Table 3 was generated using the exploration
dashboard of our ML-based knowledge discovery system
(see Fig. 6). Fig. 6 shows that from 1915 to 2021, approxi-
mately 14,532 global landslides caused 12,220 injuries and
63,573 fatalities.

FIGURE 5. Knowledge discovery using three different types of machine
learning algorithms: regression analysis, decomposition analysis, and
anomaly detection.

Fig. 5 shows how different types of algorithms enable
different dashboards of the proposed system to function. For
this research, we created the following four dashboards:

1. General analysis of global landslides (see Fig. 6)
2. Linear regression (i.e., a key influencer) to determine

the influence of factors on the number of fatalities (see
Fig. 7)

3. Time-series anomaly detection (i.e., a key influencer)
to identify anomalies in the number of total casualties,
fatalities, injuries and countries by year (see Fig. 8).

4. Decomposition analysis to identify root causes and
explore data (see Fig. 9).

The dashboards are publicly available and hosted in
Microsoft Cloud [5] (for data exploration purposes without
ML features only). To utilize the fully functional version of
ML-based knowledge discovery, a user can download our
solution from GitHub [22], which provides regression anal-
ysis (Fig. 7), anomaly detection (Fig. 8), and decomposition
analysis (Fig. 9).

D. ANALYZE DATA USING ML
For this study, we conducted an extensive analysis of NASA’s
global landslide data, comprising 14,532 records [23].
We used the ML algorithms in ML.NET [16], including
regression analysis [25]–[27], anomaly detection [28], [29],
and decomposition analysis [30], to analyze the number of
total casualties, fatalities, and injuries according to the fol-
lowing feature attributes: landslide category, size, setting,
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FIGURE 6. General analysis of global landslides. This dashboard demonstrates that from 1915 to 2021, there have been 14,532 global landslides
reported, causing 12,220 injuries and 63,573 fatalities.

FIGURE 7. Linear regression solution (i.e., key Influencer) for the influence of factors on the number of fatalities (when the country is Italy and
landslide trigger is continuous rain).

trigger, and country. As shown in Fig. 5, before executing
any ML algorithm, the data must be prepared and cleaned
for faster ML operations. To achieve this, a series of data

transformations is undertaken [31]. Once the data transforma-
tion is complete, depending on the type of analysis and intent,
the proposed solution will perform regression analysis [16],
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FIGURE 8. Anomaly detection on time-series data (i.e., key Influencer) to identify anomalies in the number of casualties, fatalities, injuries and countries
per year.

FIGURE 9. Decomposition analysis for root cause analysis and data exploration.

anomaly detection [28], [29], or decomposition tree analy-
sis [30]. For regression analysis, if the data are numerical,
then linear regression [25] is performed, and if the data are
categorical, then logistic regression [26], [27] is performed.

1) TRANSFORMATION
Transformation was undertaken to prepare the global land-
slide data for regression analysis, anomaly detection, and
decomposition analysis. During the transformation, the
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following three algorithms in Microsoft.ML.Transforms
were executed:

13. The OneHotEncoding function converts categorical
data into numerical values for efficient and effective
processing of ML algorithms [32].

14. The ReplaceMissingValues function replaces miss-
ing values with default, minimum, maximum, mean,
or most frequent values 33].

15. The NormalizeMeanVariance function adjusts values
measured on different scales to a notionally com-
mon scale with computed mean and variance of the
data [34].

2) REGRESSION ANALYSIS
In this paper, regression analysis was used to identify the
most important landslide feature attributes associated with
landslide-related fatalities. Regression analysis automatically
ranks factors by their relative importance and displays them
as key influencers of both categorical and numerical met-
rics. Two types of regression were used (see Fig. 5). For
numerical features, linear regression was performed using
ML.Net’s stochastic dual coordinate ascent function [25].
Linear regression is one of the simplest ML algorithms in
supervised learning techniques and is used to solve regression
problems and predict continuous dependent variables with the
help of independent variables. The goal of linear regression
is to identify the best-fit line that can accurately predict the
output of the continuous dependent variable. By finding the
best-fit line, the algorithm establishes a linear relationship
between the dependent and independent variables in the form
y = b0 + b1x1 + ε.
In contrast, for categorical features, logistic regression was

performed using ML.Net’s L-BFGS logistic regression [26],
[27]. Logistic regression is one of the most popular ML
algorithms for supervised learning techniques. It can also
be used for classification and regression problems. Logis-
tic regression was used to predict the categorical depen-
dent variable with the help of independent variables using
Log

[
y
/
y− 1

]
= b0 + b1x1 + b2x2 + . . . bnxn. The output

of the logistic regression problem can only be between 0
and 1; therefore, logistic regression may be used when the
probabilities of two classes are required, such as whether it
will rain or not, 0 or 1, true or false, etc.

