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ABSTRACT Quantum annealing offers an appealing route to handle large-scale optimization problems.
Existing Quantum Annealing processing units are readily available via cloud platform access for solving
Quadratic Unconstrained Binary Optimization (QUBO) problems. In particular, the novel D-Wave Advan-
tage device has been recently released. Its performance is expected to improve upon the previous state-of-
the-art D-Wave 2000Q annealer, due to higher number of qubits and the Pegasus topology. Here, we present
a comparative study via an ensemble of Maximum Likelihood (ML) Channel Decoder problems for MIMO
scenarios in Centralized Radio Access Network (C-RAN) architectures. The main challenge for exact
optimization of ML decoders with ever-increasing demand for higher data rates is the exponential increase
of the solution space with problem sizes. Since current 5G solutions mainly use approximate methodologies,
Kim et al. leveraged QuantumAnnealing for largeMIMO problems with Phase Shift Keying and Quadrature
Amplitude Modulation scenarios. Here, we extend their work and analyze experiments for more complex
modulations and larger MIMO antenna array sizes. By implementing the extended QUBO formulae on the
novel annealer architecture, we uncover the limits of state-of-the-art quantum optimization for the massive
MIMOML decoder. We report on the improvements and discuss the uncovered limiting factors learned from
the 64-QAM extension. We include the enhanced evaluation of raw annealer sampling via implementation
of post-processing methods in the comparative analysis between D-Wave 2000Q and the D-Wave Advantage
system.

INDEX TERMS Channel decoding, graph embedding, massive MIMO, NP-hard optimization, quantum
annealing, quantum computing, telecommunication.

I. INTRODUCTION
Quantum Computers can harness the processing capabilities
of quantum mechanics to speed up calculations for complex
mathematical problems [2]. Although we are yet to achieve
universal large-scale quantum computation, today’s Noisy
Intermediate-Scale Quantum (NISQ) devices can already
be used in medium-sized experimental setups. A Quantum
Annealer (QA) [3]–[5], one of the promising heuristic devices
in this NISQ era, is capable of solving complex opti-
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mization problems using thousands of noisy qubits. In this
paper, we study the performance of state-of-the-art Quantum
Annealers for the telecommunication problem of decoding
wireless physical channel transmission using large and mas-
sive Multiple Input Multiple Output (MIMO) [6] antenna
arrays (see illustration in Fig. 1).

To support high transmission rates, modern wireless access
points use spatial multiplexing with multiple antennas to
transmit more than one data stream at once. In 5G networks,
the application of MIMO antenna arrays is indispensable,
however, as we increase the number of antennas, we also
need to increase the computational power to be able to decode
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FIGURE 1. Illustration of a Multiple Input Multiple Output (MIMO)
antenna array with Nr × Nt antenna setup.

transmissions at the receiver [7]. This is also due to the
complex modulation techniques employed at the transmit-
ter. Maximum Likelihood (ML) is the optimal decoding of
received symbols in a MIMO channel, as it is capable of
minimizing the probability of bit errors, but it is also known
to be NP-hard [8], [9]. Today’s commercial massive MIMO
antenna systems already contain antenna arrays large enough
to face complex decoding problem. E.g., Ericsson’s cur-
rently available antenna systems have 128 antenna elements
(64T64R) in a 2D layout, integratedwith up to 64 radio chains
and capable of 256-QAM modulation scheme [10]. Further-
more, the size of the future antenna systems is expected to
increase, especially when extremely large aperture arrays or
holographic massive MIMO will take place [11].

In order to enable practical applicability of ML decoding
for large antenna arrays, Kim et al. [1] explored the possibility
of placing a Quantum Annealer within the data center of a
Centralized Radio Access Network (C-RAN) [12] to provide
solution to the NP-hard problem while still maintaining high
throughput of the ML decoder. This requires formulating the
ML decoding problem of the received symbols as a Quadratic
Unconstrained Binary Optimization (QUBO) problem
[13], [14] making it suitable for a QA. The resulting solution
to the optimization problem can simply be mapped back to
a bit string according to the constellation diagram of the
receiver.

Our first goal is to use an extended methodology derived
from [1] and a set of advanced modulation schemes, relevant
for high-performance telecommunication scenarios. Hence,
the formulae to convert 64-QAM modulated symbols to the
Ising spin glass form, presented in [15], is implemented as the
highest complexity problem class. Next, a set of experiments
with increasing complexity are presented, defined for a com-
parative analysis between theD-Wave 2000Q and the recently
released D-Wave Advantage platform. For the Advantage
Quantum Processing Unit (QPU) [16] the number of qubits
has increased to 5000, from 2000 of the previous generation,
allowing for larger problem mapping. Since the new D-Wave
Advantage QPU has not only more qubits but also a topology
of significantly higher connectivity, the expectation is that
it offers higher quality solutions to more complex QUBO

problems as well. Both the increase in problem size to much
higher user counts and the progression in problem complexity
to more advanced modulation schemes can be tested to reveal
the capacity gain limits of the newQPU in complex scenarios.

