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ABSTRACT Three-dimensional (3D) kinematic analysis plays an important role in improving diagnosis
and in the evaluation of treatments and surgical procedures. For example, measuring the 3D kinematics
of knee joints is essential for understanding their normal function and diagnosing any pathology, such as
ligament injury and osteoarthritis. Image registration is a method which can be used to compute kinematic
measurements without involving the introduction of instruments into the body. However, in these techniques,
the trade-off between accuracy and computation time is still a challenging problem which needs to be
addressed. In this paper, a fast and robust registration method is proposed for the measurement of post-
operative knee joint kinematics. Using this method, after total knee arthroplasty (TKA) surgery, a 3D knee
implant model can be registered with a number of single-plane fluoroscopy frames of the patients’ knee.
Generally, when the number of fluoroscopy frames is quite high, the computation cost for the registration
between the frames and a 3D model is expensive. Therefore, in order to speed up the registration process,
we apply an interpolation-based prediction method, to initialize and estimate the 3D positions of the 3D
model in each fluoroscopy frame. The estimated 3D positions are then fine-tuned. The experimental results,
which were performed on the knee joints of 18 patients post-surgery, show that the computational time
required to register each frame for each bone using our proposed method is only 67 seconds, which is
much faster (almost 6.5 times faster) than the best existing registration method (a registration method based
on sum of conditional variance (SCV) similarity measure) while maintaining almost the same accuracy.
The average of the mean difference + standard deviation of the proposed method for femoral and tibial
bones for translation and rotation parameters are 0.0603 £ 0.2966 (mm) and —0.0069 £ 0.2922 (degree)
respectively.

INDEX TERMS Cubic spline interpolation, edge position difference, image registration, model to multi-
frame fluoroscopy registration, similarity measure.

I. INTRODUCTION

The success of total knee arthroplasty (TKA), which is a
surgical procedure for restoring the function of a knee joint,
is commonly evaluated using the level of satisfaction with the
outcome reported by the patient. Also, to more quantitatively
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analyse the success of the surgery and the condition of the
patient’s knee afterwards, several methods have been used
to measure 3D knee kinematics. Kinematic analysis can also
help to improve the design of knee implants. In a study
by [1], knee kinematics were investigated to determine the
effects of improving implant design through customized TKA
components. Regarding the methods used for kinematics
measurement, although roentgen stereo photogrammetry
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analysis (RSA) is an accurate and popular method for
kinematic analysis, it is invasive because of its requirement
for tantalum beads to be implanted into the patient’s bones.
This method is based on radiographic examinations of
calibration cages and object markers implanted in the skele-
ton. Three-dimensional motion analysis can be provided by
accurate measurements of radiographs and computer-assisted
calculations. RSA requires the following steps: implan-
tation of tantalum markers, the radiographic examination
and measurements on radiographs followed by mathematic
calculations [2].

In [3], a bi-planar RSA method was used to compute
knee kinematics after arthroplasty surgery. In this approach,
bi-planar (two x-ray radiographs) fluoroscopy is used,
and instead of using 3D models of the knee’s implants,
the positions of the implants were reconstructed using
geometric features of the designed components includ-
ing its planar surfaces, straight lines, pegs and circular
edges. However, in this method, since some clusters of
markers are attached to the knee bones and subsequently
tracked by a camera system, it is considered to be
invasive.

Skin-mounted marker tracking methods are non-invasive
techniques which can be used to measure human joint
kinematics. However, they are prone to inaccuracy because
the markers may move because of skin movements and they
cannot measure the exact motions of the bones underlying
the markers [4]. To improve their accuracy, some approaches
used a force plate coupled with a video-fluoroscopic system
to measure TKA Kinetics and kinematics [5], [6]. In these
techniques, implant components were tracked directly by
x-ray cameras to compensate for their low accuracy which
may have been caused by the artifacts of skin movement.
A tracking-based method using multi-body kinematics opti-
misation (MKO) and extended Kalman filters (EKFs) to
decrease the effect of the soft-tissue artifact (STA) and
provide a more accurate estimation of joint kinematics was
proposed in [7].

To address the previously mentioned problems of pro-
viding 3D kinematics, including being invasive, inaccurate
and requiring a high computation time, registration methods
have provided non-invasive techniques with high accuracy
for kinematic measurements. In [8] a registration method
for conducting a 3D post-operative analysis of a TKA’s
components to determine the condition of a patient’s knee
using the normalised correlation coefficient (NCC) similarity
measure was developed. Using this method, implant and bone
models of the knee are registered with dual x-ray images of
the knee. Although a simulated annealing global optimisation
method was proposed in this study, its registration algorithm
may still converge to a local minimum which can cause
errors in the estimated 3D position of the components.
A new, improved 3D-2D fluoroscopy registration algorithm
for TKA analysis was developed in [9]. It focused on the
out-of-plane translation and rotation movements which are
difficult to measure precisely using a single-plane approach,
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FIGURE 1. Frame-by-frame registration.

with the experiments performed by registering only 3D
CT images of a Sawbones model with 2D fluoroscopy
frames.

In [10], a real-time 2D to 3D registration method based
on a convolutional neural network (CNN) was proposed.
In experiments, it was applied to measure TKA kinematics
by registering the 3D model of a knee prosthesis with
the fluoroscopy video of its implants. A laser scanner
was used to acquire the model, and then a binary volume
constructed from the scanned data. Although this method
was accurate, fast, robust against large initial displacements
and applicable for real-time applications, it required a GPU
implementation based on a special workstation. In a clinical
setting, information of dynamic joint kinematics extracted
from videos of the movements of the knee joint is very useful.
However, one of the issues when extracting information
from videos is that the process of registration for a large
number of images can be quite time-consuming. For example,
to provide information of 3D knee kinematics, approximately
300 2D fluoroscopy frames are typically registered with 3D
models of the femoral and tibial components of the relevant
artificial knee and a registration algorithm must be run at least
600 times.

