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ABSTRACT Non-orthogonal multiple access (NOMA) has been envisaged as a successor of orthogonal
multiple access (OMA) in the fifth generation (5G) networks and beyond because NOMA has been
theoretically and empirically proven to bemore bandwidth-efficient than OMA.Nevertheless, user clustering
(UC) in NOMA is another prevalent issue. Tomaximize the throughput and fulfill the successive interference
cancellation (SIC) constraints, the UC has been formulated as a clustering optimization problem which has
been extensively researched in literature. Recently, an artificial neural network-basedUC (ANN-UC) scheme
has emerged as a viable solution that can optimally cluster users after exhaustive training. However, the ANN
model has an extremely slow learning speed, due to the gradient-based back-propagation (BP) algorithm used
by the ANN. To address these issues, this paper proposes a novel fast-learning extreme learning machine-
based UC (ELM-UC) scheme. Unlike the ANN-UC technique, the input weights and the bias for the hidden
layer nodes of ELM are randomly generated and tuning of parameters is not required, thereby leading to
a faster learning rate. In this work, the ELM architecture is adapted to operate in NOMA environments
where the optimal cluster formation can be predicted rapidly based on the users’ channel gains and powers.
Performance comparisons with the state-of-the-art UC schemes are investigated via extensive simulations.
Remarkably, simulation results demonstrate that the proposed ELM-UC technique can achieve near-optimal
performance compared to the brute-force search (B-FS) method and outperforms the existing clustering
techniques including ANN-UC and dynamic user clustering (DUC).

INDEX TERMS Extreme learning machine (ELM), non-orthogonal multiple access (NOMA), throughput
maximization, user clustering, learning rate.

I. INTRODUCTION
Orthogonal multiple access (OMA) has reached its perfor-
mance bottleneck which is not capable to accommodate the
growing demand of throughput requirement and the system
capacity for the future networks, particularly the fifth gen-
eration (5G) networks and beyond. Recently, non-orthogonal
multiple access (NOMA) has gained significant attention and
has become a great paradigm for the new design of multiple
access techniques for the 5G systems and beyond 5G sys-
tems [1]–[3]. Fundamentally, the emergence of successive
interference cancellation (SIC) enables NOMA to support
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the grouping of multiple users, allowing them to share their
radio resources, either in time, frequency or code domain.
In a power-domainNOMA system, numerous users aremulti-
plexed by exploiting the channel difference among the users
and the composite signals are demultiplexed using the SIC
technique that allows the separation of signals from multiple
users at the receiver side. It is a common practice that a
NOMA system adopts superposition coding (SC) method for
signal multiplexing at the sender side and implements the
SIC for signal demultiplexing at the receiver side. It has been
empirically and theoretically evident that the NOMA scheme
can yield higher throughput and capacity as compared to the
OMA counterpart, which is one of the key criterion in the 5G
networks deployment [4]–[6].
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A. RELATED WORKS
Over the last 5 years, NOMA has been extensively researched
and studied, particularly on power allocation and user clus-
tering aspects. In [7], user pairing algorithm for cooperative
NOMA transmission has been developed to cluster users with
considerably diverse channel conditions. In this work, it has
been evidently demonstrated that pairing users in a NOMA
cluster provides significant performance gain over OMA.
In [8], by utilizing the predetermined grouping of nearby
users in one group and distant users in another group, the per-
formance of user pairing of NOMA users was investigated
under three different scenarios based on user’s distance, i.e.,
(i) randomly pairing one user from each group; (ii) pairing
the nearest near user close to the BS from one group and
the nearest far user close to the BS from another group;
and (iii) pairing near user similar to scenario (ii) and the
farthest far user close to the BS from another group. Based
on the investigation, it is proven that user pairing based on
scenario (ii) is capable to produce the minimum outage prob-
ability and attain the maximum throughput. The work in [9]
extensively studies the impact of user pairing on the perfor-
mance of NOMA-based cognitive radio networks using the
fixed power allocation. Similar to the prior work, the results
in [9] again manifest the capability of NOMA system that
can offer a higher sum rate than the OMA counterpart if
an efficient UC algorithm is adopted. Under a fixed-power
allocation condition, the strong user is always paired with the
weak user based on the significant difference in their channel
gains. On the other hand, in cognitive radio assisted NOMA,
users that do not experience significant difference in channel
gains, i.e., the first strongest user and the second strongest
user, are opportunistically paired with each other subject to
the SIC constraints.

