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ABSTRACT The advent of space applications with increased computational requirements has led the
space industry to consider innovative chips and avionics architectures for high-performance on-board
data processing. In a relatively limited market, the European BRAVE family of Field-Programmable Gate
Arrays (FPGAs) offers such novel radiation-hardened solutions. Towards verification, the current work
devises and applies a methodology to thoroughly assess the BRAVE FPGAs and their SW tools. The
paper focuses on NG-Large, i.e., the largest FPGA of the 65nm Radiation-Hardened-By-Design (RHBD)
technology of NanoXplore to date. The proposed approach comprises a number of customized steps to
systematically evaluate the entire FPGA design flow. Initially, we carefully select and tune a set of high-
performance Digital Signal Processing (DSP) & Computer Vision (CV) benchmarks, which were originally
developed as Hardware Description Language (HDL) IPs in past projects of the European Space Agency
(ESA). Subsequently, we perform exhaustive exploration of the Synthesis, Placement, and Routing stages
of the SW tools, as well as testing on actual HW boards. At each step, we generate and analyze a variety
of results, while we also compare them to 3rd-party solutions. The results show that NG-Large provides
sufficient programmability and performance, e.g., classic CV IPs for feature detection on megapixel images
can achieve a throughput of 5–10 frames per second, while the on-chip memory utilization is up to 56% better
than that of 3rd-party FPGAs. As a highlight, at system-level, we successfully implement and execute an
entire HW/SW algorithmic pipeline for Vision-Based Navigation (VBN) involving SpaceWire data transfers
with LEON CPU & NG-Large co-processing.

INDEX TERMS Assessment methodology, computer vision, digital signal processing, European FPGA,
HW benchmarking, NanoXplore, radiation-hardened, space applications, tool testing.

I. INTRODUCTION
The emerging need for increased computational power and
fast data transfers in modern space applications makes
the use of high-performance devices in on-board pro-
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cessing systems critical. Radiation-hardened CPUs, such
as the PowerPC-based RAD750 (12W@200MHz) and
LEON2-based AT697F (1W@100MHz), seem unable to
meet the performance requirements of future missions.
Towards more power-efficient and high-performance com-
puting, the space industry explores new processing plat-
forms. In general, the RHBDApplication-Specific Integrated
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Circuits (ASICs) provide the best performance, however,
they are very costly and lack in terms of re-configuration
and flexibility. The FPGAs are an attractive alternative solu-
tion providing excellent performance-per-power ratio and
re-configuration capabilities [1]. In this context, the new
NanoXplore [2] RHBD family of FPGAs [3], [4], also known
as BRAVE,1 is expected to play a key role in upcoming space
missions, especially in Europe. The BRAVE family offers
high resource density on FPGA and SW tools for end-to-end
development and seamless re-configuration.

The enhanced performance of FPGAs will facilitate
embedded computing in space, e.g., for Earth Observa-
tion (EO) and Vision-Based Navigation (VBN), towards a
decreased need for downlink transmission of sensor data
to the ground stations. The space community has already
conducted relevant research on space-grade and Commercial-
Off-The-Self (COTS) FPGAs. More specifically, FPGAs
are constantly being evaluated for future missions, either
as main accelerators [5]–[8] or framing processors & her-
itage accelerators [9], [10]. The literature also includes
numerous works with FPGA-based co-processing archi-
tectures for space avionics [11], [12]. In terms of algo-
rithms, FPGAs are used for accelerating DSP/CV functions,
as well as for implementing data transcoding for instru-
ments/sensors (e.g., via SpaceWire/SpaceFibre [13]) and data
compression [14], [15].

The number of available space-grade FPGAs is limited and
becomes even smaller when opting for European high-density
chips. Themajor space-grade FPGAs, in themarket today, are
categorized per vendor as follows:
• Xilinx [16]: Virtex-4QV (SRAM, 90nm), Virtex-5QV
(SRAM, 65nm), RT Kintex UltraScale (SRAM, 20nm).

• Microsemi [17]: RTSX-SU (anti-fuse, 250nm), RT
ProASIC3 (flash, 130nm), RTAX-S/SL (anti-fuse,
150nm). RTG4 (flash, 65nm), RT PolarFire (SONOS,
28nm).

• Atmel [18]: AT40K (SRAM, 350nm), ATF280 (SRAM,
180nm).

All the above FPGAs vary with respect to resource den-
sity, performance capabilities and radiation resilience. The
BRAVE family constitutes a new promising addition in this
pool. NanoXplore [2] provides multiple low-end and high-
end RHBD SRAM-based FPGAs [3], [4], i.e., NG-Medium
(65nm),NG-Large (65nm) andNG-Ultra (28nm), with all the
traditional FPGA programmable logic resources. NG-Large
and NG-Ultra integrate the single-core ARM Cortex-R5 and
quad-core ARM Cortex-R52 processors, respectively, with
the latter implementing the DAHLIA System-on-Chip (SoC).
Furthermore, the BRAVE FPGAs include features that are
essential for on-board embedded computing in space, such
as the SpaceWire interface for fast I/O data transfers and
memory scrubbing to ensure continuous error-free function-
ality. The BRAVE FPGAs can be configured via multiple
interfaces, i.e., JTAG, SPI/flash, and SpaceWire.

1BRAVE: Big Re-programmable Array for Versatile Environments.

Table 1 presents an overview of the most prominent space-
grade FPGAs, including BRAVE. The Atmel FPGAs are
omitted here due to their limited on-chip resources. The
examined FPGAs can be categorized in three classes; each
class includes chips from different vendors but with similar
resources, e.g., {Virtex-5QV, RTG4, NG-Large}. We note
that only the BRAVE family offers hard embedded pro-
cessors, and hence, increases the development flexibility
by facilitating HW/SW co-design. In terms of radiation
resilience, similarly to Virtex-5QV, the advantage of BRAVE
is their RHBD SRAM-based chips: they are fabricated with
12-transistor (12-T) configuration memory cells outperform-
ing the simple SRAM cells and competing with anti-fuse and
flash technologies. This is extremely important, considering
that, for example, Virtex-4QVwould require full Triple Mod-
ular Redundancy (TMR) and configuration memory scrub-
bing to achieve reliable operation.

The efficient utilization of a new FPGA family such as
BRAVE, as well as the full exploitation of the associated
SW tools, require a systematic and disciplined approach. For
this reason, ESA is supporting a set of research activities,
which involve HW benchmarking on the BRAVE FPGAs
and testing of the BRAVE SW tools. These activities aim to
improve the NanoXplore tools and devices, and evaluate the
suitability of the BRAVE solution as on-board data processor.
In the ‘‘QUEENS-FPGA’’ activity [19], we evaluated the
NG-Medium FPGA based on our assessment methodology.
In the current paper, we enhance our methodology and eval-
uate the next chip of the BRAVE series, i.e., NG-Large. The
work is performed in the context of the ‘‘QUEENS2’’ activity
of ESA.