MAPE has been used in previous ML-based landslide
research [12] to evaluate the performance of prediction algo-
rithms. Therefore, in this study, MAPE was used to evaluate
the accuracy of linear regression. To measure the accuracy of
logistic regression, AUC was used because it has been used
in previous research to measure the performance of clustering
algorithms.

3) ANOMALY DETECTION
Anomaly detection enhances line charts by automatically
detecting anomalies within time-series data. It also provides
explanations of anomalies to help with root cause analysis.

Before delving into the details of anomaly detection, we con-
sider the problem definition.
Problem 1: Given a sequence of real values (i.e., x =

x1, x2, x3, . . . , xn), the task of time-series anomaly detection
is to produce an output sequence (y = y1, y2, y, . . . , yn),
where yi ∈ {0, 1} denotes whether xi is an anomaly point.
The implemented solution was informed by the spectral

residual (SR) approach used in the visual saliency detection
domain. Then, a convolutional neural network (CNN) was
applied to the results produced by the SR model [28].

The SR algorithm consists of three major steps:
1. Fourier transform to obtain the log amplitude spectrum
2. Calculation of SR
3. Inverse Fourier transform to transform the sequence

back to the spatial domain:

A (f ) = Amplitude (f (x)) (8)

P (f ) = Phrase (f (x)) (9)

L (f ) = log (A (f )) (10)

AL (f ) = hq (f ) .L(f ) (11)

R (f ) = L (f )− AL(f ) (12)

S (x) =
∣∣∣∣∣∣f −1 (exp (R (f )+ iP (f )))

∣∣∣∣∣∣ , (13)

where f and f 1 denote Fourier transform and inverse
Fourier transform, respectively; x is the input sequence
with shape nX1; A(f ) is the amplitude spectrum of
sequence x; P(f ) is the corresponding phase spectrum
of sequence x; L(f ) is the log representation of A(f ),
and AL(f) is the average spectrum of L(f ), which can
be approximated by convoluting the input sequence by
hq(f ), where hq(f ) is a qXq matrix defined as:

hq (f ) =
1
q2


1 1 . . .

1 1 . . .

· · ·
...

. . .

1
1
1

1 1 . . . 1

 (14)

R(f ) is the SR; that is, the log spectrum L(f ) minus
the averaged log spectrum AL(f). The SR serves as a
compressed representation of the sequence, whereas
the innovation part of the original sequence becomes
more significant. Finally, the sequence was transferred
back to the spatial domain using inverse Fourier trans-
form. The resultant sequence S(x) is referred to as the
saliencymap [29]. The values of the anomaly points are
calculated as follows:

x = (x + mean) (1+ var) .r + x, (15)

where x is the local average of the preceding points,
mean and var are the mean and variance, respectively,
of all points in the current sliding window, and r ∼
N (0, 1) is randomly sampled. In this process, CNN
instead of raw input is applied to the saliency map,
making the overall process of anomaly detection more
efficient [28], [29].
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Given that this paper is the first to report the use of anomaly
detection in landslide research, AUC was used to measure its
performance against that of clustering algorithms in previous
studies [7], [9]–[11].

4) DECOMPOSITION TREE ANALYSIS
Decomposition tree visualization is a valuable tool for ad
hoc exploration and root cause analysis when visualizing data
across multiple filter attributes or dimensions [30].

Our implementation of decomposition analysis enables
the visualization of landslide casualty data over a range of
landslide feature attributes, namely, trigger, category, setting,
size, and country. As shown in Fig. 9, interactive root cause
analysis and data exploration are supported by the aggrega-
tion of data and drilling down into the dimensions.