A user pairing algorithm based on channel state sort-
ing (CSS) is proposed in [10] in which a user with better
channel condition is always paired with a user with poorer
channel condition to ensure the throughput fairness among
the users while improving the overall capacity of the NOMA
system. In [11], three different UC schemes for a two-user
NOMA network with cell-free massiveMIMO are compared:
(i) pairing the shortest distance users; (ii) pairing the largest
distance users; and (iii) random pairing of users. As compared
to the OMA, the sum spectral efficiency of these approaches
are significantly improved. Recently, the dynamic UC (DUC)
mechanism incorporated with an efficient power allocation
under three different scenarios (i.e., 2, 3 and 4 users per
cluster) is developed in [12] to maximize the overall system
throughput for NOMA systems. The simulation results under
these three scenarios indicate that the proposed DUC scheme
can achieve efficient and rapid clustering that produces better
throughput performance than those in the prior works. Never-
theless, due to the rigid conditions imposed by the proposed
DUC (fixed number of users per cluster and pre-determined
number of clusters), the capability of the NOMA in terms
of bandwidth utilization is undermined. Under such condi-
tions, the users are not allowed to freely form their clusters

where in certain scenarios, some users may be forcefully
clustered into adverse group, leading to a lower throughput
achievement.

To address the limitation of the fixed cluster size and fixed
cluster number in the UC optimization in [12], an adaptive
UC (AUC) utilizing a Brute-force search (B-FS) has been
developed in [13] to thoroughly explore and exploit the
diversity of the channel gains of all users to group users
collectively. More specifically, this work examines all com-
binations of UC regardless of the size of the cluster and the
number of the clusters formed to find the best cluster that
leads to the highest throughput. The conditions on the number
of users per cluster and the number of clusters formed in
the NOMA are relaxed, which implies that the users can
freely form coalition with others or they can form their
own singleton cluster (a cluster consisting one user only)
or all users can form a grand cluster (a cluster consisting
of all users) as long as the system throughput is maximized
subject to the SIC constraints. This work has laid down an
optimal performance bound of the UC of a NOMA system,
which serves as the benchmark of throughput performance
for any UC schemes. Nevertheless, since the B-FS approach
explores all possible combination to cluster formation, this
approach suffers from high computational complexity (the
complexity increases exponentially with the number of users)
which makes it infeasible for practical implementation. Any
variation of the channel gains may activate the UC and the
B-FS needs to be executed exhaustively to find the best
cluster again. To reduce the computational complexity of the
B-FS, particle swarm optimization (PSO) has been employed
in optimizing the UC [14], which leads to a sub-optimal
sum-throughput. The tradeoff between the throughput perfor-
mance and complexity is analyzed and it is portrayed that the
sum throughput can be sacrificed for lower complexity. It is
also revealed that the PSO-based AUC scheme suffers from a
local optimality issue where the frequency of obtaining local
optimum increases with growing number of users in NOMA
systems.

To overcome the scalability issue of PSO-based AUC,
artificial neural network (ANN) is adopted in NOMA sys-
tems [15] to predict cluster formations after an exhaustive
training. The authors make use of the dataset obtained from
the B-FS method [13] to train the ANN model with the
intention to maximize the overall throughput performance
of NOMA system. The implementation of neural network
in the UC of NOMA has shed a light on instant UC with-
out the limit on the number of users (unlimited network
size), but the training process of the neural network model
has become another research issue as a larger network pro-
duces a larger dataset which leads to longer training period.
Although the ANN-based UC technique is able to provide
a satisfactory throughput performance, its training process
is time-consuming due to the reliance on the gradient-based
back-propagation (BP) learning algorithm to update the
weights. From the literature, the application of neural network
seems to provide a viable solution to the complicated UC
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problem, but the arduous training phase of neural network
has become the main challenge discouraging the application
of neural networks in UC problem.

B. MOTIVATIONS AND CONTRIBUTIONS
Recently, extreme learning machine (ELM) has gained
tremendous interest due to its fast learning speed. Unlike
the ANN, ELM can learn at an extremely fast manner as it
does not require gradient-based BP learning algorithm. More
specifically, ELM adopts a single-hidden-layer feedforward
neural network (SLFN) which randomly updates the input
weights and bias of the nodes at each hidden layer. The
least-square method is suggested for ELM to compute the
weights linking the nodes from hidden layer to the output
layer. Apparently, ELM has demonstrated its effectiveness
in training feed-forward neural networks and addressing the
shortcomings of the BP algorithm used by neural network
for training in [16]–[21]. Extremely fast training could be
achieved by ELMas both theweights and biases are randomly
assigned while the output weight is analytically determined,
thereby eliminating the needs for gradient-based BP learn-
ing algorithms to iteratively tune the network parameters.
As such, ELM can effectively address the issues that are
associated with the gradient-based BP learning schemes, such
as slow convergence, local optima, inappropriate learning
rate, etc. Furthermore, SLFN is a universal approximator
which allows ELM to learn universally by approximating any
continuous functions.

Numerous applications have also shown that the ELM
model can produce substantially better generalization perfor-
mance than that of the BP techniques [17], [22]–[24]. Owing
to its excellent merits such as exceptionally fast training
and high precision, better generalization performance, simple
implementation, and universal approximation ability, ELM
has been applied in various applications such as ship iden-
tification, image quality evaluation, recognition of human
action [25]–[27], etc.