The structure of this work is as follows. Sec. II presents the
theoretical background of Quantum Annealing and the Max-
imum Likelihood decoding methods. In Sec. III, we present
the QUBO formulation of the MIMO channel decoding and
its extension to 64-QAM modulation from [15].

In Sec. IV, we investigate methods for embedding QUBO
formulated MIMO decoding problems. Next, in Sec. V,
we present our experimental results for solving these prob-
lems on both the D-Wave 2000Q and the Advantage system.
We also compare these results to conventional MIMO decod-
ing techniques. Finally, in Sec. VI, we summarize our results
and provide an outlook for potential future work.

II. THEORETICAL BACKGROUND
A. ISING AND QUBO MODELS
The D-Wave Quantum Annealer can solve problems formu-
lated as a QUBO or an Ising spin model. The Ising model
describes a physical system of N binary spin variables si ∈
{−1, 1} over the following configuration space: �N :=

{−1,+1}×N = {(s1, . . . , sN ) : sk = ±1}.
The Ising Hamiltonian defines the energy of the system in

a given spin configuration s ∈ � via a sum of interaction and
local energy terms in the following form:

H (s) = −
1
2

N∑
i,j=1

Ji,jsisj −
∑
i

hisi , (1)

where hi is the bias of the ith spin variable and Ji,j is the
coupling strength between variables si and sj. A reformulation
of the above energy minimum search is used in [1] with the
following notation:

ŝ = argmin
s∈�

(
1
2

N∑
i,j=1

gi,jsisj +
∑
i

fisi

)
, (2)

where fi and gi,j are the Ising model parameters and ŝ is the
minimum energy configuration.

We can also refer to optimizations on Quantum Annealers
as QUBO problems, as they are trivially equivalent to the
Ising model in (1):

q̂ = argmin
{q1,...,qN }

1
2

N∑
i,j=1

Qi,jqiqj , (3)

where the symmetric matrix Q holds the coefficients of the
binary decision variables (qi ∈ {0, 1}), having the useful
property: q2i = qi and q̂ is the solution bit string. Replacing
si in (1) with (qi · 2) − 1, we arrive at the same problem
description.

B. QUANTUM ANNEALING
QuantumAnnealing algorithms are a set of heuristic methods
for finding a global minimum of a given objective function,
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using quantum mechanical evolution. The objective function
is usually given in the form of an Ising Hamiltonian that
encodes a combinatorial optimization problem [13].

In the now standard QA devices, the solution is obtained
by first initializing the system in a superposition of all pos-
sible computational basis states with equal amplitudes that is
stabilized by a transverse field.

Then the system evolves according to the time-dependent
Schrödinger equation while the amplitudes keep changing
as the problem Ising Hamiltonian is slowly introduced and
the transverse field is slowly turned down. The still remain-
ing transverse field enables the system to tunnel through
the energy barriers so that it can reach lower energy states.
Indeed, according to the Adiabatic Theorem, if the change of
the coupling strengths of the Ising Hamiltonian and the trans-
verse field is slow enough the system remains in the ground
state of the momentary Hamiltonian throughout the anneal-
ing. Thus, for such a perfect annealing the resulting configu-
ration of the system (when the transverse field is set to zero)
is a minimal energy state of the Ising Hamiltonian, in case of
imperfect annealing process the system can also end up in an
excited state.

The D-Wave QPUs [17] implement an imperfect version
of this process using a physical lattice of qubits and cou-
plers referred to as the Chimera and Pegasus architecture
(described in the Sec. IV-A). These systems perform thou-
sands of anneals for each problem in a quick manner, which
means they often leave the ground state. However, the hope
is, that some of the samples obtained this way will reflect the
minimal energy configuration of the problem’s Ising Hamil-
tonian. Recent results of algorithmic benchmarking of QA
architectures have been reported in [18]–[22], highlighting
diverse application areas.

C. MAXIMUM LIKELIHOOD OPTIMIZATION FOR
MIMO CHANNEL DECODING
We refer to a setup of Nt users with single-antenna trans-
mitters and an Access Point (AP) capable of receiving Nr
transmission symbols simultaneously, as a MIMO scenario
of size Nt × Nr . Each user can send multiple bits with only
one symbol using digital modulation techniques, such as
Phase Shift Keying or Quadrature Amplitude Modulation,
hence the transmitted symbols can be represented by complex
vectors [23]. The set of possible values of the transmitted
symbols is called the constellation O. The size of such a
constellation grows exponentially as we increase the com-
plexity (the number of transmitted bits per symbol) of the
corresponding modulation scheme. We denote the vector of
transmitted symbols from the user antennas as v̄ ∈ CNt , and
the vector of received symbols at the AP as y ∈ CNr . The
channelmatrix is denoted asH ∈ CNr×Nt .We get the received
symbols by letting the channel matrix effect the transmitted
symbols and adding Gaussian white noise (GWN): n ∈ CNr