The proposed quality assessment methodology is based
on the systematic verification and testing of the NanoXplore
tools for FPGA development & configuration. One of the
key aspects in our methodology is the high-performance
benchmarking with HDL IP cores from the signal process-
ing and computer vision domains, which are representative
of the performance requirements in rovers/spacecraft. The
contribution of this paper lies in (i) introducing an enhanced
version of our assessment methodology for evaluating new
devices/tools, (ii) evaluating the NanoXplore SW tools by
examining the available options throughout the entire FPGA
design flow, (iii) evaluating the NG-Large capabilities as on-
board processor with representative VBN benchmarks.

The paper is organized as follows. Section II includes
related work with BRAVE and other space-grade FPGAs.
Section III presents the BRAVE FPGA architecture and SW
tool. Section IV describes our quality assessment methodol-
ogy. Section V presents experimental results with DSP/CV
benchmarks. Section VI presents system-level results for an
entire VBN pipeline. Section VII draws the conclusions.

II. RELATED WORK
A. EVALUATION OF SPACE-GRADE FPGAs
Space applications impose strict requirements for radiation,
thermal & vibration resilience compared to the terrestrial
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TABLE 1. Overview of space-grade FPGAs [2], [16], [17].

ones. To achieve increased reliability, space-grade FPGAs
are used instead of their COTS counterparts, sacrificing the
performance of the latest COTS technology node. The lit-
erature includes numerous works with space-grade FPGAs.
Theseworks focus on the implementation of functions used in
on-board computing systems, the development of new space
applications, and the design of novel processing architectures.

In [20], the CCSDS 1.2.3 standard for compressing hyper-
spectral images is implemented on Virtex-4QV, achiev-
ing real-time compression for sensors such as AVIRIS
(680× 512 ×224 image), while consuming 1/3 of the chip
resources and limited power. Similarly, the Virtex-5QV and
RTG4 FPGAs have been used for the implementation of
the SHyLoC 2.0 CCSDS 121 and 123 lossless compres-
sion standards [14], providing up to 138 and 81 MSam-
ples/s, respectively, for the AVIRIS sensor. In [21], the
authors implement a single-chip payload data processing
unit on the Virtex-5QV FPGA, integrating both the instru-
ment system supervisor and data processing functions. The
proposed architecture supports self-configuration manage-
ment and mitigation techniques to provide fault-tolerance.
In [22], the new SCCC-X telemetry transmitter, which is
an extension of the CCSDS 131.2-B-1 standard, is imple-
mented and evaluated on RT Kintex UltraScale and RTG4,
delivering more than 450 MSym/s and 250 MSym/s, respec-
tively. Very recently, radiation-tolerant FPGA-based plat-
forms for AI applications have been proposed. In [23], a
deep learning architecture for RT Kintex UltraScale is pro-
posed, which is based on Xilinx’s deep learning processing
unit, TMR MicroBlaze subsystem, and Single Event Upset
Mitigation (SEM) IP. In [24], the authors use the VectorBlox
software development kit to deploy AI models on a matrix
processor implemented on the RT PolarFire FPGA.

The literature includes several works involving the
BRAVE FPGAs. In [25], the re-configuration capabilities of
NG-Medium via the SpaceWire interface are evaluated, while
in [19], benchmarking results for NG-Medium are reported
and re-configuration scenarios with different algorithms are
examined. Regarding NG-Large, benchmarking and tool test-
ing results are provided by the current paper’s authors in [26].
Moreover, NG-Medium andNG-Large have been used for the

implementation of HW/SW pipelines for rover localization
and mapping [27]. In [14], both FPGAs have been evaluated
for hyperspectral image compression.

B. USE OF SPACE-GRADE FPGAs IN MISSIONS
A review of the FPGA usage in space missions is crucial
to understand the flight heritage and the target applications,
as well as the evolution towards the future of the industry.

Starting with Microsemi, RTSX-SU has flight heritage
since 2005, as it was on-board the Mars Reconnaissance
Orbiter spacecraft. Other missions using this chip are the
GPS-2RM, New Horizons, SAR-Lupe 1 and 2, Galileo
GIOVE-A, and TerrSar X. RTAX is also widely used, hav-
ing flight heritage since 2007 in missions such as the Mars
Science Lab Curiosity rover. Moreover, RTAX-S is on-board
in COSMO SkyMed 1 and Mars Phoenix. RT-ProASIC3 has
flight heritage since 2013, i.e., in NASA’s IRISmission, being
the first radiation-tolerant flash-based FPGA used in space.

Many FPGAs are used for implementing mass mem-
ory controllers and SpaceWire links and routers. Exomars
2022 OBC1 [28], developed by Crisa, includes two (four
for redundancy) RTAX2000S for interfacing, reconfiguration
and mass memory control. OBC1 manages the whole Exo-
Mars 2022 mission during Cruise, EDL and Mars Surface
Operation phases, and runs the mission’s SW (developed by
TAS) including the Guidance, Navigation and Control (GNC)
subsystem (implemented by GMV). Moreover, RTAX2000 is
used for the MDP/MDR in ARASE mission [29], which is
carried out by JAXA. The Mission Data Recorder (MDR)
and Mission Data Processor electrical box (MDP-e) are con-
nected to the SpaceWire bus. When targeting higher per-
formance and larger capacity, the RTG4 FPGA is a good
solution, offering re-configuration capabilities up to a cer-
tain number of cycles (∼300). This relatively new FPGA is
incorporated in different on-going missions, e.g., in ESA’s
HERA, where it implements the interfaces and the SpaceWire
router controller of the main On-Board Computer (OBC).
Moreover, it is employed in JenaOptronic RVS3000-3D [30],
which is a pose estimation high-performance in-orbit com-
puting platform, integrating LIDAR and image processing
into a single box. RTG4 is the main processing device,
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taking over the LIDAR data extraction and algorithm
execution.

Regarding the SRAM-based solutions, Xilinx FPGAs are
employed in the Dawn Framing Camera (DawnFC) [31] and
Venus Express Monitoring Camera (VMC) [32]. In DawnFC,
Virtex-4QV is used for implementing Data Processing
Unit (DPU) functions, such as the LEON2 processor running
the RTEMS real-time operating system, application-specific
co-processor for image processing, and sensor interface
ports. A similar FPGA-based DPU processor is implemented
in VMC. In ESA’s Solar Orbiter, a multiprocessor archi-
tecture for high-performance floating point operations is
implemented in the PHI instrument, which carries out the
scientific analysis of the mission [33]. This SIMD archi-
tecture is used as an accelerator within the DPU, which
is based on the LEON processor and two Virtex-4QV
XQR4VSX55 FPGAs. Furthermore, both Virtex-5QV and
NG-Medium are used in the HERAmission [34], [35], where
GMV is in charge of developing the GNC subsystem. The
hardware solution proposed by GMV is the Image Pro-
cessing Unit (IPU), which is a dual-purpose avionics pro-
cessing board for image processing and interface control
(including the management of the interfaces with OBC and
in-flight re-programming). The IPU provides isolation for
the image processing and interface functions, relying on
an FPGA-based architecture with allocated external volatile
and non-volatile memories. NG-Medium is responsible for
controlling and monitoring the interfaces, and Virtex-5QV
executes computer vision algorithms, i.e., feature detection
& tracking and calculation of brightness centre & maximum
correlation with a Lambertian sphere, to provide the position
of the mission’s target asteroid in the field-of-view of the
camera.