Motivated by the aforementioned performance advantages
of ELM, an extreme learning machine based user clustering
(ELM-UC) technique is proposed in this work to improve the
throughput performance of NOMA users at a lower computa-
tional complexity and with a higher learning speed. The ELM
architecture is adapted to the UC optimization to function as a
UC formation predictor based on the useful information at the
input. The UC data (i.e., power allocation, channel gains, and
cluster formation) collected by using the B-FS method [13]
is fed into the proposed architecture to train the ELM model.
Since the ELM model can learn at a faster pace compared
to the ANN model, more comprehensive data can be gener-
ated and fed into the ELM architecture so that the proposed
ELM model can predict the clustering formation under any
circumstances. Extensive simulations are carried out to inves-
tigate the performance of ELM-UC with different setting
in various deployment scenarios and the salient features of
ELM-UC over the existing UC techniques are discussed in
detail.

C. PAPER ORGANIZATION
The remaining sections of the paper are organized as follows.
The system model of a downlink NOMA-based 5G cellular
network is comprehensively presented in Section II together
with the problem statement and throughput formulation. The
ELM architecture is briefly discussed in Section III where
the novel ELM-UC scheme is developed to optimize UC for
a NOMA network. This section also outlines all important
features of the proposed ELM-UC schemes as well as the
necessary steps for training and testing phases. Simulation
results with in-depth analytical discussions are shown in Sec-
tion IV. Last but not least, the paper ends with some insightful
concluding remarks and navigate the readers to some possible
future research direction related to this work in Section V.

II. NOMA SYSTEM MODEL
A. NOMA SYSTEM MODEL
Amulti-carrier NOMA systemwith a single base station (BS)
that serves Q users using M subcarriers is considered. Let
Q , {1, 2, . . . ,Q} denotes the index set of all users and
M , {1, 2, . . . ,M} be the index set of all subcarriers.Within
the cell, the users are randomly and uniformly deployed. The
bandwidth of subcarrier m is represented by Bm, for m ∈M
and the total bandwidth is denoted by B =

∑
m∈M Bm.

It is assumed that the adjacent subcarriers do not suffer from
any interference as orthogonal frequency division multiplex-
ing (OFDM) is employed and each subcarrier m ∈ M
experiences frequency-flat-block-fading at its bandwidth Bm.
The channel gain of user q on subcarrier m is represented by
gmq , for q ∈ Q, m ∈M and ηmq is the received noise power of
user q on subcarrier m in downlink transmission. Therefore
the signal transmitted by the BS to each user q on subcarrier
m remains to be active with powers pmq when pmq > 0.
A power-domain NOMA system is considered in which

SC is used to multiplex K users on the same subcarrier and
the selection of K value depends on the practical constraints
of SIC [4]. Let Um , {q ∈ Q : pmq > 0} denotes the
set of users multiplexed on subcarrier m. Each subcarrier
is configured as a Gaussian broadcast channel with multi-
ple users [28] and SIC is implemented at the receiver side
to minimize the intra-band interference. To model the SIC,
we must take into account the order of decoding of each user
q ∈ Um superimposed on the same subcarrier m ∈ M.
This order of decoding is expressed by a permutation func-
tion 5m : {1, . . . , |Um|} → Um where |·| represents the
finite set of attribute values. For r ∈ {1, . . . , |Um|}, 5m(r)
yields the index for the decoded user r . Instead, user q′s
order of decoding is 5−1m (q). Therefore, the user’s signals
5m (1) , . . . ,5m(r − 1) are decoded first and removed from
the conflicting signal before decoding the signal for 5m(r).
In addition, user 5m(r) will be prone to user interference
5m(s), for s > r . In contrast, when the previous |Um| − 1
users are decoded successfully, then5m(|Um|) is decoded last
and is not susceptible to any intra-band interferences. Thus,
the optimal order of decoding upholds the respective sorting
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as shown below:

ηm5m(1)

gm5m(1)
≥
ηm5m(2)

gm5m(2)
≥ · · · ≥

ηm
5m(|Um|)
gm
5m(|Um|)

(1)

The communication link is modeled by applying the Shan-
non capacity formula and the achievable throughput Rmq of
user q on subcarrier m can be expressed as:

Rmq , Bmlog2(1+
gmq p

m
q∑|Um|

s=5−1m (q)+1
gmq p

m
5m(s)
+ ηmq

) (2)

According to the SIC order of decoding, user q is only
subject to interference from users 5m (s) , s > 5−1m (q) The
sum system throughput can be further denoted as:

R=
∑M

m=1

∑Q

q=1
Bmlog2(1+

gmq p
m
q∑|Um|

s=5−1m (q)+1
gmq p

m
5m(s)
+ηmq

)

(3)