(y = Hv̄ + n). Introducing v, the variable for possible
transmitted symbols, and v̂, the vector of decoded symbols,

the ML decoding [24] at the AP is:

v̂ = argmin
v∈ONt

‖y−Hv‖2 , (4)

which is a search in a space of |O|Nt . To regain the original
binary message, one can use the constellation to get the
decoded bit vector b̂. The parameters f , g in (2) will be
derived from the channel matrix and the received symbol
vector, as detailed in Appendix VI. For the rest of this dis-
cussion, we shall only consider scenarios of Nt = Nr , since
the qubit requirement only depends on Nt , see Sec. III-A for
more details. However, we note that, in general, Nt 6= Nr
might be the case, and themethodologies described here work
well with such setups.

Although ML decoding would provide optimal detection
of the transmission, in practice – due to the computational
complexity – only approximations (e.g., Zero Forcing [25])
and heuristic methods (e.g., Sphere Decoding [26]) are used.
As ML decoding can maximize throughput, successfully
applying QuantumAnnealing to speed up computation would
undoubtedly yield an important real-world application of
quantum computing.

III. OVERVIEW OF QUBO FORMALISM FOR LARGE
AND MASSIVE MIMO OPTIMIZATION
A. QUBO FORMULATION OF THE MIMO ML DECODING
QUBO formulation of the MIMO ML decoding (QuAMax
transform [1]) requires assigning QUBO variable(s) to each
symbol of the transmitted symbol vector. First, using the
variable-to-symbol transform function T, one has to map
each value in the constellation to logical qubits of the QUBO
equation. Next, by expanding (4) via substitution of symbol
vectors with the derived qubit equation, one canwrite the final
QUBO form of the ML optimization problem.

For linear T, this process will provide at most quadratic
terms, however, in case of Gray-coded transmission,1 non-
linear transformation is necessary. Here, the method intro-
duced by Kim et al. [1] is based on the linear mapping for the
Ising transformation, but with an additional post-translation
of the decoded bits of b̂ to finally restore the original, Gray-
coded message.

In case of higher-order modulations, more qubits are
needed to encode one symbol. In particular, an N -QAM
modulation requires exactly log2 N variables per symbol for
the linear mappingT. The total qubit requirement of encoding
a symmetricMIMO setup ofNt×Nr isNt log2 N , giving us an
estimate on the problem sizes that can be tackled by current
Quantum Annealing hardware.

In the following, we give a brief overview of the basic
modulations already covered in [1]. In addition, we include
the extension of the QuAMax transform to the 64-QAM
modulated symbol vectors presented in [15].

1Gray code is an encoding technique where each subsequent symbol is
encoded by a bit pattern that only differs in one bit in order to make error
correction more robust.
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B. BPSK, QPSK AND 16-QAM
For the modulation scheme of Binary Phase Shift Keying
(BPSK), the mapping T is a trivial conversion, as one can
simply map each possible symbol vi ∈ {−1, 1} to 2qi − 1.
Higher order modulations have complex numbers as sym-

bols, with exponentially increasing constellation size: vi =
vIi+jv

Q
i . For Quadrature Phase Shift Keying (QPSK)modula-

tion, we have vIi , v
Q
i ∈ {±1}, i.e., each dimension can encode

one bit. Therefore, mapping T requires two qubit variables:

vi = (2q2i−1 − 1)+ j(2q2i − 1). (5)

A more complex encoding is introduced by Quadrature
Amplitude Modulation (QAM). For 16-QAM, the number
of transmitted bits per symbol is M = 4 and the scheme
requires a constellation of size 16 (2M ), with usual values of:
vIi , v

Q
i ∈ {±1,±3}. Since both v

I
i and v

Q
i can encode 2 bits,

we require 2 qubits per dimension for the mapping T:

vi = (4q4i−3 + 2q4i−2 − 3)+ j(4q4i−1 + 2q4i − 3). (6)

From these equations, substituting back to (4) gives us the
expanded formulae of encoding the ML problem in QUBO
form. In [1], the expanded QUBO coefficients are written
explicitly for BPSK, QPSK and 16-QAM modulations.

C. THE 64-QAM MODULATION
Although 256-QAM modulation is already available in com-
mercial mobile systems targeting Gbit per second data rates,
such a complex modulation scheme requires very good radio
conditions, i.e., high signal-to-noise-ratio (SNR); further-
more, it is often limited to mobile devices served at the very
center of the mobile cells. Hence, mobile devices still utilize
lower-complexity modulation schemes, as well. Although
implementing the highest commercially available scheme
would be desirable, we have to align with the limitations
of current QPU hardware architectures, therefore we only
increase the complexity to the next level compared to Kim
et al. [1] via 64-QAM. This allows for a fair comparison with
the already investigated implementations of BPSK, QPSK
and 16-QAM by [1].