For filter attributes T = {T 1,T 2,T 3, . . . ,TN }, where N is
the number of total filter attributes within a dataset (i.e., the
cardinality of T, |T | = N ), each filter attribute can form one
or many filtered conditions, as follows:

T 1
= {T 1

1 ,T 1
2 ,T 1

3 , . . . ,T P1 ], such that
∣∣∣T 1

∣∣∣ = P (16)

T 2
= {T 1

1 ,T 1
2 ,T 1

3 , . . . ,TQ1 ), such that
∣∣∣T 2

∣∣∣ = Q (17)

T 3
= {T 1

1 ,T 1
2 ,T 1

3 , . . . ,TU1 ), such that
∣∣∣T 3

∣∣∣ = U (18)

TN = {T 1
1 ,T 1

2 ,T 1
3 , . . . ,TN1 ), such that

∣∣∣T 3
∣∣∣ = V (19)

Each filter condition can filter r number of rows (r ∈
{1, 2, 3, . . .R}) from the dataset. For example, when Coun-
try_name = Ecuador was selected, the filter condition T 1

58
selected 39 records (i.e., r = 39) from the global landslide
dataset (where T 1 is the country_name filter attribute, and
Ecuador is the 58th item in that attribute).
Continuing on, we defined landslide casualties as:

Cn
i =

r∑
i=0

(fatality_county+ 0.5 ∗ injury_count) ,

Where, r is the rows effected by filter attribute

condition T ni (20)

Our decomposition tree visualization (supported by AI)
enables the user to find the next filter attribute condition in
which to drill down based on either high or low values [30]:

1. High value: This mode considers all available filter
attribute conditions and determines that into which to
drill down to obtain the highest value of the mea-
sure being analyzed. Therefore, the high-value AI split
mode finds the most influential filter attribute condi-
tion T ni for which the highest level of casualty occurs,
as represented by:

∃T ni ⊆ T |Cn
i > Cm

j ,

∀n,m⊆{1, 2, 3, . . . ,N }∧∀i, j⊆{1, 2, 3, . . .} (21)

2. Low value: This mode considers all available filter
attribute conditions and determines that into which to
drill down to obtain the lowest value of the measure

FIGURE 10. Selecting ‘‘High value’’ for ‘‘Casualty’’ reveals that the highest
number of casualties (30,142.50) occurred when the landslide setting was
a natural slope.

being analyzed. Therefore, the low-value AI split mode
finds the most influential filter attribute condition T ni
for which the lowest level of casualty occurs, as repre-
sented by:

∃T ni ⊆ T |Cn
i < Cm

j ,

∀n,m ⊆ {1, 2, 3, . . . ,N }∧∀i, j⊆{1, 2, 3, . . .} (22)

As shown by Fig. 10, selecting ‘‘High value’’ for the
measure ‘‘Casualty’’ reveals that the highest number of casu-
alties (30,142.50) occurred when the landslide setting was a
natural slope (i.e. Cn

i = 30142.50, where T ni represents filter
attribute condition ‘‘Landslide_Setting = natural slope’’).
In this way, the AI split allows the user to delve into the
root cause. AUC was used to measure the performance of the
decompression tree analysis algorithm.

IV. RESULTS
We executed the ML algorithms described in the previous
section (i.e., decomposition analysis, regression analysis,
and anomaly detection) on global landslide data containing
14,532 records of landslide events worldwide. By select-
ing the filter settings for one or more landslide feature
attributes, we created particular scenarios from the set of
1.296× 1064 scenarios, as shown in Equation (7). A change
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TABLE 4. Results of knowledge discovery on 25 scenarios.

FIGURE 11. Scenario 2 decomposition analysis (i.e., what causes the
highest number of casualties when the landslide setting is urban?).

FIGURE 12. Scenario 3 decomposition analysis (i.e., what causes the
highest number of casualties when the landslide trigger is a tropical
cyclone?).

in an attribute filter causes the fact table containing injuries
and fatalities to change, as shown in Fig. 4 and Table 2.

We used 25 scenarios of 1.296 × 1064 possible scenarios
to demonstrate the applicability and usability of the pro-
posed ML-based knowledge discovery solution. As shown in
Table 4, Scenarios 1–3 were based on decomposition analy-
sis, Scenarios 4–22 were based on automated regression anal-
ysis, and Scenarios 23–25 were based on anomaly detection.