B. CLUSTERING PROBLEM FORMULATION
To successfully implement SIC operation at the receiver,
the transmission power at each NOMA user needs to be
assigned prudently to ensure the SIC constraints are met.
Let’s assume that there are three NOMA users sharing a
subcarrier m with the channel gains gm1 > gm2 > gm3 , the
transmission power allocated to the BS to the users at User
1 must satisfy the following SIC conditions:

gm1 (p
m
3 − p

m
1 − p

m
2 ) ≥ pSIC (4)

gm1 (p
m
2 − p

m
1 ) ≥ pSIC (5)

where pSIC is the minimum power gap necessitated by User
1 to distinguish between the decodable and non-decodable
signals from a composite signal sent by the BS. The con-
ditions (4) and (5) indicate the power allocation strategy to
ensure User 1 to cancel the interference signals caused by
Users 2 and 3. These conditions need to be guaranteed for
all the allocated subcarriers so that the SIC operations can be
carried out successfully at User 1’s receiver for all allocated
subcarriers. Besides, the transmission power allocation must
also satisfy the condition such that

∑
m∈M (pm1 + p

m
2+p

m
3 ) ≤

ptotal where ptotal is the total available power budget for the
BS.

To efficiently cancel the interference signal from User 3 at
User 2’s receiver by performing SIC, the SIC condition can
be expressed as

gm2 (p
m
3 − p

m
1 − p

m
2 ) ≥ pSIC (6)

Based on the working principle of NOMA,User 2 is unable
to eliminate User 1’s interference signal but this interference
can be treated as noise because the power allocated to the
transmission from the BS to User 1 is smaller compared to
that of allocated to User 2 (pm1 < pm2 ). This phenomenon is
also applicable to User 3 who is not capable to eliminate any
of the interference signals generated by Users 1 and 2, but the
interference is considered as noise because pm1 < pm2 < pm3 .

Based on conditions (4), (5) and (6), the SIC constraints for
a Q-user NOMA system on subcarrier m can be generalized
as:

gmq−1(p
m
q −

∑q−1

i=1
pmi ) ≥ pSIC , q = 2, 3, . . . ,Q,∀m ∈M

(7)

Let the user clustering indicator set of a user q be θq =
{θmq,1θ

m
q,2, . . . , θ

m
q,C },∀m ∈ M where θmq,j is a Boolean

variable such that θmq,j = 1 if a user q is grouped into
a cluster j on subcarrier m, otherwise, θmq,j = 0. In this
cluster formation problem, the total number of cluster is
denoted with C , which is a variable (not predetermined)
depending on the channel diversity of the NOMA users.
Unlike the work in [12] which fixes the total number of
clusters in the NOMA-based network, this paper presents
a new dynamic clustering problem which flexibly groups
users based on their channel heterogeneity and diversity,
leading to an unknown value ofC . In certain NOMA scenario
with high channel diversity, C would be a smaller value,
indicating more users are grouped into a cluster to share
more subcarriers. On the other hand, if the channel diver-
sity is low, C becomes larger as small channel difference
between NOMA users force them to form separate clusters
due to incompliance to the SIC conditions. Accordingly, the
Q-user clustering indicator set can be represented using the
set θ = {θ1, θ2, . . . , θQ},∀m ∈M.
The power allocation strategy of all users on their shared

subcarriers within all the cluster can be denoted P =

{pm1 , p
m
2 , . . . , p

m
Q},∀m ∈M. To maximize the throughput of

the NOMA system, the joint clustering and power allocation
problem for the downlink NOMA system can be formulated
as

max
θ,P

C∑
i=1

M∑
m=1

Q∑
q=1

θmq,iBmlog2

× (1+
gmq p

m
q∑|Um|

s=5−1m (q)+1
gmq p

m
5m(s)

+ ηmq

) (8)

∑M

m=1

∑Q

q=1
pmq ≤ ptotal (8a)∑M

m=1
Rmq ≥ R

min
q (8b)

gmq−1(p
m
q −

∑q−1

i=1
pmi ) ≥ pSIC ,

q = 2, 3, . . . , Q∀m ∈M (8c)
C∑
i=1

∑M

m=1
θmq,i ≤ 1,∀q ∈ Q (8d)

where constraint (8a) indicates total power budget available
at the BS, constraint (8b) ensures the minimum achievable
throughput for each NOMA user, constraint (8c) enforces
the SIC condition at all users’ receivers, and constraint (8d)
guarantees that one NOMA user is only assigned to one
cluster only. In this context, we assume that subcarriers
are preallocated to every user before performing the user
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clustering and power allocation. Once the users form their
clusters, it is assumed that the users will share their subcarri-
ers with other users within the same clusters. The subcarrier
allocation is not the main consideration in this work and will
be considered in the future research.

The clustering and power allocation problem formulated
in (8) is a combinatorial optimization problem which is
NPcomplete. Unlike the problem formulated in [12] which
can be solved using a dual decomposition method, solving
the abovementioned problem is more challenging as the NP-
complete issue is aggravated by the relaxation of the rigid
constraints on the number of clusters and the number of users
that can be grouped in a cluster. Thanks to the work done
in [13] which proposes a brute-force search approach, the
machine learning starts making inroad into the user clustering
problem due to the availability of the clustering dataset.
Since the clustering of NOMA users is highly dependent
on the channel gains of the users and powers allocated for
the transmission, a deep learning method can be utilized to
get the model learn about the relationship between the input
(channel gains and powers) and output (cluster formation).
In this work, Extreme Learning Machine (ELM) approach is
adopted due to its fast learning speed and better generalization
performance.