Here we extend our study to include the correspond-
ing QUBO formalism presented in [15]. The usual values
of 64-QAM modulated symbols are: vIi , v

Q
i ∈ {±1, ±3,

±5,±7}, which requires constellation of size 64 (see Fig. 9
in Appendix VI). A straightforward (and linear) variable-to-
symbol transform is thus:

vi = (8q6i−5 + 4q6i−4 + 2q6i−3 − 7)

+j(8q6i−2 + 4q6i−1 + 2q6i − 7). (7)

The linearity comes at the price of disparity between the
Gray-code and QuAMax, requiring additional transforma-
tion steps. The details of how this post-translation technique
works can be found in Sec. 3.2 of [1]. The full expansion of
(4) with 64-QAM is given in Appendix VI.

IV. EMBEDDING ONTO D-Wave QPUs
A. D-Wave ARCHITECTURES
There are two types of publicly available QA architectures
in D-Wave’s current portfolio. D-Wave 2000Q is a model
with up to 2048 physical qubits, accessible in a Chimera
topology. The novel D-Wave Advantage architecture presents
up to 5640 physical qubits in a Pegasus topology. As an
illustration, Fig. 2 depicts two embeddings of a complete
graph into first, a Chimera C16 subgraph in Fig. 2a of four
unit cells, and second, a Pegasus P16 unit cell in Fig. 2b.
While Chimera C16 topology is composed of K4,4 graphs in
a 16 × 16 lattice, the recently released Advantage QPU has
a Pegasus P16 topology, which is more connected with nodes
of degree 15 via programmable qubit couplers as opposed to
previously available degree of 6.

FIGURE 2. Embedding of a complete graph of 9 nodes to two QPU
topologies. Each logical qubit is represented by a different color, inactive
nodes and couplers of the graph are represented by gray in
(a) Chimera C16 subgraph of four unit cells, and (b) Pegasus P16 subgraph
of single unit cell. The higher connectivity results in lower number of
physical qubits and shorter chains representing the logical qubits.

B. MINOR-EMBEDDING METHODS WITH
EXTENDED HEURISTICS
QUBO models can have arbitrarily high connectivity, hence
mapping them directly to a QPU hardware topology is rarely
possible. Instead, one needs to find optimal chains of physical
qubits created using large negative couplings to represent
the logical qubits. The process of finding such a problem
mapping is called minor-embedding [27]. Finding the graph
minor is NP-hard and since one needs to find it on a classical
machine as part of pre-processing QUBO problems, one must
employ a heuristic algorithm. One such heuristic method is
the MinorMiner (MM) algorithm [28] developed for finding
arbitrary graph minors. It can be used for finding minors
of C16 and P16 as implemented in D-Wave’s open-source
framework, the Ocean SDK [29]. An example of embedding
the same graph into C16 and P16 is illustrated in Fig. 2.

The quality of embedding is measured in the length of
resulting chains and the uniformity of the chain length dis-
tribution. As MM is a heuristic algorithm, it has guaran-
tees for neither of these properties. To ensure near-uniform
chain lengths, Native Clique Embedding (CLIQUE) [30] can
be used. It is a specialized algorithm for quickly finding
embeddings of cliques onto C16 and P16, which one can use
to embed an arbitrary graph since any graph can be mapped
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TABLE 1. Qubit requirements of different ML encoded MIMO configurations with Native Clique Embedding: logical qubits (physical qubits on C16/P16).

to a complete graph. However, CLIQUE has a fixed upper
limit for the maximal clique sizes that it can handle, which is
64 and 180 for C16 and P16, respectively [31].
We note that despite the high number of available qubits,

many factors can lead to high ratio of inactive nodes after an
embedding. First, the special QPU topologies are hard to be
fully utilized due to their sparse connectivity. Furthermore,
since the actual hardware graphs can have manufacturing
imperfections some graphs that would be embeddable into
perfect C16 or P16 will not be embeddable in practice [32].
In order to embed larger QUBO problems that super-

sede the limitations of CLIQUE, we use two heuristic
approaches that aim to yield higher qubit utilization. Clique-
Based MinorMiner (CLMM) and Spring-Based MinorMiner
(SPMM) [31] work by finding initial chains of qubits which
can be passed to MM as a parameter in hopes of finding
better final embedding using these as starting points. CLMM
finds initial chains using CLIQUE, which results in the near
uniformity of chains. As MM is able to shorten these chains,
CLMM is capable of finding embeddings to even larger
problems, exceeding the capability of pure MM. SPMM lays
out both the hardware topology graph and the problem graph
on a [−1, 1]× [−1, 1] plane and matches each problem node
to the nearest hardware node in Euclidean distance. Hence,
the initial ‘‘chains’’ in case of SPMM all have length of one,
therefore this method is more suitable for sparser problem
graphs (Fig. 3). We present test results for both methods
and use the found limiting cases of embeddable MIMO ML
decoding scenarios of maximum problem size.