Xilinx space-grade FPGAs have been extensively used in
Mars missions, and specifically, the Mars rovers [36], e.g.,
in Mars Exploration Rover (MER) Opportunity and Spirit.
In this mission, NASA used space-grade Virtex FPGAs for
both landing and on-surface operations of the rover, as well
as for supervising the wheel motors, cameras, and arms.
In the Curiosity rover of NASA, radiation-tolerant Virtex
FPGAs implement the imaging pipelines and a MicroBlaze
soft-processor core. More recently, in the Mars2020 rover
(Perseverance) [37], NASA uses Virtex-5QV as Computer
vision Accelerator Card (CVAC) to aid in landing navigation
and autonomous driving on the Martian surface by acceler-
ating stereo and visual tasks, e.g., image rectification, filter-
ing, detection and matching. In the same rover, Virtex-4QV
XQR4VFX60 is integrated in the Planetary Instrument for
X-ray (PIXL) [38], aiming to identify chemical elements at
a tiny scale. In this context, Virtex-5QV is also part of several
components [39], such as the Iridium Next reconfigurable
processor, NovaSAR 2018 spaceborne radar, 2019 Hellas-Sat
4/SGS1 communication satellite, 2022 NISAR–NASA/ISRO
radar imaging, 2016 OSIRIS-Rex, 2023–2025 NASA/JPL
Europamission, and ExoMARS 2020 European rover (sched-
uled to launch in 2024).

All the aforementioned missions use space-grade FPGAs
that are provided by US vendors. As an alternative promising
solution, the European RHBD BRAVE FPGAs, which have
been prototyped very recently (e.g., NG-Medium in 2016 and
NG-Large in 2019), are gaining momentum. As mentioned
before, NG-Medium is already included in the IPU of
HERA [35]. In parallel to the HERAmission, GMV is exam-
ining a full European IPU, by replacing Virtex-5QV with
NG-Large (the DC/DC converter will be European as well).
NG-Large will accommodate the implementation of an edge
detector IP module, feature tracking, centre of brightness
calculation, and a long-range image processing technique
to detect faint targets of pixel/subpixel sizes in the camera
image. NG-Medium’s first potential use in space will be
on-board of the Payload-X/XL [40], which should have been
already launched, however, it is on-hold waiting to launch
with the optical EO satellite Amazonia-1.

Finally, several missions are considering COTS FPGAs
due to their higher performance, and also, because the
Single-Event Upset (SEU) rates are decreased along with
the transistor feature sizes [41]. This kind of ‘‘New Space’’
approach for on-boarding COTS FPGAs is mostly found
in CubeSats for Low Earth Orbit (LEO) non-critical oper-
ations [42]. Examples of COTS-based processing platforms
are Xiphos Q8S (includes Xilinx’s Zynq UltraScale+), AAC
Clyde Space Kyrten-M3 (includes Microsemi’s SmartFu-
sion SoC), and Innoflight cfc-400 (includes Xilinx’s Zynq
UltraScale+).

III. NanoXplore BRAVE FPGAs & SW TOOLS
A. NG-LARGE FPGA
NG-Large is a RHBD SRAM-based FPGA manufactured on
the 65nm STM C65-Space process technology [3]. Its fabric
architecture is illustrated in Figure 1.
The die features 7 rows of 48 Tiles, with a single Tile

consisting of 384 4-input Look-Up-Tables (LUTs), 384 D
Flip-Flops (DFFs), 96 1-bit Carry Logic (CYs), 24 X-LUTs,
and 2 64 × 16-bit Register Files (RFs). Each Tile includes
384 Functional Elements (FEs), with a single FE integrating
1 LUT–DFF pair and additional logic for CYs, X-LUTs and
RFs. The CYs of NG-Large combine 1 LUT with carry
propagation logic to support up to 96-bit carry chain. To allow
the implementation of up to 16-input logic functions, 4 LUTs
drive the inputs of another LUT (called X-LUT) without rout-
ing through the interconnect network. The RF of NG-Large is
a synchronous dual-port SRAM with read-only & write-only
ports and optional output register.

Furthermore, the chip die features 4 rows of 48 48-Kbit
RAM Blocks (RAMBs) and 4 rows of 96 Digital Signal
Processors (DSPs). Each RAMB is a true dual-port SRAM
with optional output register and supports multiple memory
configurations, i.e., 48K × 1-bit, 24K × 2-bit, 12K × 4-bit,
6K × 8-bit, 4K × 12-bit and 2K × 24-bit, as well as Error
Detection and Correction (EDAC) configuration. A single
DSP includes a 19 × 24 multiplier, a 56-bit ALU, an 18-bit
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FIGURE 1. The fabric architecture of NanoXplore NG-Large FPGA [2].

pre-adder, as well as pipeline registers. The DSPs operate
either in signed or unsigned mode, and can cascade up to
96 blocks.

NG-Large includes 4 Clock Generators (CKGs), one at
each die corner. The CKG block includes 1 Phase-Locked
Loop (PLL) and 10 Waveform Generators (WFGs), i.e., fre-
quency dividers. Moreover, it has 4 High Speed Serial
Links (HSSLs) of 6 lanes, providing up to 6.25Gbps data rate.

Overall, the total resources of NG-Large are summarized
as: 137088 LUTs, 129024 DFFs, 32256 CYs, 384 DSPs,
192 RAMBs, 672 RFs, 4 PLLs. Compared to its predecessor,
i.e., NG-Medium, it is ∼4× larger [3], e.g., NG-Medium
has 34272 LUTs, 112 DSPs, 56 RAMBs. Correspondingly,
NG-Large is ∼4× smaller compared to NG-Ultra.

B. NXmap SW TOOL
NXmap is the design suite provided by NanoXplore to sup-
port all classical FPGA development stages except from
simulation, which is currently performed with 3rd-party
tools (ModelSim/QuestaSim). The tool supports both Verilog
and VHDL hardware description languages, and includes
functions for timing analysis and power estimation. It is
divided in two components: (i) the graphical interface, which
allows the user to compile existing projects, view the floor-
plan and inspect the implemented design, (ii) the Python
wrapper, which allows the user to build projects by com-
piling Python scripts with the desired tool settings and
functionalities.

The Python wrapper of NXmap supports the Python syntax
and structures, and includes a plethora of NanoXplore rou-
tines/modules for each stage of the FPGA development flow.
These Python routines can be categorized as follows:

• project-related: e.g., createProject, addFiles
• tool-related: e.g., setOptions

CODE 1. Example of python script for building a project in the NXmap
tool.