III. EXTREME LEARNING MACHINE BASED
USER CLUSTERING
In this section, the proposed ELM-UC technique is techni-
cally presented. The objective of the proposed methodology
is to accurately and rapidly learn the optimal UC of NOMA
users based on the input features to maximize the total system
throughput utilizing the ELM technique developed in [29].
The proposed ELM structure consists of three layers, known
as an input layer followed by a hidden layer, and it ends with
an output layer. Unlike the conventional ANN algorithms,
which necessitates the iterative adjustment of internal weights
and requires the tuning of the training parameters such as the
learning rate, etc., ELM-UC randomly assigns the weights
connecting the nodes from the input layers to the hidden
layers, which does not require BP algorithm. On the other
hand, the weights linking the nodes from the hidden layer
to the output layer are obtained utilizing the Moore-Penrose
(MP) pseudo-inverse according to the least-squares criterion.
For these reasons, the training of the ELM can be completed
at a much faster rate as compared to other neural networks
based on the BP algorithm.

A. DATASET GENERATION
The dataset required for the proposed ELM-UC scheme to
learn the optimal formation of clusters which is generated
using the B-FS based AUC [13]. The B-FS based AUC
scheme proposed in [13] exploits an exhaustive search to
explore all the possible clustering combinations to search for
the best clustering strategy that is able to yield the highest
throughput. Although the B-FS method incurs prohibitive
complexity for practical implementation, the method has pro-
vided a theoretical performance upper bound and can serve as

FIGURE 1. Structure of ELM-UC.

the data generator to produce different training datasets for
the proposed ELMmodel. More specifically, the dataset con-
sists of a set of users transmit powers and their instantaneous
channel gains that corresponds to the best formation of the
clusters, leading to the highest throughput. To ensure that the
proposed scheme is adaptive and robust against any deploy-
ment scenarios, the datasets containing the best cluster forma-
tions for different network size with random user positions
together with different number of subcarriers in a NOMA
system are simulated and collected. The clusters obtained are
then numbered in a similar manner as that proposed in [15]
for the training purposes.

B. STRUCTURE OF ELM-UC
The structure of the proposed ELM-UC is depicted in Fig. 1,
which consists of t input layer nodes, k hidden layer nodes,
and r output layer nodes. The inputs of the proposed ELM-
UC is denoted by U and it comprises the channel gains g
and initial transmit powers p of Q users. On the other hand,
the outputs V corresponds to the clustering information that
needs to be obtained at r output layer nodes. As such, for the
NOMA system that serves Q users, there are 2Q input nodes
and Q output nodes, i.e., t = 2Q and r = Q. Mathematically,
{U ,V } = {ui, vi} where i = 1, 2, . . . , S. Thus, the matrix
representation of U and V of the training data set are as
follows:

U =


u11 u12 · · · u1S
u21 u22 · · · u2S
...

...
. . .

...

ut1 ut2 . . . utS

 (9)

V =


v11 v12 · · · v1S
v21 v22 · · · v2S
...

...
. . .

...

vr1 vr2 . . . vrS

 (10)
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More explicitly, udi can also be written in terms of the
channel gain and transmit power as

udi =


gm(

d+1
2

)
i
, for d mod 2 6= 0

pm(
d
2

)
i
, for d mod 2 = 0

(11)

where gmni and p
m
ni signify the channel gain and transmit power

of i-th input sample for user n on subcarrier m, respectively.
The input weights and the hidden biases are randomly

generated and therefore tuning of parameters in the proposed
ELM-UC scheme is not required. On the other hand, the out-
put weights are calculated usingMP generalized inverse [30].
Upon defining wij and βja as the weight that connects the i-th
node of the hidden layer to the j-th node of the input layer and
the weight that connects j-th node of the hidden layer to the
a-th node of the output layer, respectively, the corresponding
matrix representation for input weightsW and output weights
β can be expressed as:

W =


w11 w12 · · · w1t
w21 w22 · · · w2t
...

...
. . .

...

wk1 wk2 · · · wkt

 (12)

β =


β11 β12 · · · β1r
β21 β22 · · · β2r
...

...
. . .

...

βk1 βk2 . . . βkr

 (13)

The biases for the hidden layer nodes is denoted by
B = [b1, b2, . . . bt ]T and the output layer matrix is repre-
sented by Y = [y1, y2, . . . , yS ]r×S , where

yj =


y1j
y2j
...

yrj

 =

∑k

i=1 βi1f (wiuj + bi)∑k
i=1 βi2f (wiuj + bi)

...∑k
i=1 βir f (wiuj + bi)

 (14)

f (·) denotes the activation function and j = 1, 2, 3, . . . , S.
The output layer matrix can be compactly written as

Hβ = Y ′ (15)

where H is the output matrix of the hidden layer defined as

H =


f (w1u1 + b1) f (w2u1 + b2) · · · f (w1u2 + b1)
f (w2u2 + b2) f (wku1 + bk) · · · f (wku2 + bk)

...
...