C. MINOR-EMBEDDING OF MIMO ML DECODING
In this section, we present the found hard limits of
MIMO ML decoding as QUBO problem regarding size and
modulation complexity embeddable into Pegasus P16 and
Chimera C16 graphs. As any N -QAM Nt × Nr MIMO
ML setup is (almost) equivalent to a KNt log2 N complete
graph [1], using CLIQUE, one can derive the largest embed-
dable problem sizes. For Chimera C16, it is known that the
largest native clique isK64, whereas for Pegasus P16, it isK180.

FIGURE 3. SPMM initial chain mapping on Chimera. Red dots are the
problem nodes and the blue ones represent physical qubits of the
Chimera hardware topology.

From these assumptions, one can trivially derive the limits
of each problem complexity. However, for completeness,
we have compiled the logical and physical qubit requirements
in Table 1 for a set of large and massive MIMO scenarios
that are relevant in practice. The green cells indicate feasible
Native Clique Embedding on both QPU architectures, yel-
low cells are only embeddable to Pegasus P16 topology and
red cells indicate non-feasibility on both the 2000Q and the
Advantage system.

Already by using Pegasus P16, the results surpassed previ-
ous limits published by [1], more than doubling the largest
embeddable problem sizes. However, additional heuristics
further improved these results. In addition, a comparison of
physical qubit usage of MM, SPMM and CLMM is depicted
in Fig. 4. Since the embedded problems are represented by
near complete graphs, CLMM is the best performer, whereas
SPMM has inferior performance – as expected based on [31].
The rate of growth is fast but sub-exponential for all three
algorithms. Still, none of the embeddings could leverage
all available qubits due to, at least in part, the connectivity
limitations of the QPU topologies.

The upper limits for each modulation and for the two
architectures are summarized in Table 2 comparing theNative
Clique Embedding to best-performing CLMM. Note that
CLMM produced near-uniform chain lengths, whereas MM
and SPMM did not. This gives CLMM an advantage as it is
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TABLE 2. Minor-embedding limits of QUBO-form MIMO ML decoding
problems with Native Clique Embedding (CLIQUE) and heuristics (CLMM).

FIGURE 4. Comparison of embedding methods via QUBO graphs of a
series of 64-QAM MIMO decoding scenarios. Heuristic algorithms of
CLMM, SPMM and MM were each tested in (4a) Chimera C16 and
(4b) Pegasus P16 for 10 embedding runs. The average number of required
physical qubits is depicted per problem size and embedding method.

capable of producing both shorter and more uniform chains,
the two main factors affecting the optimization quality of
Quantum Annealing solutions.

V. OPTIMIZATION OF MIMO ML DECODING WITH
QUANTUM ANNEALING DEVICES
A. EXPERIMENTS FOR COMPARATIVE ANALYSIS
We tested each modulation with many different symmetric
user setups (Nt × Nr , Nt = Nr = 2p) that are relevant
for commercial telecommunication installations. For each
specific problem, we generated 10 different noiseless random

FIGURE 5. Comparison of embedding methods with respect to solution
quality. 10 random 4× 4 16-QAM problems were generated and solved
using the D-Wave Advantage system. Each embedding method was tested
on each random instance and evaluated using bit error rate as
performance metric.

instances (channel matrices, transmitted bits), each of which
was run 5 times.

Our main performance metric was the bit error rate (BER),
which indicates the ratio of unsuccessfully decoded bits, i.e.:
BER(b̂) = ‖b−b̂‖n , where n is the length of the sent bit string b.

The natural expectation is that increasing problem com-
plexity leads to increased BER. Moreover, the hope is that
the more advanced QPU will not only handle higher problem
sizes, but also improve upon performance for the smaller
problems running on both architectures. Both of these expec-
tations were proven by the experiments presented in the next
subsection.

For most of the runs, we used Native Clique Embed-
ding as it produced uniform chains, leading to more stable
results as opposed to heuristic embedding methods. However,
the largest instances on the Pegasus architecture were embed-
ded using the base MinorMinor method, since CLIQUE
would require more qubits than available in the current hard-
ware topology. Fig. 5 shows that CLIQUE is the most stable
one of the presented embedding methods when solving a
4 × 4 16-QAM problem multiple times on the D-Wave
Advantage system.

B. EVALUATION OF EXPERIMENTS ON D-Wave QPUs
The experiments were run using the D-Wave DW_2000Q_6
and the Advantage_system_1.1 QPU solvers [33], [34]. The
QPU solvers have several parameters available for controlling
the annealing process. Annealing time (Ta) and the number of
requested samples (Na) are the most basic annealing process
parameters, and also the most important ones for the quality
of solution. Ta sets the duration (in µsec) of each annealing
cycle, andNa tells theQPUhowmany sampling cycles should
be executed. As both of these parameters have high impact
on the optimization outcome one often needs to empirically
search the whole parameter space for each particular problem
to find the most promising combination. We tested a minimal
set of parameter pairs that proved to be well-performing
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during our earlier research [35]. We concluded that setting
Ta to 15 and Na to 500 is a good choice overall as it gives
stable results across all problem complexities (BPSK, QPSK,
16-QAM, 64-QAM) andMIMO sizes (Nt ∈ {2, 4, . . . , 128}).
We should note however, that this setting does not necessarily
meet the practical real-time computing requirements of the
MIMO ML detection problems.