• mapping-related: e.g., createRegion,addRAM Location
• stage-related: e.g., synthesize, generate Bitstream

• board-related: e.g., addPads, addBanks
• timing-related: e.g., createClock, addFalse Path

The NXmap routines take numerous arguments as input,
providing a wide range of functionalities. NXmap also offers
routines for monitoring the design flow and defining the
verbosity of the reports. A Python code snippet demon-
strating some basic NXmap functionalities is attached in
Code 1.

IV. PROPOSED ASSESSMENT METHODOLOGY
The proposed methodology for evaluating the NanoXplore
SW tools and FPGAs is divided in 5 steps: (i) bench-
mark selection, (ii) definition of rating/evaluation method,
(iii) Synthesis assessment, (iv) Place & Route (P&R)
assessment, and (v) Bitstream Generation assessment. Cur-
rently, the methodology is executed manually by the devel-
oper/tester, however, some segments, such as the exploration
of the tool settings, could be performed in an automatic
fashion. Our methodology can also be adopted to test
other FPGAs, or used to facilitate the development on new
devices/tools.
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A. SELECTION OF BENCHMARKS
The first step of our approach is to create a pool of HDL
benchmarks with varying complexity [19], i.e., simple cir-
cuits (e.g., arithmetic/memory units), designs of medium
complexity (e.g., controllers), and high-performance bench-
marks (e.g., image processing). Via the simple circuits, we
aim to target specific tool options and FPGAprimitives, while
via the high-performance benchmarks, we stress the SW tool
with demanding algorithms from real-world space applica-
tions. Moreover, our benchmarks impose varying constraints
in I/O, memory and computations, thus, our evaluation is
diverse and covers a wide range of requirements of on-board
processing systems.

Regarding the high-performance benchmarks, our initial
pool consists of various HDL IPs from the DSP and CV
domains. To examine their suitability for our assessment
methodology, we create multiple configurations for each
benchmark by customizing its algorithmic parameters (e.g.,
image size, data bit-width, internal mask size), and per-
form an extensive design space exploration on the Elec-
tronic Design Automation (EDA) tools of vendors such as
Intel/Altera, Xilinx, Microsemi and Synopsys. This explo-
ration does not involve the NanoXplore tools and devices,
namely, it is BRAVE-agnostic. We note that we use 3rd-party
FPGAs that have similar features (resources, space-grade,
technology node) with the examined BRAVE FPGA. Based
on these results, as well as by considering other criteria,
e.g., throughput/activity, parameterization/scalability, use of
vendor’s IP blocks, we select a final set of benchmarks that
will be used for the evaluation of the BRAVE FPGA and SW
tool.

B. DEFINITION OF RATING/EVALUATION METHOD
The next step is to identify the evaluation metrics [19].
To define the metrics, we use two groups of FPGA engi-
neers, i.e., ‘‘black-box’’ engineers that have not used the
NanoXplore tools/devices and ‘‘grey-box’’ engineers that
have only started using them. Indicatively, such metrics are
the resource utilization, maximum clock frequency, power
consumption, tool runtime & memory requirements, tool
reports, tool options & attributes, floorplan capabilities, and
GUI flexibility.

Next, we introduce a process to rate/evaluate the BRAVE
devices/tools compared to 3rd-party solutions. The rating
method [19] is illustrated in Figure 2. For each one of themea-
surable evaluation metrics, we calculate a reference value,
which is the average value of all the results obtained from the
3rd-party tools. Then, we rate the NanoXplore SW tool by
comparing its value with the reference value. Our rating pro-
cess has 5 ranges, which are defined by thresholds: deficient
(D), if NanoXplore is more than 20% worse, acceptable (A),
if NanoXplore is 20%–5% worse, good (G), if NanoXplore
is less than 5% worse, very good (V), if NanoXplore is
0.1%–5% better, excellent (E), if NanoXplore is more than
5% better. We note that this rating system is applied at each

FIGURE 2. The proposed method for evaluating BRAVE tools & FPGAs [19].

one of the following methodology steps, which assess the
typical stages of the FPGA design flow, i.e., Synthesis, P&R
and Bitstream Generation.

C. ASSESSMENT OF SYNTHESIS STAGE
The Synthesis assessment aims to: (i) explore and test the cor-
rect functionality of all the NXmap’s settings and attributes,
(ii) examine the quality of the results for different NXmap
settings, (iii) evaluate the ability of the synthesizer to map
efficiently the RTL designs on the FPGA primitives, (iv)
evaluate the quality of the Synthesis reports, (v) rate the
resource utilization via systematic comparisons to state-of-
the-art 3rd-party tools.

The proposed methodology for realizing the aforemen-
tioned goals is illustrated in Figure 3. Initially, we adapt the
algorithmic parameters of the selected benchmarks according
to the features of BRAVE (resources, architecture of FPGA
primitives). Next, we perform a preliminary Synthesis with
the default NXmap settings to retrieve the ‘‘default’’ reports
and detect potential issues. This step is also considered as test
for the synthesizer’s flexibility to automatically balance the
resource utilization and provide a viable solution.

The preliminary Synthesis is followed by the phase of
‘‘Program-Agnostic Tuning’’, which explores the available
settings that are related to Synthesis, and assesses their capa-
bility to drive the Synthesis process according to the user’s
choices and preferences. In this phase, it is not required for
the user to be familiar with the HDL code of the bench-
marks. Indicatively, we mention that the tool settings involve
choices regarding the mapping effort of the synthesizer, the
mapping target of the arithmetic/memory components, the
DSP utilization ratio, the register duplication, and the style
of the finite-state machine encodings. The evaluation is per-
formed in both standalone and combinatorial fashion. Subse-
quently, we compare the NXmap results with the results of
the 3rd-party tools based on our rating methodology. In case
spikes are observed, a lower level exploration takes place
by recursively decomposing the benchmark architecture to
smaller building blocks and testing them individually. This
is an essential modification of the initial ‘‘QUEENS-FPGA’’
methodology [19], which allows for in depth investigation of
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FIGURE 3. The proposed assessment methodology for Synthesis [26].

various optimization issues and/or errors, which, otherwise,
would be very difficult to be detected at higher level.

The exploration with the building blocks is performed at
the phase of ‘‘Programming-Level Tuning’’, which inves-
tigates the capability of the synthesizer to efficiently map
the HDL code on the underlying BRAVE architecture.
In this phase, we use standard template-based coding

FIGURE 4. The proposed assessment methodology for Place & Route [19].

and attributes/directives to express memories, finite-state
machines, and arithmetic components. If we identify a type
of HDL coding that leads to improved results, or notice
inability of the design to fit in the FPGA in spite of our
efforts, we use our feedback loop (red dashed line) to
re-customize the algorithmic parameters and proceed with
a new benchmark configuration. Similarly to the previous
phase, every exploration is followed by systematic 3rd-party
comparison.

In both main exploration phases, we keep records of the
examinedmetrics, i.e., resource utilization, provided features,
efficiency of the existing Synthesis settings, proposed design
guidelines, as well as the detected issues. Moreover, both
phases include functional verification via simulations with
3rd-party simulators (ModelSim/QuestaSim). More specifi-
cally, the post-Synthesis netlists of the benchmarks and/or the
basic building blocks are simulated, and the outputs are com-
pared to the ground-truth data obtained from the behavioral
RTL simulation.