. . .
...

f (w1uS + b1) f (w2uS + b2) · · · f (wkuS + bk)


(16)

C. TRAINING PHASE
The entire data set is divided into training, validation, and
testing datasets. In the training phase, the desired user clus-
tering is known to the ELM-UC, i.e. yj = vi. The proposed
ELM-UC is trained to determine the least-squares solution

β for minβ
∥∥Hβ − Y ′∥∥ and the smallest norm least- squares

solution can be written as

β = H†Y ′ (17)

where H† is the MP generalized inverse of H .
Generally, the k has a significant impact on training the

neural network. If the number of hidden nodes is the same
as the number of training samples, i.e. k = S, the mean
squared error (MSE) of the conventional SLFNs can approach
zero [29]. For the proposed ELM-UC, the number of hid-
den nodes is significantly less than the number of training
samples, i.e. k � S, which causes the MSE to approach an
arbitrary value ξ > 0,

MSE =
1
S

∑S

i=1
(ui − yi)2 < ξ (18)

According to ridge regression theory, the stability and gen-
eralization ability of ELM could be enhanced by including
a positive regularization term 1/λ in the calculation of β as
follows:

β = (
I
λ
+ HTH )

−1
Y ′ for < S (19)

where I is the identity matrix.

D. VALIDATION AND TESTING PHASES
Once the training is completed, the proposed model is vali-
dated by using the validation data samples. The purpose for
validation is to tune the hyper-parameters, such as the value
of k and the value of the regulation parameter, so that the
machine learning model is able to make accurate prediction.
In the testing phase, the input features of testing data samples
are fed into the model to predict the UC of NOMA users.
Based on the predicted clustering formation, the transmit
power is equally allocated to all users for all the clusters. For
simplicity, the equal power allocation method is chosen in
this context because power allocation problem is not the main
focus of this work. For a fair comparison, other benchmarking
techniques will also adopt the similar equal power allocation
method.

The performance of ELM-UC can be evaluated in terms
of throughput using (3) based on the predicted clustering
formation and allocated power. The accuracy of the prediction
is denoted as follows:

Accuracy =
Nc

NS
(20)

whereNc symbolizes the number of correctly predicted sam-
ples and NS represents the total number of samples.
Algorithm 1 summarizes the operational steps of the pro-

posed ELM-UC technique.

E. SALIENT FEATURES OF ELM-UC
Since the underlying architecture of the proposed UC scheme
is ELM, ELM-UC inherits all the inherent features of ELM
which can be summarized as follows:
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Algorithm 1 Proposed ELM-UC Technique
Training phase
Step 1: Randomly generate W and B
Step 2: Calculate H for the training dataset using (16).
Step 3: Compute β for the training dataset using (17).
Validation phase
Step 1: Calculate H for the validation dataset using (16).
Step 2: Predict the UC for the validation dataset using (15).
Step 3: Compute the throughput for the validation dataset

using (3).
Step 4: Repeat the training phase and steps 1-2 of the valida-

tion phase for different configurations of ELM-UC,
i.e. different types of activation functions, different
settings of k and λ.

Step 5: Select the best setting of ELM-UC which corre-
sponds to the highest throughput performance.

Testing phase
Step 1: Calculate H for the testing dataset using (16) based

on the best setting of ELM-UC obtained in the step
5 of validation phase.

Step 2: Predict the UC for the testing dataset using (15).
Step 3: Calculate the MSE for the testing dataset using (18).
Step 4: Compute the accuracy for the testing dataset

using (20).
Step 5: Determine the throughput for the testing dataset

using (3).

1) Extremely fast training could be achieved by ELM-UC as
bothW and B of ELM-UC are randomly assigned while β
is analytically determined using (16), thereby eliminating
the needs for gradient-based BP learning algorithms to
iteratively tune the network parameters. Consequently,
ELM-UC can effectively overcome the shortcomings of
gradient-based BP learning approaches, such as slow con-
vergence, local optima, improper learning rate, etc.

2) Despite the fact that SLFN is a universal approximator,
most of its learning algorithms do not fulfill the universal
approximation property [32]. On the other hand, as proven
in [18], ELM is a universal learner which is capable of
approximating any continuous functions.

3) Since (10) attempts to seek for the smallest norm of β
among the least-squares solutions, the solution for β is
unique and good generalization performance could be
attained by ELM-UC. More explicitly, as pointed out by
Barlett’s theory, the generalization performance of SLFN
tends to improves when both the training errors and the
norm of the weights reduce [31].