The other important parameter was the chain strength that
governs the cohesion of physical qubit chains. Setting this
parameter too high can lead to lost precision of the QUBO
coefficients, while setting it too low can cause broken chains.
We conducted the experiments with chain strengths of 0.3 and
0.8. From our experiments, the lower complexity problems
require smaller chain strength and the QAM modulations
benefit from stronger chains.

The results of the performance tests are shown in Fig. 6,
where BER statistics for each problem’s solution on both
QPUs are depicted. We can see that increasing problem
complexity indeed leads to increased BER. Besides the more
advanced Advantage QPU being able to handle higher prob-
lem sizes, the results also show performance improvement
for smaller problem solutions as compared to the 2000Q
architecture solutions. Hence, our expectations were proven.
Although the improvements per problem instance are not
substantial, still, the problem size extension is significant.

For the dimension of complexity of modulation types,
we can see a separation between Phase Shift Keying and
Quadrature Amplitude Modulations. First, for the BPSK and
QPSKmodulations, even the larger instances could be solved
via both QPUs with near zero median BER, furthermore, for
most of these problems the QPUs could produce at least one
proper solution. In Fig. 6, we can observe that the median
BER increases significantly when we are reaching the limits
of the largest investigated size of the problems. This is not
unexpected, as larger cliques require embedding with longer
chains leading to the aforementioned phenomenon of losing
precision of QUBO coefficients. Second, for the 16-QAM
and 64-QAM cases, the results are not satisfactory. For these
complex modulation schemes, even small-sized problems
could incorporate some bit errors and the largest problems
rarely had proper solutions.

For the dimension of the transmitter numbers, there
is a separation only in case of the more complex
modulation schemes. First, for the 2× 2 and 4× 4 instances
of the 16-QAM cases, there exist perfect solutions, but the
high bit error rate dominates in the majority of the samples;
for 64-QAM, we could only produce proper solutions for
the 2 × 2 instance. Second, in case of the large instances of
higher-order modulations, further parameter fine-tuning
would be required to produce near-optimum solutions.

C. POST-PROCESSING OF QUANTUM
ANNEALING SAMPLES
Single Qubit Correction (SQC) is a post-processing technique
introduced by [36]. It aims to reduce energies of Quantum
Annealing samples by iteratively changing each solution bit

FIGURE 7. Comparing conventional ML decoders to the QA-based
method. With different levels of SNR, 10 random 4× 4 16-QAM problems
were generated and solved using the D-Wave Advantage system with SQC
post-processing and the following conventional ML decoding techniques:
Zero Forcing (ZF), Minimum Mean Squared Error (MMSE) and Sphere
Decoding (ML). The performance was evaluated using bit error rate as
metric.

depending on its energy impact. It is a heuristic approach,
i.e., there is no guarantee that the resulting samples will have
lower energies than the original ones (but it is guaranteed that
it does not increase the energies).

The method works by iteratively changing the sign of
bits in every sample in order to reduce the sample’s energy.
Let si denote the ith bit of a sample obtained via Quantum
Annealing. Given the matrix of QUBO coefficients Q and
the set of indices of non-zero quadratic biases C = {i, j|
Qi,j 6= 0}, the influence of si is:

Ii = Qi,i +
∑
i,j∈C

Qi,jsj. (8)

If Ii and si has the same sign, we can flip the sign of si
to reduce the energy of the complete sample by 2Ii. Here, si
runs over the entire set of QUBO variables. After every bit
has been checked and potentially flipped, the whole process
can be repeated until no more change is possible.

With SQC, we were able to achieve an average BER reduc-
tion of 0.067, with a maximum reduction of 0.25. Themethod
achieved the most significant improvements for 16-QAM
and 64-QAMmodulations with averages of 0.158 and 0.118,
and with the maximums reaching 0.25 and 0.229 reduction
in BER, respectively. Fig. 6 shows the results achieved via
post-processing of P16 QPU samples as compared to the raw
samples from C16 and P16 QPUs for the same set of random
instances.