A. DECOMPOSITION ANALYSIS
Using decomposition tree analysis in Scenarios 1–3, our sys-
tem answered the following strategic questions:
16. What causes the highest number of casualties?
17. What causes the highest number of casualties when the

landslide setting is urban?
18. What causes the highest number of casualties when the

landslide trigger is a tropical cyclone?
Fig. 9 shows that we delved into the fifth level of detail to
identify the causes of the highest number of casualties.

1) SCENARIO 1 (FIG. 9): WHAT CAUSES THE HIGHEST
NUMBER OF CASUALTIES?
19. Level 1 (landslide setting): natural slope

FIGURE 13. Scenario 23 (Anomaly Case 1): anomaly detection for fatality
count of 2010.

20. Level 2 (landslide category): lahar
21. Level 3 (country): Colombia
22. Level 4 (landslide size): catastrophic
23. Level 5 (landslide trigger): unknown.

2) SCENARIO 2 (FIG. 11): WHAT CAUSES THE HIGHEST
NUMBER OF CASUALTIES WHEN THE LANDSLIDE
SETTING IS URBAN?
24. Level 1 (landslide category): landslide
25. Level 2 (landslide size): very large
26. Level 3 (country): Indonesia
27. Level 4 (landslide trigger): earthquake.

3) SCENARIO 3 (FIG. 12): WHAT CAUSES THE HIGHEST
NUMBER OF CASUALTIES WHEN THE LANDSLIDE
TRIGGER IS A TROPICAL CYCLONE?
28. Level 1 (country): Philippines
29. Level 2 (landslide setting): natural slope
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TABLE 5. Scenarios 4–22: Automated regression analysis.
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TABLE 5. (Continued.) Scenarios 4–22: Automated regression analysis.
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TABLE 5. (Continued.) Scenarios 4–22: Automated regression analysis.
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TABLE 5. (Continued.) Scenarios 4–22: Automated regression analysis.

30. Level 3 (landslide size): very large
31. Level 4 (landslide category): lahar.

B. REGRESSION ANALYSIS
As shown in Fig. 7, the dataset may be filtered by any
combination of values from feature attributes such as country,
landslide setting, landslide trigger, landslide category, and
landslide size. When country name was set to ‘‘Italy’’ and
trigger was set to ‘‘continuous rain’’, the dataset was fil-
tered to only six landslides (containing six injuries and seven
fatalities). Therefore, regression analysis was only applied
to these six landslide events, finding a positive correlation
between fatality count and longitude and a negative cor-
relation between fatality count and latitude (Scenario 10
of Table 5). When longitude increased by 3.23, the aver-
age fatality count increased by 0.76. When average latitude
decreased by 2.71, the average fatality count increased by
0.28.

Using regression analysis in Scenarios 4 to 22, our system
demonstrated that latitude and longitude exhibit a wide range
of behaviors depending on the selected country and landslide
features.

C. ANOMALY DETECTION
Anomaly detection automatically identifies anomalies in
time-series data, along with supporting explanations and the
strength of each explanation. As shown in Fig. 13, an anomaly
was detected in 2010, when the fatality count was abnormally
high (5,424). This value was substantially higher than the
expected value of 4,787 and fell outside of the expected range
of 4,361–5,212.

Fig. 13 attempts to explain this particular anomaly in
Scenario 23, with possible explanations as follows:

32. Landslide trigger: downpour (strength = 98%)
33. Landslide setting: unknown (strength = 98%)
34. Landslide category: landslide (strength = 96%)
35. Country: China (strength = 89%)
36. Location accuracy: 5 km (strength = 83%)
37. Storm name: empty (strength = 41%)
38. Event description: empty (strength = 6%).

Fig. 14 provides possible explanations for Scenario 23
(Anomaly Case 1) in detail.

In Scenario 24 (Anomaly Case 2), the total number
of landslide events in 2018 was 992, which was higher
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FIGURE 14. Possible explanations for Anomaly Case 1.

than the expected range of 664–980 (see Fig. 15). The
anomaly detection algorithm in Fig. 15 attempts to explain
this anomaly with the following three possible explanations
(see Fig. 16):
39. Storm name: empty (strength = 43%)
40. Landslide trigger: monsoon (strength = 37%)
41. Landslide size: large (strength = 28%).