D. ASSESSMENT OF PLACE & ROUTE STAGE
A similar assessment methodology is designed for the P&R
stage. This methodology, illustrated in Figure 4, takes as input
the post-Synthesis netlist of either the entire benchmark or a
small building block with problematic behavior. The testing
of the building blocks as standalone components is another
addition to our initial P&R methodology [19]. It becomes
crucial by enabling the isolation of individual components,
which may result in malfunction of the benchmark when
tested on HW. For both cases, we evaluate the P&R-related
metrics (e.g., resources, frequency, power) by exploring the
various settings and physical constraints of the NXmap tool.
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The main exploration/evaluation procedure consists of two
phases.

Firstly, we evaluate all Placement options. In this phase,
we assess the tool’s capability to perform location specific
placements via constraints regarding the targeted region and
the placement of groups, either at fine-grain (LUTs, DFFs) or
coarse-grain (Tiles, DSPs, RAMBs) level. Furthermore, we
examine the quality of the reports and the efficiency of the
more general Placement settings, e.g., the placing effort.

Secondly, we evaluate all the Routing-related settings.
We examine if the tool is capable of delivering efficient
solutions under stressing the implementation towards perfor-
mance and/or increased routing congestion. Our exploration
targets the timing constraints (e.g., timing driven, set false
path, set max delay, create clock) and router’s settings (e.g.,
router effort, router mode). We note that we combine the
Routing settings with different Placement constraints from
the previous phase. Moreover, in this phase we assess the
Static Timing Analysis (STA) reports.

Similarly to our Synthesis assessment methodology, every
experimentation is accompanied by: (i) systematic compari-
son with the 3rd-party tools, (ii) functional and timing ver-
ification via post-Place and post-Route netlist simulations,
and (iii) floorplan inspection. Additionally, considering that
Synthesis and P&R are tightly coupled (different Synthesis
netlists may lead to different P&R results), we explore various
scenarios by combining tool settings from both stages.

E. ASSESSMENT OF BITSTREAM GENERATION STAGE
The final step of our methodology is to evaluate the
Bitstream Generation stage and the FPGA configuration.
More specifically, in this evaluation phase, we examine the
correct bitstream generation for all the relevant tool options,
the bitstream size, the programming speeds via the avail-
able configuration interfaces (JTAG, SpaceWire, EPROM),
the correct functionality of the FPGA after multiple succes-
sive re-configurations, and the correctness of the actual HW
execution on the BRAVE FPGAs. The latter is performed
by establishing an I/O communication between the BRAVE
FPGA and the host-PC (e.g., via UART, SpaceWire) and
comparing the FPGA outputs with ground-truth data obtained
from behavioral or post-P&R NXmap netlist simulations.

V. EVALUATION
A. DSP AND COMPUTER VISION BENCHMARKS
For the evaluation of NG-Large, according to our benchmark
selection methodology, we created a set of 12 HDL bench-
marks and selected 5 of them, which can be classified as
follows: (i) FIR Filter for 1D signal processing, (ii) Harris
CornerDetector andCanny EdgeDetector for feature extrac-
tion (corners and edges, respectively), (iii) GAD-Disparity
and Spacesweep for stereo matching (depth extraction in 3D
scene reconstruction) [7]. Below, we present in brief one
benchmark from each class:

TABLE 2. Configuration of benchmark parameters.

1) Signal Filtering (FIR Filter): The component inputs
samples in a streaming fashion (1 sample per
clock cycle) and performs 1D signal filtering. More
specifically, it is a deeply pipelined filter, which is
implemented with a big sequence of registers and with-
out memory resources, i.e., all the computations are
performed in-place.

2) Feature Extraction (Harris Corner Detector): The com-
ponent inputs a grayscale image and outputs a set of
‘‘corners’’, i.e., the coordinates (x,y) of the most salient
features depicted in the image. The image is divided
in horizontal stripes, which are downloaded to the
FPGA and processed successively by resource reusing.
Functionally, in a loop over all pixels, Harris employs
Gaussian-smoothed products of image derivatives to
define an auto-correlation matrix, whose eigenvalues
capture the principal intensity changes in the examined
point’s neighborhood. Corners are detected on pixels
whose ‘‘cornerness’’ is sufficiently high and exceeds
that of its neighboring pixels in a 3 × 3 region (via
non-maximum suppression). All these operations are
implemented via a succession of deep, fine-grained,
pixel-based pipelines connecting memories that store
intermediate results.

3) Depth Extraction (GAD-Disparity): The component
inputs a pair of stereo images and outputs a
two-dimensional disparity map, which can be trans-
formed to depth map via simple calculations involving
the focal length and baseline of the camera. The images
are divided in horizontal stripes, which are downloaded
successively to the FPGA and processed by resource
reusing. In an iterative fashion, by implementing an
outer loop over all examined disparities and an inner
loop over all pixels, we match all 7 × 7 image blocks
between images by minimizing a Gauss-aggregated
sum of absolute differences. The on-chip memory is
mostly used to store the pixels and their correspond-
ing intermediate aggregated values (which are con-
tinuously compared/updated). On the other hand, the
on-chip logic is mostly used to calculate the Gauss-
aggregated values.

All the benchmarks are developed with parametric VHDL
code. Therefore, at compile time, we can change various
parameters, e.g., the input image size, the datapath bit-width,
or certain parallelization factors. For the current evaluation,
the benchmarks are configured as shown in Table 2. For
example, Harris inputs a 1024×1024.8-bit image, partitioned
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in 1024 × 32 pixel stripes (i.e., it processes 32 such bands),
and performs convolutions with 7×7 14-bit kernels to output
32-bit corners.

B. EXPERIMENTAL SETUP
The benchmarking results are produced by NXmap3 v5.0.4.
Our evaluation is performed at two levels: (i) at tool level, by
evaluating the NXmap settings and examining the resource
utilization and the tool requirements, (ii) at HW level, by
evaluating the chip’s maximum frequency, the power con-
sumption, the benchmarks’ throughput and the bitstream
configuration times. Overall, we report various experimen-
tal results for NG-Large, comparative results to 3rd-party
FPGAs and NG-Medium, and system-level results from the
implementation of an entire HW/SW algorithmic pipeline.

The functional verification of the benchmarks was per-
formed via post-Synthesis and post-P&R simulations on real-
istic datasets. A natural signal sampled at 110 KSamples/s
was used for FIR, 1024 × 1024 synthetic stereo images
depicting a rover’s view on Martian terrain were employed
for GAD-Disparity and Spacesweep, 1024 × 1024 images
depicting rocky Martian terrains were used for Harris and
Canny. The derived results were compared with the outputs of
the behavioral RTL simulation and revealed a fully functional
error-free operation. The benchmarks were also successfully
ported and executed on the NG-Large HW, utilizing a UART
communication for transmitting/receiving the I/O data.