Most registration methods [11]-[13] applied in this
medical area registered a 3D model to a fluoroscopy video
using a frame-by-frame approach, as shown in Figure 1,
where f denotes a frame and r is the total number of frames
which should be registered. In this approach, the registration
output, which showed the correct position of the bone in a
3D model for one frame, could be used as the initial position
for the model for the next frame. However, all the frames
must have been registered which is not efficient in terms
of computational time. An automated registration method
for registering 3D models of knee implants to single-plane
x-ray images was proposed in [11]. It applied a pyramidal
similarity metric and Lipschitzian optimisation routine for
registration, was robust against the noise from bones and soft
tissue and had a reasonable computational time of almost
one minute per frame. However, this time is computed when
a GPU based version of the registration method was run
using a 4GHz Intel Core i7 CPU in conjunction with an
Nvidia GeForce GTX 970 GPU. In this method, when a
fluoroscopy frame was to be registered with a 3D model,
a registration estimate based on the previous registered
frame was initialised for the current frame. However, one
of its drawbacks is that the initializations of the subsequent
frames would not be appropriate which may result in
mis-registration if a large mis-alignment occurs in one
frame. Although one solution is to search a larger range
of values for the geometric transformation parameters, this
process is very time-consuming. A robust 3D computer-
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aided design (CAD) model to 2D single-plane registration
method was proposed in [14]. In this method, a combination
of an intensity and a contour matching score accompanied
with a simulated annealing optimization algorithm were
used. However, it had limited robustness to large initial
displacements of a component’s position in a video frame,
and when an initial starting position was not close to the
correct answer, it required up to 50 percent user intervention.
Object-tracking methods, such as those based on Kalman
filtering [7] and particle filtering [15], [16], can also be
used for kinematics measurements. In these approaches,
the position of the target object at time ¢ is predicted
using the previous information from times O to ¢ — 1.
A parameterised prediction model is required for a Kalman
filter computation while patients’ knee joints may have
different functionalities [16]. Recently, methods based on
predicting implanted knee kinematics have been proposed.
In [15], the 3D position of a knee prosthesis was estimated
by applying a particle filter algorithm, which involved the
three steps of: prediction, observation and resampling. In this
method, chronological information was applied and the 3D
position of the initial frame was defined manually. However,
a great deal of computational time was required for this
method. Although the performance of this method was
improved in [16] and its computational time decreased,
it was only capable of providing the kinematics without the
transformation information of the 3D model. It applied fuzzy
membership functions to consider the relative positions of
the femoral and tibial knee components and omitted the less
likely ones. However, this may not provide acceptable and
accurate results in some conditions where these position are
not in the specific ranges defined by the fuzzy functions.
Registration parameters, or initial deformation fields for
registration, were predicted in some learning-based meth-
ods [17]-[20] and other studies predicted implanted knee
kinematics before surgery [21], [22]. As joint kinematics
are not the same for all patients and their patterns can be
different [22], a simple mathematical formula may not be
capable of modeling these kinematics. In [22], a supervised
machine learning prediction model was proposed. Its pre-
dicted post-operative kinematics could help create a better
design for TKA components and achieve more successful
surgeries. In this study, the performance of three machine
learning methods (support vector regression (SVR), neural
network (NN) and generalized linear regression (GLR)) in
predictive model construction for postoperative kinematics
prediction were compared. In [21], a machine learning-
based method for predicting post-operative knee kinematics
was proposed. In this method features are extracted using
principal component analysis (PCA), and then a mapping
function from pre-operative feature space to post-operative
feature space is constructed. One of its advantages is that it
could predict these kinematics before TKA surgery. However,
it required a very large dataset consisting of a set of
pre- and post-operative knee mobility functions to create a
model for predicting post-operative knee functions. As access
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to such a large training dataset is usually not feasible,
this method would not be very applicable in a clinical
setting.

Most studies that proposed a registration approach for
3D kinematics did not exploit the continuous nature of the
kinematic parameters to be measured. Also, the smoothness
of knee kinematics is highly important for knee joint analysis,
an aspect that was not considered in many studies. Exploiting
these characteristics will enable simulations of more natural
joint movements.

In this paper, we propose a fast, robust method for
registering a 3D model to multiple 2D fluoroscopy frames.
To register multi-frame images, firstly, some frames are
registered accurately using a registration method based on
two recent similarity measures, the edge position difference
(EPD) [23] and SCV [24], and a gradient descent optimisation
method. Then, the 3D positions of the models are estimated
for the remaining frames using an interpolation technique.
A final fine tuning step to improve the registration of some
frames is adopted when required. Our experimental results
show that the proposed method is almost as robust as the
SCV registration approach but is much faster. By exploiting
the continuous nature of the Kinematic parameters to be
measured, the proposed method also provides smooth regis-
tration results which can lead to more natural 3D modelling
of joint movements. The proposed method will enable
simulations of more natural joint movements. Using the
proposed registration method, a large number of fluoroscopy
frames, for example 300 2D frames, can be registered with
the relevant 3D model of femoral and tibial components in
a relatively short time. The proposed method gives us the
best position of the 3D models which match each fluoroscopy
frame. Using the output information, a 3D video of knee
joint movements can be viewed, and 3D knee kinematic
parameters can be computed to be used for analysing the
success of the TKA surgery and the condition of the patient’s
knee afterwards.

The remainder of this paper is arranged as follows: in
Section II, the proposed 3D model to 2D x-ray fluoroscopy
image registration method is described; in Section III,
the proposed method is evaluated through several exper-
iments; and finally, in Section IV, our conclusions are
presented.

Il. PROPOSED 3D MODEL TO 2D MULTI-FRAME
FLUOROSCOPY REGISTRATION METHOD

Our proposed approach relies on the assumption that the
registration results for most frames in a fluoroscopy video
can be estimated by predicting their values from the values
of a few neighbouring registered frames, and therefore can
be computed in a relatively short time.

In the registration, six transformation parameters are found
including in-plane parameters 7y, 7y and R,, and out-
of-plane parameters T, R, and R, which are shown in
Figure 2.
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FIGURE 2. The six transformation parameters which are found by the
registration algorithm.
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FIGURE 3. (a) An example of similar intensity values in a fluoroscopy
frame of a patient’s knee joint after TKA surgery (the intensity values,
particularly in the neighbourhood of the tibial component implanted in
the bone lie in a narrow range). (b) An example of occlusion in a
fluoroscopy frame of a patient’s knee joint after TKA surgery (the
projections of the femoral and tibial components overlap each other).

The proposed method includes the general steps of
pre-processing, initial registration, estimations of the 3D
transformation parameters, and improvements in registration,
as discussed in the following subsections.