D. COMPARISON TO CONVENTIONAL METHODS
We compared the performance of the QA-basedML decoding
to conventional decoding schemes [37], [38]. As a baseline
for linear decoding methods, we used Zero Forcing [25] and
Minimum Mean Squared Error [39]. Furthermore, we also
included the Sphere Decoding [40], [41] method with infi-
nite lattice that implementsMaximumLikelihood estimation,
which is capable of finding the best possible solution to the
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FIGURE 6. Solution quality measured in bit error rate (BER) of MIMO ML decoding problems solved by the D-Wave 2000Q and Advantage
system. Statistics of modulation types BPSK, QPSK, 16-QAM and 64-QAM are shown for C16 QPU raw sampling (red dot), P16 QPU raw sampling
(blue triangle) and P16 QPU SQC-enhanced sampling (yellow square). Per problem size and per modulation type, 50 experimental runs were
performed by 10 random instances optimized 5 times each. The lines represent the median values at the given problem size with 6 to 94 percentile
intervals colored around them.

decoding problem. We have compared these methods with
the Quantum Annealing based technique, in particular the
P16 QPU + SQC method with CLMM embedding. We note
that improvements to the mentioned basic classical tech-
niques already exist [42]–[44], which can outperform these
basic versions either in accuracy, or in complexity.

Without noise, the conventional methods can solve any
decoding problem, as they can calculate the exact solution
due to their mathematical framework. However, the same
cannot be said about theQA-based decoder as it needs towork
on a modified (embedded) version of the problem. Further-
more, an analog QPU device also suffers from environmental
noise and low floating-point precision. To make the problem
more realistic, we added noise to the received symbols, which
was done by specifying the signal-to-noise ratio (SNR),
measured in dB.

Each of the decoders solved 4×4 16-QAM problems with
7 different SNR values with 10 randomly generated instances
per SNR value. SNR analysis of BPSK and QPSK comparing
quantum and classical methods was already presented in
Kim et al. [1] . We chose 16-QAM to extend upon this work
toward practical use cases. Fig. 7 depicts the result of the
comparison measured in BER averaged over the 10 random
instances. From this, we can conclude that the QA-based
method is capable of providing the same solution quality as
the conventional decoding methods in noisy channels. In par-
ticular, it produced the same results as the Sphere Decoding
ML method, which is the best possible outcome.

The simulations were done using a modified version
of [45], a massive MIMO simulator with multiple available
decoders.

E. TIME STATISTICS OF QPU SAMPLING
The process of QA sampling on D-Wave’s QPUs can be
deconstructed into a sum of processing time intervals, each
measured in µs. On the high level, QPU Access Time can
be split into QPU Programming Time, QPU Sampling Time,
and QPU Access Overhead Time. During Programming,
the biases and couplers are initialized according to the QUBO
model, Sampling Time is used to collectNa samples, whereas
Access Overhead accounts for post-processing of the batch
of samples last to be collected (the other batches are post-
processed concurrently with the annealing run of the con-
secutive batch). For more details on D-Wave QPU timing,
see [46].

QPU Sampling Time can be further decomposed into tim-
ing requirements of each individual sampling. Producing one
sample includesQPU Annealing Time Per Sample (Ta),QPU
Read Out Time Per Sample (Ra) and QPU Delay Time Per
Sample. Although Sampling Time is usually referred to as
Na · Ta, we wanted to highlight that Read Out Times take up
a large portion of Sampling Time, which must be considered
for the real-time requirements of the MIMO ML decoding
problem.

Fig. 8 shows the breakdown of the total Sampling Time for
a single QPU run grouped by modulation, QPU architecture
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FIGURE 8. QA timing statistics over experiments for 2000Q (C16) and
Advantage (P16) architectures. Values show averages over
50 experiments per problem size, with parameters of 500 sample
readouts and 15µs annealing time per sample. A decomposition of the
total QA sampling process is used with the following elements:
Programming (green) initializes the QPUs, Annealing (orange) drives the
system to optimal state, Readout (blue) measures the solution states,
Delay (yellow) is used for thermalization of the QPU to its initial
temperature, and Post-Processing (purple) transforms the last batch of
sample measurements before returning the best optimum and additional
information of the annealing run.

and Nt . The first step for a QPU run the qubits are initialized
(Programming Time). This is a one-time only process, and it
is nearly constant for all problem sizes, but it differs on the
two QPUs significantly due to the size difference.

The actual annealing process takes Na · Ta · Ra total time,
where Na and Ta is determined by the API user, whereas Ra
is dependent on the hardware implementation. In case of our

experiments, Na = 500 and Ta is 15. One could improve
upon these results by lowering Ta (down to 1) or requesting
fewer samples, however, the optimal values Ta and Na are
often problem dependent and finding them requires thorough
search of the parameter space.

D-Wave’s post-processing optimization of samples is
applied batch-by-batch, in parallel with the annealing runs,
and therefore only the last batch’s post-processing adds extra
time to the overall annealing run. In Fig. 8, we can observe
that post-processing time is highly dependent on problem size
and has negligible impact on the whole sampling time.

Fig. 8 also tells us that the 2000Q QPU has constant time
requirement regarding readouts, whereas the Advantage sys-
tem demonstrates scalingwith the problem size. Furthermore,
the overall readout times improved also on the architecture
and therefore it is not only capable of solving larger problems,
but also achieves speedup over all experiment types and
problem sizes.