C. EVALUATION OF NXmap SW TOOL
Regarding the Synthesis process, Table 3 presents the
resource utilization when using the default settings/options
of the NXmap tool. With this setup, zero DSPs are employed
for FIR and all the arithmetic operations are mapped onto
CY units (61% utilization). Similarly, for Harris, the majority
of multiplications are mapped onto CYs instead of DSPs.
To balance the utilization, we used our Synthesis exploration
procedure (see Figure 3) to customize the tool options accord-
ing to the requirements of each benchmark. More specifi-
cally, we shared the arithmetic operations between DSPs and
CYs using the corresponding NXmap Python routines. The
results of our customization decisions are reported in Table 4.
Employing DSPs in FIR decreased the CY utilization from
61% to 4% and increased theDSPs by 17%. ForHarris, we get
a balanced use between CY and DSP blocks, i.e., from 43%
and 8% to 23% and 22%, respectively. For GAD-Disparity,
the default tool settings deliver the same resources with our
custom settings that balance the DSP and CY utilization. For
Spacesweep, the tool employs by default RF resources for all
the small memory components, thus, it is capable of making
decisions with respect to the memory size. To test the custom
mapping of memories, we forced the tool to map the small
memories onto RAMBs.

Before proceeding to the P&R evaluation, we also
examined how our mapping choices affect the timing per-
formance. The Harris and Canny benchmarks achieve bet-
ter clock frequency when the multiplication operations are

TABLE 3. Synthesis resources of NG-Large with default NXmap settings.

TABLE 4. Synthesis resources of NG-Large with tailored NXmap settings.

TABLE 5. P&R resources of NG-Large with default NXmap settings.

mapped onto DSPs. On the other hand, FIR, GAD-Disparity
and Spacesweep achieve better timing when the default
mapping is used. Specifically, the custom mapping in FIR
decreased the frequency by 44%, while in GAD-Disparity
and Spacesweep, the decrease was only 1MHz and 0.65MHz,
respectively. Therefore, during the P&R evaluation, we
decided to remove the custom mapping in these benchmarks,
and tune only the P&R-related options.

Subsequently, we used our P&R exploration procedure
(see Figure 4) to experiment with the tool options and
achieve the best possible timing performance. Table 5 reports
the P&R resource utilization for the implementations with
the default P&R option values, while Table 6 reports the
results for the customized P&R option values. The memory
and arithmetic resources, i.e., RFs/RAMBs and CYs/DSPs,
remain equal to those generated by Synthesis. More-
over, the variations in resources for different P&R options

VOLUME 9, 2021 131885



V. Leon et al.: Development and Testing on European Space-Grade BRAVE FPGAs

TABLE 6. P&R resources of NG-Large with final tailored NXmap settings.

(DensityEffort, CongestionEffort, PolishingEffort, Routing-
Effort, BypassingEffort) are negligible for all the bench-
marks, i.e., ±10 LUTs. Ultimately, we observed that, with
exception of FIR, all the other benchmarks can achieve bet-
ter timing performance by changing some of the default
P&R option values. We combined different values for the
aforementioned tool options, and report those that provide
the maximum frequency according to NXmap’s STA. For
Harris, the PolishingEffort option was set to ‘‘low’’ rather
than ‘‘medium’’, giving an increase of 9.5MHz. For GAD-
Disparity, the PolishingEffort option was set to ‘‘low’’
rather than ‘‘medium’’ and the DensityEffort to ‘‘medium’’
rather than ‘‘low’’, delivering an increase of 2.6MHz. For
Canny, the PolishingEffort option was set to ‘‘high’’
rather than ‘‘medium’’, providing an increase of 2.7MHz.
For Spacesweep, the CongestionEffort option was set
to ‘‘medium’’ rather than ‘‘high’’, delivering an increase
of 0.7MHz. We also notice that for FIR, the tool achieves
almost the double maximum frequency, i.e., 214MHZ from
121MHz, when we do not employ a custom mapping for the
arithmetic operations.

Overall, with respect to the reported resource utilization,
we conclude that NXmap maps our designs as expected.
For FIR, the tool correctly omits the RAMBs, because
it is a deeply pipelined filter with a big sequence of
registers. Moreover, with our custom mapping, it cor-
rectly occupies 64 DSPs, coinciding with the 64 filter’s
taps/coefficients. Regarding Harris, Canny, GAD-Disparity
and Spacesweep, several of the available RAMB configura-
tions are employed, e.g., 24K×2, 12K×4, and thus, reason-
able RAMB utilization is derived for 1024-pixel-wide images
(36%, 93%, 45% and 42%, respectively). We also note that
NXmap successfully recognizes and reports all the arith-
metic&memory components and finite-statemachines of our
benchmarks.

Next, we examine the system requirements of NXmap for
compiling our benchmarks. As shown by the overall run-
time and memory usage in Table 7, NXmap is a lightweight
tool. Apart from FIR, all the other benchmarks are very
demanding, but even for those, both runtime and peak mem-
ory usage remain in relatively low levels, manageable even by
low-end CPUs. We also notice that even the total real-world

TABLE 7. NXmap system1 requirements for the benchmark
implementations on NG-Large.

elapsed time for all the processes, i.e., up to the bitstream
generation, is just a couple of minutes (<6). Canny is the
only benchmark that required several minutes (∼25), and the
reason is the high RAMB utilization, which is at 93%.

D. COMPARISON TO 3rd-PARTY TOOLS
Following our NXmap testing, we compare NG-Large with
3rd-party FPGAs Depending on the benchmark, NXmap pro-
vides comparable P&R resource utilization for certain prim-
itives and even improved in other cases.

For the Harris benchmark, NXmap provides a good LUT
utilization, i.e., 3.2× less LUT versus the reference value.
When considering the pass-thru LUTs from the CY utiliza-
tion, the total number of LUTs increases. The LUT utilization
should be examined along with the number of employed
DSPs, where NXmap utilizes 1.5× less. Regarding the RAM
resources, NXmap delivers less RAMBs (it has larger RAMB
size) and the total RAMB Kbits are less than the reference
value. Specifically, Harris utilizes 56% less RAMBs com-
pared to the reference value.We note that the maximum clock
frequency is less than the reference value, however, there is
a small increase compared to the frequency of the previous
tool versions. For Canny, NXmap provides acceptable LUT
utilization with an increase of 6%, but if we also consider
the route-thru LUTs from the CYs, it is increased by 48%.
The DFF resources are increased by almost 50%, while the
utilization of RAMBs and DSPs is very good, as NXmap
provides the same number of resources with the reference
values. Overall, we consider as acceptable the resources of
Canny when taking into account that it is the only benchmark
almost filling up all RAMBs.

For the GAD-Disparity benchmark, NXmap provides
promising LUT utilization, as it employs a small number,
even when considering the CY resources. Regarding RAM
resources, NXmap is below the reference value in both blocks
and Kbits. In terms of frequency, NXmap provides less MHz,
however, this value was again increased by almost 15% ver-
sus the previous tool version, which means that the tool is
improving. For Spacesweep, NXmap also provides a very
good LUT utilization. It achieves better results by 52% and
drops to comparable results when considering the CYs, with
just a 3% LUT increase. The DFF utilization is also better by
5%. Finally, the DSP and RAMB utilization is excellent, as
NXmap outperforms the average values of the other tools by
20% and 30%, respectively.
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TABLE 8. Performance of NG-Large with tailored NXmap settings.