A. PRE-PROCESSING

As mentioned in section I, one of the drawbacks of most
feature-based registration methods is that, if the segmentation
technique applied before the registration process is not
suitable, the registration results may not be reliable [25].
In our proposed framework, a registration method based
on the normalised EPD (NEPD) [23] and SCV [24]
similarity measures is used. While the fluoroscopy frames
do not require segmentation for the SCV method, they
need proper segmentation when registered using the EPD
measure. As different fluoroscopy frames for each patient can
have different levels of intensity, contrast and illumination,
a non-adaptive segmentation method with a fixed threshold
may result in poor segmentation results. Also, although
implants made of metal usually have different and distinctive
intensity values compared with those in other areas of the
frames, in some fluoroscopy frames, the implant and its
close neighbours may have similar values. This characteristic
of fluoroscopy frames makes segmentation quite a difficult
task. Figure 3(a) shows a fluoroscopy frame of a patient’s
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knee joint after TKA surgery in which the intensity values,
particularly near where the tibial component is implanted
into the bone, are very similar to those of the implant. Fur-
thermore, occlusions and low object-to-background contrast
can be seen in the fluoroscopy frames as, at the time the
image was captured, the positions of the legs may cause an
overlap of their projections. For example, Figure 3(b) shows a
fluoroscopy frame of a patient’s knee joint after TKA surgery
in which the femoral and tibial components overlap each
other.

In the proposed method, the fluoroscopy frame and the
2D projected model of the knee bone to be registered
are denoted by R and I respectively which are converted
to binary edge images Egr(x,y) and Ej(x,y) respectively
when the registration method based on the NEPD is used.
An adaptive segmentation method, which automatically
provides proper segmentation results for different patients
is adopted. This adaptive method uses an approach that
computes an appropriate image threshold using local first-
order statistics for each image [26]. The method is applied
using the adaptthresh Matlab function using a Gaussian
probability distribution whereby, for each pixel, a local
threshold is computed by the Gaussian weighted mean of its
neighbourhood. The output from the adaptthresh function is
a matrix which shows a specific threshold for each pixel for
use in the binarisation process when a grey-scale image is
converted to a binary image. Using the computed threshold,
the segmented fluoroscopy image is binarized and denoted by
ERr(x,y). Then, using a morphological function (the ‘remove’
operation in the bwmorph function in Matlab), the pixels
inside the 2D projected implant’s image are removed which
leaves only their border. This image is the binary edge
image of the implant denoted by Ej(x,y). In Figure 4,
the results obtained from a constant threshold segmentation
method, and the adaptive segmentation technique used in the
proposed method are shown. In Figures 4(a), 4(b) and 4(c)
examples of fluoroscopy images of the human knee joints
of three different patients after TKA surgery are presented.
In Figures 4(d), 4(e) and 4(f) the corresponding segmented
fluoroscopy frames using a constant thresholding segmenta-
tion method (with the same threshold used in all three frames
as the segmentation step is required to be fully automatic
without any user intervention), and in Figures 4(g), 4(h)
and 4(i), the segmented frames using the proposed adaptive
segmentation technique are shown. Although the segmented
image, obtained using the constant threshold segmentation
method, shown in frame 4(d) is suitable, the segmented
images shown in frames 4(e) and 4(f) are of poor quality.
Since the segmented image in Figure 4(e) was obtained
using the same threshold as for the image in Figure 4(b),
certain parts of the femoral and tibial components are
removed if the overlapping area between them is ignored.
However, segmenting the image in Figure 4(b) using the
proposed adaptive method, provides good results, as shown
in Figure 4(h). For the image in Figure 4(c), using the
constant threshold method is not appropriate, as shown
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FIGURE 4. (a), (b), and (c) Examples of fluoroscopy images from human knee joints after TKA surgery for three different
patients; (d), (e) and (f) the corresponding segmented fluoroscopy frames using a constant thresholding segmentation
method, and (g), (h) and (i) segmented frames using the proposed adaptive segmentation method.

in Figure 4(f), while the adaptive segmentation approach
provides acceptable results, as shown in Figure 4(i). However,
for those fluoroscopy frames which do not exhibit high
contrast and are blurry, the adaptive segmentation method
may not exactly differentiate between the implants and their
neighbourhoods as explained in more detail in section II-D.
In the proposed method, the effects of the neighbourhood
area with similar intensity values are decreased by using
a combination of feature and intensity-based registration
methods. In our proposed framework, we used a combination
of these methods as the NEPD is considered to be a feature-
based similarity measure while the SCV is defined as an
intensity-based similarity measure. In this way we can benefit

VOLUME 9, 2021

from the advantages of both of these measures to perform a
trade-off between accuracy and computation time (SCV is
accurate, and NEPD is fast). While the fluoroscopy frames
need proper segmentation when registered using the EPD
measure, they do not require segmentation for the SCV
method. Therefore, when the segmentation of fluoroscopy
frames is not perfect in the registration method based on
NEPD, using the intensity registration method helps to
compensate this by using intensity features of the images to
be registered.

The remaining parts of the proposed registration method
are shown in Figure 5, and explained in the following
subsections.
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FIGURE 5. The proposed multi-frame registration method.
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FIGURE 6. The multi-frame approach used by the proposed registration method.

B. INITIAL REGISTRATION

In frame-by-frame image registration methods, after the first
frame is registered, its output is usually used in the initial
registration of the next frame. Also, as all frames should be
registered, which can be very time-consuming, if there is a
sudden change in knee movement, the correct results may not
be obtained, and the next frames may be initialised incorrectly
which can have a huge effect on the resulting registration
results. To estimate 3D knee joint kinematics for multi-
frame fluorosocopy videos, in the proposed method, a few
frames are registered first before the kinematic parameters
for the others are estimated. The first frame is registered
semi-automatically, that is, the initial position is found
manually and then the automatic method based on the SCV
similarity measure [27] is used to improve the registration
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transformation parameters. Subsequently, depending on the
number of frames () to be registered and the type of knee
joint movements and sequences, x out of n frames are
registered. For the initial registration, all x out of n frames,
except the first one, are registered fully automatically, and as
can be seen in Figure 6, the result for each is used to initialise
the registration parameters of the next frame. The x frames are
chosen with distance d between them as shown in Figure 6.
In this figure, f; denotes frame number i, and d represents the
number of frames which are skipped in the initial registration
step. The value of d is chosen according to the amount of
movement between frames of the implant to be registered.
For example, in the case of knee joints, if the implant’s
position only changes slightly between each fluoroscopy
frame, a larger value of d may be chosen. However, if the
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implant moves rapidly between fluoroscopy frames, a smaller
value of d would be chosen, and the number of frames in
subset A to be registered initially will be larger. The total
number of frames (x) required for registration is defined as:

=[]

For example, if the number of frames is 295 and we want
to register those with a distance of 10, 30 frames should
be registered initially before using the estimation method
to register all other frames. The transformation parameters
for each frame to be registered are initialised using the
registration output from the previously registered frame in
the set. In order to compute the registration transformation
parameters for the alignment of x frames, a large range
of values should be searched to reduce the chance of
misalignment which may occur due to the larger number
of frames between each subsequent frame in subset A and
the possibility of a large difference between the relative
3D positions of the models in each frame in subset A. The
registration results for the initial x frames should be highly
accurate as they are the input data for the subsequent fast
multi-frame registration method. Hence, a combination of the
accurate and fast registration approaches in [27] and [13] is
used in the initial registration step. The registration method
used in [13] is based on the EPD similarity measure. This
multi-modal similarity measure is based on the minimum
difference between the position of binary edge images.
These edge images are produced by using an edge detection
method on the two images to be registered. To compute
the EPD similarity measure, firstly, the input images to
be registered, R and I, as mentioned in Section II-A,
are converted to binary edge images Eg(x,y) and Ej(x,y)
respectively. In the next step, a 2D chamfer distance
algorithm [28] is used to compute the distance Dg(x, y) to the
nearest edge pixel in the binary image of the reference image
(Eg(x,y)). Although chamfer distance is not considered to
be a global operation, as it works on small neighborhoods
around pixels, it provides a good approximation to Euclidean
distance. Finally, the edge position difference, P, between
the two images R and I is computed. It is computed by
summing the distance to the nearest edge of image R,
Dg(x, y), at locations which correspond to edges in the other
binary image Ej(x,y). If B; is defined as the set of pixel
locations where T(E;) = 1, the edge position difference is
calculated as follows:

P(mi)= Y Dg(x,y) )
(x,y)epr
where m; denote the parameters that define the transform 7'.

For example, in a 2D rigid-body transform, the new pixel
locations (x’, ¥') in the transformed image are given by:

X = cos(mq)x — sin(my)y + my 3)
¥ = sin(my)x + cos(my)y + m3 4)
where m; are the parameters that define the transform T'.

This equation only describes 2D transformation, however,
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in the proposed method both 2D and 3D transformations
are applied. In the method proposed in this paper we used
a normalized version of the EPD (which needs almost the
same computation time as the EPD) to limit the range of EPD
similarity values to between 0 and 1. This normalization is
necessary when comparing the level of the similarity between
two different images to be registered. In the registration
method based on the EPD, a steepest descent optimization
algorithm is used to find the set of transform parameters that
minimize P(m;). In the registration method applied in [27],
the SCV similarity measure is used. This measure is based on
calculating the sum-of-conditional variances using the joint
histogram between the two images to be registered. In this
registration method, a standard Gauss-Newton optimization
method was used.

In the initial registration step, first, the NEPD similarity
measure, which has values of between 0 and 1, is computed
for the frames to be registered. The closer the value of the
NEPD is to zero, the greater the similarity between the images
to be registered. Depending on the NEPD value for the frame,
different registration strategies are applied, and different
search ranges are selected. If it is less than a threshold (77),
which is set to 0.5 in the experiments, the registration result
is not very far from the best values of the transformation
parameters. In this case, the registration method based on
the SCV similarity measure [27] is applied for a small
range of values for in-plane and out-of-plane transformation
parameters. The search ranges of the in-plane parameters T,
Ty and R; were set to [—5,5] pixels,[—35,5] pixels and [—5,5]
degrees respectively. The number of values searched in each
range is 11 (the difference between each consecutive values
is 1) for parameters T and Ty, and 21 (the difference between
each consecutive values is 0.5) for R,. The search ranges for
the out-of-plane rotation parameters (Rx, Ry) firstly were set
to [—0.5,0.5] degree, where the number of values searched
in each range is 5 (the difference between each consecutive
values is 0.25), then in another search, the search ranges for
the out-of-plane rotation parameters (Rx, Ry) were set to
[—0.125,0.125] degree, where the number of values searched
in each range is 5 (the difference between each consecutive
values is 0.0625).

However, if the NEPD value is equal to or larger than T,
it is most likely that there is a large displacement between the
estimated and true positions of the implant component. In this
case, the fast registration method based on the EPD [13],
is run for a large range of in-plane parameter values. If the
NEPD value is smaller than 0.7, the search ranges of the in-
plane parameters T, Ty and R, were set to [—15,15] pixels,
[—15,15] pixels and [—15,15] degrees respectively, where the
number of values searched in each range is 121 (the difference
between each consecutive values is 0.25). Alternatively if the
NEPD value is larger than 0.7, the search ranges of the in-
plane parameters T, Ty and R, were set to [—15,15] pixels,
[—35,35] pixels and [—35,35] degrees respectively where the
number of values searched in the range for 7, is 121, and
in the ranges for Ty and R; is 281 (the difference between
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each consecutive values is 0.25). Then another search of in-
plane parameters is performed in which the 2D projection of
the implant is estimated using a transformed 3D model of the
implant. The 3D search ranges of the in-plane parameters 7T,
Ty and R, were set to [—4,4] pixels, [—4,4] pixels and [—6,6]
degrees respectively where the number of values searched
in each range of Ty, Ty is 9, and in the range for R; is
25 (the difference between each consecutive value for 7,
Ty is 1 and 0.5 for R, ). This step improves the results
because, when there is a large displacement between the
model’s positions, the appearance of the DRR generated by
translating a 2D DRR can be distorted when compared with
the real DRR generated by projecting the displaced 3D model
using a perspective projection. After this coarse registration,
the SCV method [27] is applied to the registered frame to
provide it with a fine registration output. The search ranges
of the in-plane parameters 7, Ty and R, were set to [—5,5]
pixels, [—5,5] pixels and [—5,5] degrees respectively. The
number of values searched in each range is 11 (the difference
between each consecutive values is 1) for the 7 and T,
and 21 (the difference between each consecutive values is
0.5) for R,. The search ranges for the out-of-plane rotation
parameters (Rx, Ry) firstly were set to [—2,2] degree, where
the number of values searched in each range is 17 (the
difference between each consecutive values is 0.25), then in
another search, the search ranges for the out-of-plane rotation
parameters (Rx, Ry) were set to [—0.125:0.125] degree,
where the number of values searched in each range is 5 (the
difference between each consecutive values is 0.0625).