Finally, Scenario 25 (Anomaly Case 3) is depicted in Fig. 17.
Here, the injury count in 2010 was exceptionally high at
1,317 (substantially higher than the range 41–159). Fig. 17

also shows a possible explanation for Scenario 25 with the
corresponding strengths. One of these explanations is that
in 2010, Congo observed a substantially higher number of
injuries compared with the usual range, increasing the global
number of injuries from landslides in 2010. Our automated
knowledge discovery solution assigned a strength of 48% for
this explanation (see Fig. 18).

Therefore, in Scenarios 23 to 25, our system detected and
automatically provided explanations for the following three
anomalies:
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42. In 2010, the fatality count was abnormally high (5,424),
which was substantially higher than the expected value
of 4,787 and fell outside of the expected range of
4,361–5,212.

43. In 2018, the number of landslide events was 992, which
was higher than the expected range of 664–980.

44. In 2010, the number of injuries was exceptionally
high at 1,317 (substantially higher than the range
of 41–159).

D. VALIDATION OF ML ALGORITHMS
In previous research, ML models have been evaluated using
data splitting or cross-validation in which some of the data are
used to estimate the model coefficients, and the remainder are
used to measure a range of evaluation metrics [7], [9]–[14].
This process of model evaluation is suitable for studies based
on a single static dataset. Unlike previous studies, this study
reflects a comprehensive dataset of 14,532 global landslide
records that dynamically updates to a smaller set of datasets
based on the user’s selected scenario. Hence, for the present
study, there are 1.295 × 1064 smaller sets of dynamic data
on which multiple ML algorithms are executed concurrently.
Given the feasability limitations of evaluating models using
extremely large dynamic datasets, our ML models were only
evaluated using a selected set of scenarios associated with
a selected set of data to demonstrate the feasibility of the
system.

Sensitivity, specificity, the receiver operating characteris-
tic curve and AUC were used during model evaluation for
anomaly detection and decomposition analysis (see Fig. 19).
In the worst-case scenarios, the AUC for anomaly detec-
tion, logistic regression, and decompression tree analysis was
0.941, 0.911, and 0.896, respectively [11].

In contrast, when evaluating performance of linear regres-
sion algorithms, MAPE was used as follows:

M =
1
n

∑n

t=1

∣∣∣∣At − FtAt

∣∣∣∣ , (23)

where M is MAPE, n is the number of summation itera-
tions, At is actual value and Ft is the forecast or predicted
value. MAPE has been used for model evaluation by other
researchers along with root-mean-square error (RMSE) [12].

In the best-case scenarios, M < 0.10 was obtained from
Scenarios 4, 6, 9, and 10 (see Table 4). However, for the other
scenarios,M was found to be 0.255 on average.

V. DISCUSSION
Fig. 20 shows a user receiving an ML-based insight on
her mobile device immediately after selecting a particu-
lar scenario. The ML-based insight states, ‘‘When longi-
tude decreases by 0.66, the average fatality count increases
by 4.4’’. The prediction accuracy of this insight was
MAPE = 0.105, which is higher than that of other algorithms
used in landslide research [12]. Therefore, using this instant
ML-based insight, the user can decide to increase landslide
preparedness in cities at lower longitudes.

FIGURE 15. Scenario 24 (Anomaly Case 2): anomaly detection in the
number of countries affected in 2018.

In all previous studies, an expert data scientist was in
charge of manually preparing and modeling the data and
manually training and testing the ML model [7], [9]–[14].
Given that strategic decision-makers are often required to
make quick decisions, delegating data science tasks to experts
is often not feasible. The system presented in this paper
completely automates the task of data preparation and ML
modeling. Our decision support system is hosted inMicrosoft
Cloud, which can be accessed by users on their laptops,
tablets or mobile phones. The moment a user selects a sce-
nario from our 1.295 × 1064 possible scenarios, our system
automatically prepares the data for that scenario and executes
the appropriate ML algorithm to provide hidden insights
about the selected scenario to the decision-maker. A fully
automated ML-based decision support system has not been
previously reported.