VI. CONCLUSION AND OUTLOOK
In this paper, we presented the experimental evaluation of the
MIMO ML decoding tests of multiple modulation schemes
on currently available Quantum Annealers. For testing the
newly available D-Wave Advantage system, we first repro-
duced the results of [1] for BPSK, QPSK, 16-QAM on the
predecessor hardware D-Wave 2000Q and then extended the
range of experiments to the 64-QAM modulation scheme
using the novel state-of-the-art QPU.

As expected, using the Pegasus P16 architecture of the
D-Wave Advantage system, the embedding and solution
qualities of the MIMO ML decoding problems scale bet-
ter, for both the dimensions of modulation complexity
and transmitter numbers, than in the previously available
Chimera C16 architecture. Whereas the embeddable problem
sizes could be doubled on the new architecture, paving the
way for massive MIMO applications, the improvements per
problem instance were not substantial for smaller QUBO
problems.

We believe that this is due to precision limitations of
the analog QPU hardware. With the use of the SQC post-
processing technique, the quality of solutions could be further
improved, however, only to a certain degree. We believe that
additional heuristics and parameter tuning could be tested
for further enhancement of the optimization results. Further-
more, fine-tuning for lower values for Na and Ta could be
an additional step towards requirements of latency sensitive
optimization tasks. We leave the study of these possibilities
to future work.

We showed that using SQC post-processing the current
QPU is already capable of solving up to 16-QAM problems
with the same quality as the classical ML decoders. This
is an indication that future QPU architectures (with higher
qubit connectivity) will be able to solve MIMOML decoding
problems of any complexity with at least the same quality as
classical decoders.
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FIGURE 9. The process of converting the QuAMax encoded bits to the
original, Gray-coded transmission with 64-QAM.

While NISQ quantum technologies present a remarkable
progress each year, until their maturity there are hybrid and
quantum-inspired classical solutions already commercially
available – with impressive performance reports for specific
optimization tasks. For large-scale problem sizes, D-Wave’s
new Leap Hybrid service [47], [48] is capable of processing
up to 20,000 QUBO variables with fully connected graphs,
using an approach of problem partitioning. Digital annealing

technologies [49]–[52] also pave the way towards time sen-
sitive optimization scenarios with high-parallelism and high-
performance dedicated architectures.

The quality metrics of novel optimization systems would
also have to be tested via algorithmic comparative exper-
iments of specific problem types, and we expect to see
more diverse set of industry-specific performance studies
published in the near future.

APPENDIX A
CONVERSION OF ENCODED BITS WITH 64-QAM
Here we refer to (7) in Sec.III-C, and present a more detailed
constellation diagram for 64-QAM modulation scheme.
Fig. 9 illustrates the process of converting the QuAMax
encoded bits to the original, Gray-coded 64-QAM transmis-
sion as follows.

First, the sender transmits Gray-coded message using the
constellation of Fig. 9c. At the receiver, the QuAMax con-
stellation of Fig. 9a is used to decode the message, which
uses non-Gray-coded bit strings in order to retain linear
QUBO transformation. To restore the originally sent bit
string, post processing of the minimization result is required
using post-translation which flips the bits of even-numbered
columns in the constellation resulting in Intermediate code
constellation of Fig. 9b. Finally, from the Intermediate code
constellation we convert back to the original, Gray-coded
bit string via either simple mapping or by differential bit
encoding.

APPENDIX B
BER IMPROVEMENT USING SQC
Fig. 10 shows the improvement in BER of the Single Qubit
Correction post-processing for both QPUs, where 1BER =
BERSQC − BERQPU

APPENDIX C
ISING TRANSFORMATION OF 64-QAM MODULATION
The equations for the Ising coefficients of the 64-QAMMod-
ulation follow the same notation as Kim et al. [1] , whereH(:,i)
denotes the ith column of the channel matrix H and y is the
vector of received symbols,2 (10), as shown at the next page.
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2We note that the correct QUBO model coefficient of the 16-QAM QuA-
Max description is gij(H) = 2(HI

(:,di/4e) ·H
Q
(:,dj/4e))−2(H

I
(:,dj/4e) ·H

Q
(:,di/4e))

(in case i = 4n, j = 4n′ − 2 in (14)), contrary to the misprinted formula in
Appendix C of [1].
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FIGURE 10. Improvements in BER using SQC post-processing by
reducing energies of individual samples. Statistics of modulation types
BPSK, QPSK, 16-QAM and 64-QAM are shown for C16 QPU SQC-enhanced
sampling (red dot) and P16 QPU SQC-enhanced sampling (blue triangle).
A total of 500 experimental runs were post-processed using SQC. The
lines represent the median values of 1BER = BERSQC − BERQPU at the
given problem size with 6 to 94 percentile intervals colored around them.
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