Then, the NEPD value is again computed and compared
with 7. If it is still equal to or larger than T, registration
steps, similar to the previous ones, are applied to improve the
registration results. When the EPD method is used, the same
search ranges of the in-plane parameters 7, Ty and R, were
used. However, a larger search range for the out-of-plane
rotation parameters (Rx, Ry) of [—6,6] degrees was used.
The number of values searched in each range is 49 (the
difference between each consecutive values is.25). Because
the registration method and search ranges are chosen with
respect to the NEPD similarity value, the computational time
can be reduced.

C. ESTIMATIONS OF 3D TRANSFORMATION PARAMETERS
After the initial registration, six 3D rigid-body transformation
parameters are estimated for the remaining frames using the
proposed method and, if they need improvement, further fine-
tuned. In this step, an iterative loop is applied to estimate the
3D transformation parameters for the frames located between
the previously registered frames. Interpolation and curve
fitting estimation methods were evaluated for this part of the
algorithm. At the end of each iteration, 3D position parame-
ters are estimated using curves updated from the information
of the new registered frames. They show estimations of the
change patterns of different transformation parameters which
are improved using the new registration results for the frames
registered in the current loop. Therefore, in each iteration,
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the 3D estimated positions of the subsequent frames to be
registered are improved as the number of available registered
ones is increased and the curves become more reliable. The
results obtained from applying the proposed method using
curve fitting and interpolation approaches on the same data
are presented in section III. As the estimation technique
based on interpolation provided better results compared with
the method based on curve-fitting, it was adopted in the
proposed method. Furthermore, in addition to the curves of
the six transformation parameters, to assess the estimated
registration results for the new frames, an NEPD value curve
for the previous transformed registered frames is calculated
and updated after each iteration. It uses measurements of
the NEPD values which compute the similarity between the
DRRs of the transformed 3D models and the fluoroscopy
frames which are registered. Then, when estimating the
transformation parameters for the new frames, the six curves
are used. These estimations are evaluated by measuring the
NEPD for the transformation estimations and comparing it
with the estimated NEPD value for that frame using the
NEPD value curve. If the computed NEPD value is less than
the estimated one plus a threshold (which is set to 0.1 in the
experiments), the evaluation result is considered satisfactory
and the estimated result is assumed to be a good match
for that frame. Otherwise, the frame is registered again and
the parameters improved, as explained in sub-section II-D.
Consequently, only a small number of frames are required
to be registered as the registration results estimated for the
remaining ones satisfy the NEPD requirement and do not
require registration. Therefore, not only is this method very
fast for multi-frame registration but it also provides smoother
and more natural movement results which can easily be
noticed when the output video of a moving 3D joint model
is viewed.

1) TRANSFORMATION ESTIMATIONS USING CURVE FITTING

When several view points and data are available, curve fitting
is one method which can be used to fit surfaces and curves
to the data, and provide estimates of the points which are not
available. Different functions can be used to determine which
is the best fit for the data. Goodness-of-fit statistics, such as
the sum of squared error (SSE), r-square, adjusted r-square
and root mean squared error (RMSE), can be used to assess
the quality of the curve-fitting stage. In the proposed method,
the data from the initial registration step explained in sub-
section II-B is taken as the input data for the curve-fitting
procedure and according to the experiments conducted on the
data, a sine function with a degree of 8 was chosen as the
curve-fitting function.

2) TRANSFORMATION ESTIMATION USING INTERPOLATION
Spline interpolation usually produces a smaller error than
polynomial interpolation [29]. Also, it can avoid the problem
of Runge’s phenomenon and oscillation which may occur
when using high-degree polynomial interpolation. In the
proposed method, cubic spline interpolation was used,
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FIGURE 7. An example of translation values in the x direction (7x)
computed for a sequence of fluoroscopy frames to be registered with its
relevant femoral component’s model by the proposed methods based on
interpolation, curve fitting and the SCV method.

in which polynomials of degree 3 are used to estimate the
3D transformation parameters. The advantage of using an
interpolation method rather than a curve-fitting approach
is that, for each specific sequence and its transformation
parameters, and for each multi-frame video of different
patients, it can enable a more suitable estimated smooth
curve to be drawn which is not limited to a specific function
and pattern. An example of using interpolation and curve
fitting in the proposed method is shown in Figure 7. The
computed translation parameter values (7, ) when using curve
fitting and interpolation approaches are shown in red and blue
respectively. These estimated values are compared with the
results from the SCV method which is shown in green. As can
be seen in Figure 7, the curve related to the proposed method
using interpolation is more similar to the actual registration
results from the SCV registration method.

D. IMPROVEMENTS IN REGISTRATION

As mentioned in section II-C, if evaluation of the registration
result of a frame is not satisfactory, the frame should be reg-
istered and the parameters should be improved. To improve
the registration result, in an iterative loop, the six estimated
curves of the transformation parameters are updated with the
values of the NEPD similarity measure values computed for
the new registered frames used to update the curve of NEPD
values. In each iteration, the transformation parameters are
estimated from the six transformation curves and an NEPD
similarity value is computed for that frame. If this measure is
less than a threshold (1.1 times the estimated NEPD value),
the transformation parameters are taken as the registration
output for that frame. Otherwise, the in-plane parameters
are fine-tuned and a small search range is used to register
the frame using the method based on the EPD similarity
measure, and a steepest descent optimization algorithm [13].
The search ranges of the in-plane parameters Tx, Ty and
Rz were set to [—2,2] pixels, [—2,2] pixels and [—2,2]
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degrees respectively. The search ranges for the out-of-plane
rotation parameters (Rx, Ry) were set to [—2,2] degrees. The
number of values searched in the ranges is 17 (the difference
between each consecutive values is 0.25). Again, the NEPD
value is checked and compared with the NEPD threshold.
If it is less than a threshold distance from the estimated
curve of the NEPD values, the transformation parameters are
considered the registration output for that frame. Otherwise,
in an iterative loop, the out-of-plane parameters are fine-
tuned and the in-plane parameters are also optimized using
the SCV method and a standard Gauss-Newton optimization
method [27]. The search ranges of the in-plane parameters
Tx, Ty and Rz were set to [—2,2] pixels, [—2,2] pixels and
[—2,2] degrees respectively. The number of values searched
in each range is 17 (the difference between each consecutive
values is 0.25). The search ranges for the out-of-plane rotation
parameters (Rx, Ry) firstly were set to [—0.5,0.5] degrees,
where the number of values searched in each range is 5 (the
difference between each consecutive values is 0.25), then in
another search, the search ranges for the out-of-plane rotation
parameters (Rx, Ry) were set to [—0.125,0.125] degrees,
where the number of values searched in each range is 5 (the
difference between each consecutive values is 0.0625). This
registration is stopped when the NEPD similarity measure for
the transformed registered frame satisfies the condition.