IV. SIMULATION RESULTS AND
PERFORMANCE ANALYSIS
To show the performance of the proposed ELM-UC, exten-
sive simulation is conducted for different NOMA deploy-
ments. Since the hyper-parameters for the ELM-UC critically
impacts the performance of the ELM-UC, a comprehensive

TABLE 1. Simulation setting.

simulation is performed to obtain the optimal setting of the
ELM-UC via the training phase. In this extensive simulation,
various activation functions will be explored together with the
number of hidden layers, number of nodes for each hidden
layer, regulation parameters, and length of training data sam-
ples. This simulation will conclude the best hyper-parameters
for the ELM-UC so that the best ELM-UC approach can be
simulated and compared fairly with other UC schemes. More
specifically, the throughput achievement of the proposed
technique is benchmarked against those of the conventional
OMA (lower-bound performance), DUC, B-FS based UC
(upper-bound performance), and ANN-UC. The simulation
setting for the proposed ELM-UC scheme is summarized
in Table 1.

First, the performance of the training accuracy for differ-
ent activation functions used by the proposed ELM-UC is
compared in Fig. 2. Fig. 2 shows the training accuracy (%)
of ReLu, Sigmoid, Sine, and Tanh functions used to activate
the nodes in the proposed ELM-UC with respect to different
k . The proposed ELM model is trained with 8400 training
samples and regulation parameter is fixed at 5000. Choosing
the most suitable activation function is crucial as the acti-
vation function has a significant on the performance of the
proposed scheme. In Fig. 2, it can be seen that ReLu func-
tion consistently outperforms other activation functions in
terms of accuracy for different k considered. It is also worth-
mentioning that ReLu function achieve linear improvement
in terms of training accuracy when the k value is increased.
On the other hand, the training accuracy of ELM-UC using
Tanh, Sine, and Sigmoid activation functions can merely
achieve 54%- 60% of accuracy. Furthermore, the ELM-UC
scheme adopting Tanh, Sine and Sigmoid functions does not
show any significant improvement as the k value increases.
Undoubtedly, it is always recommended to employ ReLu
as the activation function for the proposed ELM-UC model
which can achieve 84% of training accuracy when k = 50.

Next, apart from the training accuracy, the investigation
is also carried out to analyze the training time required by
the aforementioned 4 activation functions during the training
phase. In Fig. 3, the training time and training accuracy of the
ELM-UC scheme using the ReLu, Sigmoid, Sine, and Tanh
function are compared in an ELM architecture with k = 50
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FIGURE 2. Accuracy of the ELM-UC for different numbers of hidden layer
nodes and activation functions in training phase.

FIGURE 3. Training accuracy and training time of ELM-UC for different
types of activation functions.

and its regulation parameter is adjusted to be 5000. It is
noticed in Fig. 3 that the ReLu function enables the ELM-UC
to be trained within 20 seconds, but the training time required
by the Sigmoid, Sine and Tanh functions is approximately
2-4 times more than that required by ReLu. Again, it is evi-
dently demonstrated that ELM-UC with ReLu could achieve
much better training accuracy with much shorter training
time as compared to other activation functions. Hence, for
the following simulations, the ReLu function will always be
used as the activation function in the proposed ELM-UC
scheme.

Fig. 4 displays the throughput performance and MSE of
the proposed ELM-UC for different settings of regulation
parameter with k = 50 and 8400 training samples. It is

FIGURE 4. Throughput and MSE performance of ELM-UC during the
training phase for different setting of regulation parameter.

FIGURE 5. Throughput performance of ELM-UC for different numbers of
hidden layer nodes and different lengths of training data samples N in
testing phase.

noted that the throughput performance improves and the
MSE reduces in a linear scale as the regulation parame-
ter is increased from 500 to 5000. However, as the reg-
ulation parameter is increased beyond 5000, the opposite
trend is observed. This is attributed to the fact that the
regulation parameter plays an essential role in introducing
the trade-off between the MSE minimization and the norm
of output weights. From the Fig. 4, the optimal regulation
parameter is 5000 as it yields the best throughput and MSE
performances.

Fig. 5 illustrates the throughput attainments of the pro-
posed ELM-UC scheme for different lengths of training
samples N and different values of k in testing phase. The
regulation parameter is set to the optimal value 5000 and
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FIGURE 6. Training time of various machine learning based UC techniques
for different numbers of hidden layer nodes.

ReLu is suggested as the activation function. As expected,
it is observed that the throughput performance improves as
the length of the training samples increases. Besides that, it is
also observed that k value has a significant impact on the
throughput performance. More precisely, the proposed ELM-
UC scheme exhibits better throughput performance as k is
increased from 10 to 50 owing to the improved modeling
capability. However, the throughput performance starts to
deteriorates when the value of k is further increased to 60 due
to the over fitting of the ELM model. As such, we can con-
clude that the optimal value of k for the scenario considered
is found to be 50.