The benefits of the proposed system include the
following:

45. It can be executed by users with no prior knowledge of
data science and ML algorithms.

46. It instantly prepares the data and executes ML model-
ing without delay, supporting quick decisions.

47. It is completely scalable, supporting multiple data
sources with unlimited concurrent users.
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FIGURE 16. Possible explanations for Anomaly Case 2.

48. It uses two ML algorithms (anomaly detection and
decision tree analysis), which have not been used in
previous landslide research, with a clustering accuracy
of up to AUC = 0.941.

49. It elaborates and explains the result in plain language
to the strategic decision maker

Being a fully automated decision support system, it lacks
the manual rigor of ML modeling with multiple algo-
rithms, as demonstrated in previous research. Therefore,

FIGURE 17. Scenario 25 (Anomaly Case 3): anomaly detection for the
number of injuries in 2010.

some studies have reported a higher accuracy in classifica-
tion and prediction using a different set of ML algorithms
(e.g., AUC of 0.951 in [9], AUC of up to 0.991 in [7], MAPE
of 0.125 in [12]). In our future work, wewill includemodified
versions of random forests and CNNs (as reported in [7]
and [9]) as well as support vector regression (as reported
in [12]) into our fully automated decision support system,
which may improve the accuracy of the current version.
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FIGURE 18. Possible explanations for Anomaly Case 3.

FIGURE 19. Evaluation of classification algorithms using receiver
operating characteristic (ROC) curve and area under the curve (AUC).

FIGURE 20. ML-based insight in natural language for a selected scenario
using a mobile phone, tablet or personal computer. The insight states,
‘‘When longitude decreases by 0.66, the average fatality count increases
by 4.4’’, with a predication accuracy of MAPE = 0.105.

Moreover, the current version only analyzes textual infor-
mation. In future versions, we plan to include multidimen-
sional data, including imagery, light detection and ranging
data, synthetic aperture radar (SAR) and interferometric SAR
data [14].We believe that addingmultiple sources of data will
increase our system’s capability in terms of more insightful
knowledge discovery with higher accuracy.

VI. USER NOTES
TheML-based knowledge discovery solution proposed in this
study was implemented using Microsoft Power BI, which is
freely available for download from https://app.powerbi.com/.
The user can download the complete source files (.pbix)
along with global landslide data (.csv) files from the authors’
GitHub source control site at https://github.com/DrSufi/
GlobalLandslide [17]. After downloading and opening the
entire solution using MS Power BI Desktop, the user can
host the solution either in Microsoft Cloud or a local net-
work to make it available to other researchers or strategic
planners.

Typical users of this system are town planners, policy-
makers, and disaster recovery strategists concerned about
landslides in any region or country (the system is capable
of generating insights for 157 countries). The system will
allow users to understand the characteristics of landslides in a
particular area and provide useful guidance for policy imple-
mentation to mitigate the risks associated with landslides in
that area.

VII. CONCLUSION
Traditionally, town planners and strategic decision-makers
have relied on traditional statistical analyses of regional
landslide databases for strategic planning and policy imple-
mentation [2], [15], [17], [35], [36]. Previous research into
ML-based algorithms has also relied on regional and local
datasets, where the data were manually prepared and ML
models were manually created by expert data scientists,
researchers, and engineers.

In this study, we used advances in ML and AI on NASA’s
robust database of global landslides to create an auto-
mated ML-based solution that provides interactive knowl-
edge discovery in user-defined scenarios with a higher degree
of accuracy compared with other ML algorithms in the
literature.

We found that anomaly detection had a higher level
of accuracy (AUC = 0.941) than decompression tree
analysis (AUC = 0.896) and regression (AUC = 0.911,
MAPE = 0.255). It should be noted that this study is the
first to report on the use of anomaly detection and decom-
pression tree analysis algorithms for analyzing landslide
data. Moreover, to the best of our knowledge, our sys-
tem is the first of its kind to directly provide ML-based
hidden trends and insights into a vast set global land-
slide data containing 1.296 × 1064 scenarios to strategic
decision-makers.

In the future version of our solution, we plan to enhance
system capacity and capability by studying the potential for:

50. additional landslide data sources
51. additional ML algorithms (e.g. random forest, CNN,

support vector regression)
52. additional types of data (e.g. imagery, light detection

and ranging data, SAR and interferometric SAR data).
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