E. IMPROVEMENTS IN REGISTRATION OF KNEE JOINT
COMPONENTS

During the development of the proposed method, when
the initial registrations were performed on the femoral and
tibial components of different patients, it was found that
those of the latter were much more challenging. One reason
for this was the similarity between the intensity values of
the tibial component and its neighbourhood as shown in
the frame in Figure 3(a). As mentioned in sub-section II-
A, one of the challenges of registering implants is the
existence of similar intensity values in their neighbourhood.
In some fluoroscopy images, it can be seen that the borders
between the implants and their neighbourhoods are not easily
distinguishable as they can be blurry in these areas and
their intensity values can be very similar. In this case, their
neighbourhood may be considered to be part of the implants
when the related frame is segmented. Consequently, as any
segmentation method is not capable of segmenting the frames
well, the registration results may be affected and may not
be very accurate. Therefore, different positions other than
the best one may be predicted for the 3D models. This
issue can be seen in the tibial components which have
higher intensity values than the femoral components. In the
proposed method, an adaptive segmentation method is used
to address this issue to some extent. However, as some
fluoroscopy frames did not exhibit high contrast and were
blurry, it could not exactly differentiate between the implants
and their neighbourhoods in all the frames of all the patients.
Consequently, a combination of feature and intensity-based
registration methods was used to decrease the effects of
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the neighbourhood area with similar intensity values as
shown in Figure 3. Therefore, when the segmentation of
fluoroscopy frames is not perfect in the registration method
based on NEPD, as it may cause decreasing accuracy,
using the intensity registration method helps to compensate
this by computing some intensity features of the images
to be registered. The second reason for the challenging
nature of registering tibial components is that those used are
symmetric and their right and left views similar. However,
a femoral component can be considered a semi-symmetric
object because its top part has different left and right views.
The robust optimisation technique used by the proposed
method can register the femoral components, and find the
correct global minima/maxima. In some previous research
studies [14] registration experiments were performed for only
the femoral components and not the tibial ones, with exam-
ples of these presented in Figure 8. This symmetric nature of
the tibial components may cause a mis-registration because
there is more than one registration answer. One answer is
correct, while another shows the model as a mirror image
of the correct 3D position. Because of the symmetry of the
transformed model, when it is in the correct and symmetric
positions, its 2D projection silhouettes are identical. The
main difference between these two computed positions of
the 3D object is in their R, and Ry values while the value
of the similarity measure computed for these projections
can be quite similar. Therefore, in the optimisation process,
any of these transformation parameters could be taken as
a global minima or maxima and can be considered the
registration answer. To address this issue, at the time of the
initial registration of the tibial components, the registration
information related to the femoral ones obtained from the
same frames was used. For the tibial components for which
the values of the transformation parameter Ry or Ry were
close to O degrees, 180 or —180 degrees, respectively,
the following steps were performed. First, the area near the
initial transformation positions, and that near the transfor-
mation parameters with the same magnitudes but opposite
signs for Ry and Ry were searched individually to find the
best registration transformation parameters in each of these
spaces. Then, the relational rotation kinematics parameters,
internal-external rotation and abduction-adduction, for both
registration results were computed. If the difference between
them, for each scenario, was larger than a threshold (1 in the
experiments), the position of the component that provided the
smallest rotational parameters was taken as the answer for
registering the tibial component.

Ill. EXPERIMENTS AND DISCUSSIONS

Several experiments were performed to evaluate the per-
formance of the proposed multi-frame registration method
using Matlab R2019a on a computer with an Intel(R)
Core(TM) i7- 4790 CPU @ 3.60GHZ, with 16 GB of
installed memory (RAM) and a 64-bit operating system.
Data was provided by the Canberra Hospital of the knee
joints of 18 patients two years after they received TKA
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FIGURE 8. (a) and (b) show a femoral component from two different
views. A tibial component from two different views is displayed
in (c) and (d).

surgeries. The data for each patient includes a 2D fluoroscopy
video (which contains approximately 300 fluoroscopy
X-ray frames) and the 3D models of the femoral and
tibial components. The frames were captured at 30Hz with
1024 x 1024-pixel spatial dimensions and 12bits/pixel
using single-plane, curved-panel fluoroscopy (AXIOM-
Artis, Siemens). Regarding the threshadapt function used
in the proposed method, at each pixel a local threshold is
computed by the Guassian weighted mean in each pixels’
neighbourhood of 31. In this function, the sensitivity was
set to 0.4 and the foreground is considered to be darker than
the background. This setting is the same for all patients and
fluoroscopy frames. However, for each frame, this function
provides a different matrix showing specific thresholds for
each pixel to be used in the binarization process. One of the
main challenges of evaluating the proposed method when
applied to real clinical data was that, as there is not an exact
ground truth for comparison, computing its accuracy was
not possible. Therefore, it was compared with an accurate
registration method [27] based on the SCV similarity
measure which is the best existing and relevant registration
method. As explained in [27], in vitro kinematics produced
by the SCV method and the ’gold standard” RSA method are
very similar. Therefore, as we had access to the frame-by-
frame registration method based on SCV, the results from
the SCV method were assumed to be the best registration
answers, and we compared our proposed method to this
approach. To register a fluoroscopy sequence of frames for
a patient’s knee joint, firstly, the femoral components were
registered by the proposed methods followed by the tibial
components. After registering all the frames for each patient,
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FIGURE 9. (a) A fluoroscopy frame with an occlusion issue. (b) and (c) Femoral and tibial models related to the actual
components implanted in the patient’s bone using the proposed method based on interpolation, which registered

well with the fluoroscopy frame in (a).
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FIGURE 10. Kinematic parameters of a knee joint [30].

the relational kinematic parameters for the knee joint were
computed. Similar intensity values of the implants and their
neighbourhood, as well as occlusions and low object-to-
background contrast, can be seen in a number of these
fluoroscopy frames. An example of the registration results
for a frame with an occlusion issue is shown in Figure 9 in
which it can be seen that when using the proposed method,
the femoral and tibial models related to the actual components
implanted in the patient’s bone are registered well with the
fluoroscopy frame.