E. EVALUATION OF NG-LARGE HW
Table 8 presents the maximum frequency of the bench-
marks. Accordingly, a throughput metric is presented for
each benchmark to highlight the potential of NG-Large for
real-time operation. Overall, we note that NG-Large pro-
vide sufficient resources and frequency to all benchmarks.
The achieved throughput of FIR facilitates a multitude of
applications (e.g., in Telecom) and its resource utilization
allows for complementary HDL components to be placed in
the chip. The time required for a complete reconstruction
using GAD-Disparity and Spacesweep could improve the
conventional depth extraction of Mars rovers by 1 order of
magnitude (in terms of resolution and speed). We note that,
in the tested configuration, Spacesweep examines 3× more
depth levels than GAD-Disparity (300 versus 100), and thus,
provides much higher accuracy. Furthermore, given that most
VBN applications require 1–10 FPS, we conclude that the
throughput of Harris and Canny, i.e., 5.3 and 10 FPS, respec-
tively, leaves enough room for the complementary compo-
nents of an algorithmic chain to finish on time.

Next, we evaluate the power consumption of NG-Large
by comparing it to one of the most prominent space-grade
FPGAs (labeled as ‘‘3rd-party device’’), which has similar
technology node and resources. The static power consump-
tion has been measured when the FPGAs are powered up
and no bitstream is loaded, using the physical components
and chipscope tools. The results are similar for both devices,
i.e., 1.99W for NG-Large and 1.91W for the 3rd-party device.
For the dynamic power consumption, which mainly depends
on the number of utilized resources, the clock frequency and
the toggle rates, we have performed various experiments in
the same environment conditions using the provided power
analyzer tools. The derived results, which are discussed in
the next paragraph and illustrated in Figure 5, show that
NG-Large provides comparable dynamic power consump-
tion, and in some cases, even better.

Figure 5a shows the dynamic power consumption of the
Logic Elements (LEs). We note that each LE of NG-Large
consists of 1 LUT and 1 DFF. NG-Large delivers 5× higher
power consumption than the 3rd-party device. However, this
difference decreases for bigger LE utilization, and specif-
ically, it is reduced up to 1.1× when almost all the LEs
are utilized. Figure 5b reports the power consumption for
different DSP utilization. In this case, NG-Large consumes
2.6× higher power than the 3rd-party device. We note that
the DSPs of both FPGAs have similar architecture and

FIGURE 5. Power consumption of NG-Large and 3rd-party FPGA w.r.t. the
(a) LE, (b) DSP, (c) RAMB utilization, and (d) clock frequency generated by
PLL.

TABLE 9. Bitstream configuration results on NG-Large.

data bit-width. Figure 5c illustrates the scaling of the power
consumption with respect to the RAMB utilization. It is
important to notice that NG-Large provides memory blocks
of 48Kb, while the 3rd-party device provides smaller blocks.
Despite that, NG-Large delivers 6× lower power compared to
the 3rd-party device. For all the aforementioned experiments,
we have used a clock frequency of 25MHz. The last step was
to examine the power consumption of the PLL,when assigned
to generate different clock frequencies (the input frequency
is 25MHz). In Figure 5d, we observe the lower power values
of NG-Large compared to the 3rd-party device. Nevertheless,
the 3rd-party FPGA shows smaller increases (0.08mW/MHz)
compared to NG-Large (0.16mW/MHz). This implies that
NG-Large provides high power efficiency for low frequen-
cies, which deteriorates for higher frequencies, but is still
better than 3rd-party.

Finally, in Table 9 we report the bitstream size of each
benchmark, and the time required for the NG-Large config-
uration/programming via the JTAG interface. According to
the results, the configuration time of NG-Large is almost
proportional to the bitstream size: 384KB per second are
handled for FIR, 389KB for Harris, 452KB for Canny, 381KB
for GAD-Disparity and 399KB for Spacesweep. We also
observe that the bitstream of Canny is around 1KB larger than
that of the other benchmarks, which is due to its 93% RAMB
utilization, and thus, it requires more time (2-3 extra seconds)
to be configured. Furthermore, we report that the size of the
BRAVE bitstream is not fixed, like in other 3rd-party FPGAs,
but depends on the design’s size and complexity.
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TABLE 10. Resource utilization of NG-Large and NG-Medium FPGAs1.

F. COMPARISON TO NG-MEDIUM
In this section, we compare NG-Large against its predecessor,
i.e., NG-Medium, to evaluate the progress of BRAVE devices
and examine if NG-Large provides significant advantage due
to being 4× bigger in terms of resources/area. We implement
the same benchmarks on NG-Medium, initially configured as
shown in Table 1, and apply the final tailored tool settings that
provided the best frequency on NG-Large. We note that we
do not change the algorithm of the benchmarks, namely, the
exact same HDL sources are implemented in both devices.
Only in case of resource over-utilization or unexpected tool
behavior in NG-Medium, we modify either the benchmark
parameters (e.g., use smaller input image) or the tool settings
(e.g., apply different mapping).

Table 10 reports the resource utilization of both devices.
For the FIR implementation on NG-Medium, we share the
arithmetic operations between CYs and DSPs, otherwise the
tool over-utilizes the resources. This choice also leads to a
clock frequency of 135MHz, which is 1.6× smaller than
NG-Large. The memory resources of NG-Medium forced
us to modify the parameters of the rest benchmarks. More
specifically, in Harris and GAD-Disparity, we decreased the
height of the input image band by 4× and 2×, respectively,
while in Canny and Spacesweep, we decreased the size of
the entire image by 4× (from 1024 × 1024 to 512 × 512).
The derived results show that, even though the designs of
NG-Large concern bigger image/band sizes, its resource uti-
lization percentage is significantly better, leaving room for
implementing complementary components, increasing the
parallelization, or serving even bigger input images.

In Figure 6, we show how the benchmark runtime is
improved in NG-Large compared to NG-Medium. For FIR,
the performance improvement is almost 2×, which is due to
the better clock frequency. Nevertheless, we note that we can
improve the performance in NG-Large even more by exploit-
ing its resources and increasing the parallelization, e.g.,
implement parallel MACs, adder trees. Harris in NG-Large
is also better by 4.6×, as the clock frequency is increased
by ∼4×, and NG-Medium has to process 4× more (smaller
though) image bands. Canny achieves better clock frequency
and runtime in NG-Medium, but for the 1/4 of NG-Large’s

FIGURE 6. Runtime improvement in NG-Large compared to NG-Medium
for the same exact algorithms.

input image. To process an 1024 × 1024 image, it will have
to process each 1/4 of the image, send the partitioned edge
map back to the CPU, and at the end, bring all the parti-
tioned edge maps back to the FPGA. These extra steps will
add an overhead of ∼60ms in the good scenario, i.e., when
using the SpaceWire interface at 100Mbps. Thus, the total
performance improvement in NG-Large is 1.4×. Regarding
GAD-Disparity, both devices achieve almost the same clock
frequency, i.e., around 50MHz, however, NG-Medium has
to process 2× more (smaller though) image bands. This
differentiation in the partition of the input image is trans-
lated to 1.2× performance improvement in NG-Large. For
Spacesweep, considering that NG-Medium has to process
smaller input image to avoid resource over-utilization, and
also with a clock frequency decreased by 1.7×, NG-Large
delivers around 1.7× better performance.