Fig. 6 depicts the training time of two machine learning
based UC schemes for different k . In general, it is observed
that the training time is proportional to k . As expected,
the training time for ANN-UC is significantly longer than
that of the ELM-UC. Specifically, for the case of k = 50,
ELM-UC requires less than 5 seconds for training but ANN-
UC takes more than 10 seconds, doubling the time required
by the former. This is due to the fact that the input and
output weights of ANN-UC are iteratively updated by the
BP algorithm. On the other hand, for the case of ELM-UC,
the input weights are randomly assigned and the output
weights are analytically determined. With this beneficial fea-
ture, the ELM-UC is considered to be more feasible when the
UC is required to adapt to a vast variety of deployment scenar-
ios when there is a huge volume of training data, which can
be rapidly learned by the proposed ELM-UC compared to the
ANN-UC.

Fig. 7 compares the accuracy and time required for ANN-
UC and ELM-UC during the testing phase. As compared
to ANN-UC, ELM-UC can achieve better accuracy with
substantial reduction in testing time as it utilizes the small-
est norm of output weights to predict the UC and its

FIGURE 7. Accuracy and time for various machine learning based UC
techniques during the testing phase.

learning mechanism is performed without iteratively tun-
ing the hidden nodes. From Fig. 7, it is again proven
that ELM is a better machine learning model compared
to ANN.

Fig. 8 presents the MSE and throughput performance of
ANN-UC and ELM-UC for different k values with 1800 test-
ing samples and ReLu activation function during the testing
phase. From Fig. 8(a), it is observed that the MSE of ANN-
UC reduces as k is increased from 5 to 20. However, as the
value of k is increased beyond 20, the MSE of ANN-UC
increases accordingly. This is attributed to the fact that ANN-
UC with k = 24 are sufficient for learning the UC of NOMA
users and further increasing k value will lead to overfit-
ting which results in a larger MSE. Owing to the superior
generalization capability of ELM-UC, the MSE of ELM-
UC is smaller as compared to that of the ANN-UC for the
different k values considered. As expected, the MSE achieve-
ment substantially influences the throughput performance
of the techniques as shown in Fig. 8(b). More specifically,
the throughput performance improves as the MSE increases.
From Fig. 8(b), it can also be seen that the throughput perfor-
mance of ELM-UC outperforms that of the ANN-UC and the
performance improvement gap becomes wider when a larger
value of k is used.
Fig. 9 shows the throughput comparison of OMA with

other UC techniques to investigate how each technique scales
with the number of users in the testing phase. It is demon-
strated that the increasing rate of throughput performance
using NOMA UC techniques is higher than that of OMA.
This is mainly because the NOMA system allows each sub-
carrier to be shared among the users within the same cluster,
leading to more frequency resources for all users under a
circumstance where the co-channel interference is under con-
trol (the implementation of SIC can eliminate the interfer-

130892 VOLUME 9, 2021



S. P. Kumaresan et al.: ELM for Fast UC in Downlink NOMA 5G Networks

FIGURE 8. MSE and throughput performance of various machine learning
based UC techniques for different numbers of hidden layer nodes during
the testing phase.

ence effectively for the users with stronger channel gains).
In comparison with the optimal B-FS-UC, the performance
of the proposed ELM-UC is only slightly inferior with a
maximum performance degradation of 7.40%. Besides that, it
is also noteworthy that the proposed ELM-UC yields superior
throughput performance for all the cases considered as com-
pared to those of OMA,DUC, andANN-UC.More explicitly,
for all the different number of users considered, the proposed
ELM-UC is found to exhibit throughput performance gains
of 4.41% to 22.72% over the ANN-UC counterpart. This
can be explained as follows. Generally, ANN-UC is prone
to converge to local minima as it employs gradient-based BP
algorithm to update its weights [15]. Consequently, the supe-
riority of ELM-UC comes into play as its output weights
are analytically computed based on the minimum norm solu-
tion, which results in improved generalization capability as

FIGURE 9. Throughput performance of OMA and various UC techniques
for different number of users during the testing phase.

reported by the Barlett’s theory [31] and the issue of local
minima could also be avoided [17].

V. CONCLUSION
This paper proposed a novel fast-learning and low-
complexity UC technique to effectively group the users
in NOMA systems using an extreme learning machine
approach. The proposed ELM-UC scheme is developed to
learn the non-linear relationship between the input features
and output of UC via a training dataset with tuning-free
learning strategy. The relatively long learning time issue
which plagues neural network-based UC schemes that adopt
BP learning algorithm can be effectively addressed by ELM-
UC as its output weights are solved in a single step without
the need of time-consuming BP algorithm. Comprehensive
simulation results reveal that the proposed technique could
attain substantial improvement in terms of throughput and
MSE over the existing schemes with a significantly lower
complexity and shorter execution time. Even though the
proposed number of hidden neurons in the ELM-UC is still
acceptable, it manifests an increasing trend if we intend
to further increase the throughput performance. Therefore,
to optimize the ELM-UC architecture for the best throughput
performance, the hidden neuron pruning can be investigated
in the future work.
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