A. INVESTIGATION OF RELATIONAL TRANSLATION AND
ROTATION PARAMETERS

The three relational translation kinematic parameters,
medial-lateral shift, anterior-posterior draw and distraction-
compression, as well as the three relational rotation
parameters, flexion-extension, internal-external rotation and
abduction-adduction are the kinematic parameters most
commonly used to describe knee joint movements and are
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TABLE 1. The mean squared differences (MSDs) and standard
deviations (SDs) of the proposed methods for relational kinematics
parameters.

. . . Proposed Proposed
Relational kinematic methol()i based metholc)l based
parameters on Curve fitting on Interpolation
Flexion-Extension (mm) 0.39 +/- 0.41 0.22 +/- 0.28
Internal-External (mm) 0.44 +/- 0.74 0.40 +/- 0.73
Abduction-Adduction (mm) 0.09 +/- 0.16 0.05 +/- 0.09
Medial-Lateral (°) 0.41 +/-0.53 0.24 +/- 0.35
Anterior-Posterior (°) 0.31 +/-0.33 0.22 +/- 0.31
Distraction-Compression (°) 0.03 +/- 0.06 0.02 +/- 0.04

usually analysed to investigate joint kinematics [31]. These
parameters are shown in Figure 10. In order to examine
the performances of the proposed methods, we computed
and compared these six parameter values for the frame-
by-frame method based on the SCV and proposed multi-
frame methods. In the experiments, the measured kinematic
parameters for the sequence of fluoroscopy frames related
to 18 patients were investigated. The registration results
and their relevant kinematic parameters for the fluoroscopy
frames were provided to us by the Trauma and Orthopaedic
Research Unit of the Canberra Hospital which used the
frame-by-frame registration method based on the SCV [27].
Then, experiments were performed by applying the proposed
multi-frame registration methods based on curve fitting
and interpolation. To evaluate them, firstly, the differences
between the kinematics parameters which were computed by
the SCV and proposed methods when using curve fitting and
interpolation are shown in Figures 11 and 12 respectively.
As can be seen, the kinematics results for both the proposed
methods were similar to the registration results from the SCV
method as the medians of the differences are close to zero
for most patients. For the method based on curve fitting,
the mean of the absolute median of the differences of flexion-
extension, internal-external, abduction-adduction, medial-
lateral, anterior-posterior and distraction-compression were
0.4136, 0.1867, 0.1108, 0.3185, 0.3672, 0.0694 respectively.
However, results of the proposed method based on interpo-
lation, which were 0.2506, 0.1399, 0.0800, 0.1862, 0.2139,
0.0531 respectively, were much better than those of the
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FIGURE 11. (a), (c) and (e) show box plots of the differences in relational rotation kinematic parameters (flexion-extension,
internal-external rotation and abduction-adduction) per frame per patient obtained by the proposed method when using
curve-fitting. (b), (d) and (f) show box plots of the differences in the same kinematic parameters per frame per patient obtained

by the proposed method when using interpolation.

proposed method based on curve fitting. The box plots of
the differences in the relational kinematics parameters of
the proposed method based on interpolation show that it
could provide results that were almost identical to the SCV
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registration method. For some patients like patient 5 and
13, the range of the values of relational parameters for
outliers are larger compared to that of the other patients. After
investigation of the results for these patients, and comparison
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FIGURE 12. (a), (c) and (e) show box plots of the differences in relational translation kinematic parameters
(medial-lateral shift, anterior-posterior draw and distraction-compression) per frame per patient obtained from
the proposed method when using curve fitting. (b), (d) and (f) show box plots of the differences in the same
parameters per frame per patient obtained from the proposed method when using interpolation.

with the other patients’ results, we understood that the main
reason is that a number of fluoroscopy frames related to
these patients were very blurry which makes the registration
more challenging. The mean squared differences (MSDs)
and standard deviations (SDs) of the differences between the
relational kinematics parameters measured by the proposed
and SCV methods are presented in Table 1. As can be
seen, those measured by the proposed method based on
interpolation were much closer to zero than those measured
by the proposed method based on curve fitting.
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B. INVESTIGATION ON TRANSFORMATION

PARAMETERS

The mean difference (MD), the standard deviation and the
mean of the absolute difference (MAD) between the regis-
tration transformation parameters computed by the proposed
methods and the method base on SCV are shown in table 2.
Directions are considered with respect to the fluoroscopy
coordinate system. The X and Y axes are considered to be
parallel to the imaging plane and the Z axis is perpendicular
to the imaging plane. The experimental results show that
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TABLE 2. Mean difference (MD), standard deviation (SD) and Mean absolute difference (MAD) of the proposed methods for geometric transformation

parameters.
The proposed method based on curve fitting The proposed method based on interpolation
Femur Tibia Femur Tibia
MD SD MAD MD SD MAD MD SD MAD MD SD MAD
T, (mm) | -0.0082 | 0.2096 | 0.1722 -0.0049 | 0.1833 0.1533 | -0.0062 0.1502 | 0.1127 -0.0046 0.1542 0.1148
Ty (mm) | -0.0749 | 0.2240 | 0.1919 | 0.0003 0.1999 0.1694 | -0.0336 0.1487 0.1138 -0.0130 | 0.1429 0.1056
T, (mm) | 0.4755 0.7444 | 0.6665 | 0.8687 0.8678 0.9846 | 0.1352 0.4465 0.3448 0.2842 0.7372 0.5738
R, (°) 0.0348 0.2661 | 0.2530 | 0.0210 0.2623 0.2519 | 0.0076 0.2024 | 0.1556 0.0087 0.2166 0.1657
Ry (°) -0.0115 | 0.2316 | 0.2092 | -0.0281 0.6177 0.4874 | -0.0094 0.1613 | 0.1274 -0.0357 0.5579 0.4240
R, (°) 0.0213 0.5497 | 0.4344 | -0.1018 0.3056 0.3551 | 0.0227 0.3418 0.2573 -0.0353 0.2733 0.2109
TABLE 3. Computation times required for registration (seconds) per R, Comparison
frame per bone. S 15
Method Computational time —f 0
Frame by frame registration . g 3
method using SCV 436 (s) g 9
Our proposed multi-frame I = b i I ey
registration method based on curve 74 (s) s 7
fitting
Our proposed multi-frame
registration method based on 67 (s) Frame Number
interpolation The frame-by-frame SCV method The proposed multi-frame EPD_SCV method