Concluding, NG-Large provides increased flexibility due
to offering more resources than NG-Medium, which is
stressed (or is unable) to implement computer vision algo-
rithms for typical image sizes such as 1 megapixel. In con-
trast, NG-Large delivers better performance, which can be
further improved by exploiting its resources to increase the
parallelization. Furthermore, NG-Large leaves a significant
amount of resources, which can be exploited for implement-
ing other complementary HDL components in the case of
algorithmic pipelines, such as that presented in Section VI.

VI. SYSTEM-LEVEL TEST: COMPLETE VBN PIPELINE
In this section, we evaluate NG-Large for implementing an
entire HW/SW VBN system for Rover localization tasks.
More specifically, we employ the ‘‘SPARTAN2’’ algorithmic
pipeline, which is a vision-based autonomous navigation sys-
tem from past ESA activities [6], [7], [43], and customize
it for the BRAVE technology. The HW/SW co-processing
architecture of ‘‘SPARTAN2’’ is illustrated in Figure 7.
It includes SpaceWire communication interfaces to connect
the FPGA accelerator (NG-Large) with an OBC (LEON-
based GR740 of Cobham Gaisler), as well as a telemetry &
telecommand CODEC IP, which is based on CCSDS Space
Packet standard and PUS services. Regarding the image pro-
cessing tasks, theHarris Corner Detector and SIFTDescriptor
& Matching algorithms are implemented in VHDL, along
with an arbiter, which controls their execution and handles the
I/O. The floorplan of NG-Large with the implementation of
the ‘‘SPARTAN2’’ algorithms (Harris and SIFT) is illustrated
in Figure 8. For comparison purposes, we implement the same
system on a prominent 3rd-party space-grade FPGA with
similar resources. We also note that the input data are pairs
of 512× 512 stereo images
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FIGURE 7. The block diagram of the ‘‘SPARTAN2’’ HW/SW architecture.

Regarding the implementation on NG-Large, the entire
design could not be synthesized without directives, due to
memory over-utilization and the tool’s inability to complete
the routing of the resources. Therefore, based on our method-
ology, we explored various Synthesis options, and ended up
using the addMappingDirective routine, which defines
custom mapping targets, with the following arguments:

• ‘getModels(.*mult.*)’, ‘MUL’, ‘DSP’, to force the tool
to map every multiplier onto DSPs.

• ’getModels(add_31u_31u to add_36u_36u’, ‘ADD’,
‘DSP’), to map all the adders with 31–36 bit-width
onto DSPs and reduce the CY utilization under 80%,
facilitating the tool to complete the routing of all the
resources.

• ’getModels(FIFOs and small memories)’, ‘RAM’, ‘RF’,
to map small memories and FIFOs onto RF blocks and
reduce the RAMB utilization, facilitating the tool to fit
the entire design in NG-Large.

Table 11 reports the resource utilization and the maximum
clock frequency of the two FPGAs. Due to a different LE
and LUT architecture (the 3rd-party device integrates 4×
more LUTs in a LE and has 6-input LUTs), NG-Large results
in 6.5× and 2× higher LE and LUT utilization, respectively.
Nevertheless, when considering the total number of available
LEs and LUTs in both devices, we observe that the utilization
percentage of LEs and LUTs is only 3% and 9% higher,
respectively. Similarly, NG-Large utilizes 1.4× more DFFs,
however, its utilization percentage is better by 4%. Regarding
the DSPs, NG-Large delivers 2× higher utilization, but this is
due to mapping arithmetic operations onto DSPs to save logic
resources. In contrast, NG-Large utilizes half of the RAMBs
employed by the 3rd-party device. This is explained by the
bigger storage capacity of each NG-Large’s RAMB. Finally,
in terms of performance, both devices achieve comparable
clock frequency, as there is only a small difference of 8MHz.

FIGURE 8. The floorplan view of ‘‘SPARTAN2’’ algorithms on NG-Large.

TABLE 11. Resource utilization of ‘‘SPARTAN2’’ HW system.

Table 12 summarizes the performance results for the two
implementations. Based on the maximum frequency reported
by the static timing analysis of the tools, we configure the
system clock of the FPGAs to the closest frequency that
facilitates a seamless integration of the entire system to
each device. Hence, the clock frequency is configured at
12.5MHz and 25MHz for NG-Large and the 3rd-party device,
respectively. The first two table columns report the execution
times of the Harris and SIFT algorithms for one of the pair’s
stereo images. As expected, due to having 2× faster clock,
the 3rd-party device demonstrates around 2× less execution
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TABLE 12. Performance of ‘‘SPARTAN2’’ HW system.

time. We note that the execution time varies among different
input images, as it is affected by the number of features
detected. Regarding the I/O time via SpaceWire configured
at 100Mbps, it is around 28ms for both implementations, as
the transmission of each one of the 16 image bands requires
1.75ms. The last two table columns report the performance
of the entire system (I/O + processing) for a pair of stereo
images. Again, as expected, the 3rd-party device provides 2×
throughput. In any case, the new NG-Large FPGA provides
comparable performance, which is improved as the SW tools
become more mature.

VII. CONCLUSION & FUTURE WORK
In this work, we customized a methodology for evaluat-
ing the new European BRAVE FPGAs and their associated
EDA tools. Our proposed methodology was applied on the
NG-Large device. The experimental evaluation was based on
HDL benchmarks developed in past ESA activities, it gen-
erated a variety of results regarding the SW tool and FPGA
chip performances, while it also included comparisons to
3rd-party vendors. Indicatively, besides measuring improved
tool flexibility and efficiency, we showed that image pro-
cessing algorithms could achieve feature extraction with a
throughput of around 10 FPS and depth extraction with a
latency of around 10s, while more classical DSP functions
could processmore than 200MSPS.Overall, NG-Large could
implement high-performance and complicated algorithmic
pipelines with sufficient HW metrics, i.e., resource utiliza-
tion, throughput, and power consumption, which were all
shown to be competitive with 3rd-party designs. Therefore,
the BRAVEFPGAs constitute today an additional solution for
space system engineers. Our future work includes: (i) bench-
marking with HDL IPs from more application domains, e.g.,
Telecommunications and Artificial Intelligence, (ii) testing of
new versions of SW tools, and (iii) evaluation of NG-Ultra,
i.e., the next FPGA of the BRAVE series, which will also
include the SoC’s embedded processor.
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