the difference between the computed 3D positions of the
implanted components using the proposed methods and the
method based on SCV are negligible. However, the computed
differences using the proposed method based on interpolation
is much lower when compared with those of the proposed
method based on curve fitting. For the proposed method
based on interpolation, the mean difference + standard devi-
ation for the femoral components were —0.0062 £0.1502,
—0.0336 £0.1487 and 0.1352 + 0.4465 for transformation
in the X direction (7), Y direction (7y) and Z direction (T%)
respectively. The rotations around the X axis (Rx), Y axis
(Ry) and Z axis (Rz) were 0.0076 £+ 0.2024, —0.0094 +
0.1613 and 0.0227 £ 0.3418 respectively. The corresponding
values for the tibial models were —0.0046 + 0.1542,
—0.0130 £+ 0.1429, 0.2842 + 0.7372, 0.0087 £ 0.2166,
—0.0357 £ 0.5579 and —0.0353 4 0.2733 respectively.
Notice that, the differences for the out-of-plane transforma-
tion parameters are slightly higher for the tibial component
when compared with the differences for the femoral compo-
nent. While the differences for the in-plane transformation
parameters are almost identical for both the femoral and tibial
components.

C. COMPUTATIONAL TIMES

When many images are to be registered, such as when
providing 3D knee joint kinematics, the total time required
can be considered an important aspect of the registration
algorithm as a low-speed registration method may not be
very applicable in practice. In order to register a 3D model
to a 2D fluoroscopy image, the steps in the registration
algorithm, such as determining the 3D transformation and
DRR projection, computing a similarity measure and running
an optimisation method are all computationally expensive
operations. Using our proposed method, the time required to

134236

FIGURE 13. An example of mis-registration produced by the proposed
method before the improvement for the tibial component of one patient.
The error is due to the symmetric nature of the tibial components
(rotations in the y direction for the proposed and SCV methods are
shown).

R, Comparison

Frame Number

The frame-by-frame SCV method The improved proposed multi-frame EPD_SCV method

FIGURE 14. The issue of mis-registration of tibial components was
rectified using the final stage of the proposed method.

perform these steps for every single frame to be registered
was omitted for the majority of frames which significantly
reduced the total computational times. In the experiments,
in addition to the frames which were registered in the
initial step of the proposed method, only about 32 frames
from 270 frames on average per patient were needed to be
registered in the registration improvement section. Table 3
shows the computational times (in seconds) required to
register each frame for each bone using our proposed methods
and the frame-by-frame ones using the SCV technique [27].
All the fluoroscopy frames of the deep knee-bend sequences
of 18 patients with their relevant knee implant models
(femoral and tibial) were registered and then the means
of the times which is required for the registration of each
frame per implant model was computed. In the registration
method based on SCV, all frames were registered, and the
time spent for each frame was almost the same. However,
in the proposed method, a large portion of the computational
time was linked to the registration of the frames in the
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FIGURE 15. (a) A fluoroscopy frame to be registered with the relevant tibial model and (b) and (c) incorrect and correct positions of the
model using the proposed method for tibial registration before and after the final improvement stage, respectively. (d) The difference

between the component views shown in (b) and (c).

initial step which was performed over a large search range.
This increased search range was important for providing
accurate results. The times required to register one frame
with a 3D model using the proposed methods based on
curve fitting and interpolation are shown in Table 3. These
times were compared with those required to register the
same images using the frame-by-frame SCV method and it is
clear that the proposed multi-frame registration method based
on interpolation took the lowest computational time. It was
significantly faster than the frame-by-frame SCV method
while both provided similar registration results. To explain
the computational times in detail, it should be mentioned that,
using the proposed method based on interpolation, the mean
of the times required for registration of each bone for the
first frames registered in the initial registration step was
approximately 624 (s) while an average of only 3.5 (s) was
taken to register each bone in each of the remaining frames.

D. DISCUSSION ON REGISTRATION OF KNEE JOINT
COMPONENTS

When the tibial components for a number of frames of
different patients were registered and the 3D positions of the
components compared with the registration results obtained
by the frame-by-frame SCV method, it was found that
some frames were registered incorrectly. To demonstrate
this, the rotation transformation parameter in the Y direction
obtained from our proposed method based on interpolation
and the results from the SCV method for one patient are
shown in Figure 13. It was clear that the Ry values for
some frames in a sequence for one patient computed by
the proposed registration and SCV methods had similar
magnitudes but opposite signs. As SCV registration method is
based on frame-by-frame registration, a small range of values
of Ry is searched around the initial positions for each frame
because in each frame the initial position comes from the
registration results from the previous frame. So the possibility
of large changes in Ry is low. In Figure 13 and 14, for the
SCV method, the values of Ry for all frames are shown,
however, for the proposed method, the values of Ry for only
the frames which are registered in the initial registration step
of the proposed method are shown. The values of Ry for the
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remaining frames are not shown as these frames have not
been registered yet in the initial step of the proposed method.
The error bars (gray vertical lines) show the standard error
of the data. Figure 14 shows a comparison of the rotation
transformation parameters in the Y direction computed by
our proposed final step and the SCV approach. It is clear
that our method solved the problem of mis-registration of
the tibial component. Figure 15 shows the incorrect and
correct positions of the tibial model overlaid on one of the
fluoroscopy frames after initial registration and after using the
proposed improvement method, respectively. While the 2D
projections of this model at these two positions were almost
identical, the correct position was computed by the improved
method.

IV. CONCLUSION

Analysing human joint kinematics plays an important role
in many clinical settings and 2D to 3D registration has
been shown to be an effective method for measuring these
parameters. However, to register multi-frame sequences,
such as a sequence of fluoroscopy frames, previously
proposed registration methods have mainly been used on
each image individually. As registering a large number
of sequential frames can be quite time-consuming, in this
paper, an estimation registration method for increasing a
registration algorithm’s speed while maintaining its accuracy
is proposed. It uses a coarse-to-fine approach and applies
the NEPD and SCV similarity measures together with a
gradient descent optimisation method to register a small
subset of the total number of frames in a sequence. Then,
registration transformation parameters are estimated for the
remaining frames and the results improved when required.
The experimental results show that the proposed method
can provide kinematic parameter values almost as reliable as
those of one of the most accurate registration methods while
much less time is required to calculate them. In future work,
it is intended to increase the speed of this registration method
by enhancing its performance in the initial registration step
using an improved optimisation method. Also, it is planned
to increase the accuracy of the proposed method using a
segmentation technique based on deep learning.
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