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ABSTRACT While dynamic channel bonding (DCB) is proven to boost the capacity of wireless local
area networks (WLANSs) by adapting the bandwidth on a per-frame basis, its performance is tied to the
primary and secondary channel selection. Unfortunately, in uncoordinated high-density deployments where
multiple basic service sets (BSSs) may potentially overlap, hand-crafted spectrum management techniques
perform poorly given the complex hidden/exposed nodes interactions. To cope with such challenging Wi-Fi
environments, in this paper, we first identify machine learning (ML) approaches applicable to the problem at
hand and justify why model-free RL suits it the most. We then design a complete RL framework and call into
question whether the use of complex RL algorithms helps the quest for rapid learning in realistic scenarios.
Through extensive simulations, we derive that stateless RL in the form of lightweight multi-armed-bandits
(MABS) is an efficient solution for rapid adaptation avoiding the definition of broad and/or meaningless
states. In contrast to most current trends, we envision lightweight MABs as an appropriate alternative to
the cumbersome and slowly convergent methods such as Q-learning, and especially, deep reinforcement
learning.

INDEX TERMS Channel bonding, spectrum allocation, multi-agent, reinforcement learning, multi-armed

bandit.

I. INTRODUCTION

State-of-the-art wireless applications like augmented real-
ity, virtual reality, or 8K video streaming are urging next-
generation wireless local area networks (WLANSs) to support
ever-increasing demands on performance. Among the differ-
ent approaches to enhance spectrum efficiency in WLANS,
channel bonding was introduced in 802.11n-2009 [2]
for bonding up to 40 MHz and further extended in
802.11ac/ax [3], [4] and 802.11be [5] to bond up to 160 and
320 MHz, respectively, in the 5-GHz band.

Up to this date, the standards allow static and dynamic
channel bonding (DCB). While the former is detrimental for
high-density WLANSs since only bonded transmissions are
permitted, the latter adapts on a per-frame basis, so it can

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiming Tang

133472

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

easily switch, e.g., from 160 MHz to 20 MHz from one frame
to the next [6]. Accordingly, in this work, we study DCB as a
preeminent technique of spectrum management in WLANSs.
Figure 1 illustrates the temporal evolution of single-channel
and DCB.

In brief, WLAN spectrum management entails channel
allocation and channel bonding. The main objective of chan-
nel allocation is to avoid interference between potentially
overlapping nodes, and the main objective of channel bonding
is to maximize the network capacity. Unfortunately, it is
unavoidable per definition to transmit in higher bandwidths
while reducing the interference with neighboring nodes:
the objectives are, in principle, in contradiction. However,
the trade-off between lowering interference and maximiz-
ing capacity has aspects that we can leverage. For instance,
BSS’s are not always saturated, which means that two over-
lapping BSS’s may share a channel and support moderate
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(a) Single-channel.

(b) Dynamic channel bonding (DCB).

FIGURE 1. Temporal evolution of (a) single-channel, and (b) DCB in IEEE 802.11ax channelization. While the duration of control packets is kept
the same, the data duration is reduced by increasing the transmission bandwidth.

traffic loads. At the same time, by increasing the bandwidth,
we decrease the power per unit-Hertz, reducing the absolute
interference per channel as well, which may ultimately favor
coping with the contention of large bandwidth transmissions.

Implementing efficient spectrum allocation and channel
bonding is not straightforward because Wi-Fi networks are
often complex systems where WLAN performance depends
on a plethora of parameters. Consequently, there is a clear
trend in the wireless community towards machine learning
(ML), disregarding traditional spectrum management proto-
cols based on pre-fixed rules or heuristics. heuristics [7]-[9].

In this regard, we addressed in [1] why supervised and
unsupervised learning are not as suitable for the problem
given the need for fast adaptation in uncertain environments,
where it is not conceivable to model the nature behind the
observed phenomena. In particular, we envisioned stateless
reinforcement learning (RL) as the only ML candidate to
achieve the intended purpose, which is not aimed to gen-
eralize to unknown deployments (i.e., learn the model) but
to adapt to particular, most of the times unique, scenarios
where neighboring BSSs may also change their spectrum
management setups.

To that aim, this paper focuses on multi-armed ban-
dits (MABs), a stateless RL formulation that enables faster
on-line adaptation than temporal difference algorithms like
Q-learning, and especially deep reinforcement learning
(DRL). Other papers in the literature leverage RL techniques
for spectrum management in wireless networks. However,
most of the works rely on a variety of hard assumptions
that can result in inaccurate or even misleading conclusions.
In contrast, we explore the performance of RL in DCB
WLANS by capturing both physical and medium access con-
trol (MAC) dynamics and stochastic buffering. By means of
simulations through the Komondor wireless network simu-
lator [10], this is the first work assessing the performance of
RL algorithms in potentially overlapping WLANSs with actual
IEEE 802.11ac/ax channel bonding capabilities.

We propose a complete RL framework for the spec-
trum allocation problem in DCB WLANs and evaluate
different RL algorithms in two different settings: a self-
contained toy scenario with known optimal configurations [1]
and generalized random deployments to benchmark the
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algorithms under different node densities and traffic load
variations. Results show that the simplest MABs (especially
exploration-first) outperform the rest both in terms of learning
speed and mid/long-term performance. These results sug-
gest that deploying lightweight MAB algorithms in domestic
access points (APs) would boost the performance through fast
adaptation to the environment while raising fairness.
We highlight the following contributions:

1) We extend the discussion in [1] on why supervised and
unsupervised learning are not suitable for the problem
and propose stateless RL as the best ML candidate.

2) We propose a general RL framework for spectrum man-
agement in uncoordinated DCB WLANSs by depicting
the actions, attributes, states, and reward functions.

3) We depict a complete MAB taxonomy and its applica-
tion to the spectrum management problem, including
reward, contextual, and temporal categorizations.

4) We study a holistic toy scenario dataset gathered by
simulating all the possible system’s spectrum man-
agement configurations to benchmark different RL
approaches against the optimal configuration.

5) We show the effectiveness in terms of rapid learning of
stateless RL in the form of lightweight MABs against
other RL algorithms, even in high-density deployments
with constant and varying traffic loads.

6) Finally, we address the tradeoff between fast adaptation
and potential long-term performance resulting from
reducing the action space.

Il. A CHANGE OF PARADIGM TOWARDS
REINFORCEMENT LEARNING

A. HEURISTICS LIMITATIONS

Multiple custom channel allocation and channel bonding
solutions in wireless networks rely on statistics such as
channel occupancy, packet reception rate, or color conflicts
(e.g., [11]-[14]). We call these prefixed rule-based solutions
as heuristic solutions in front of machine learning solutions,
which we discuss later. Heuristics are low-complex solu-
tions that work well in steady scenarios. However, in highly
dynamic scenarios, their performance is severely undermined
since heuristics are tied to the validity of recent observations,

133473



IEEE Access

S. Barrachina-Muiioz et al.: Multi-Armed Bandits for Spectrum Allocation in Multi-Agent Channel Bonding WLANs

high thr.

iteration 1 iteration 2 iteration 3

A1 2 3 4 1123 4 1

#

B 1]2]3]aff1]2]3]a][1]2]3]4]

2,34

low thr.

FIGURE 2. A toy example where throughput maximizing heuristics fall
into detrimental loops. The primary channel in each iteration is
highlighted with bold text for both BSSs.

and such depend on the speed at which the environment
changes. Moreover, they do not consider the performance of
previous actions, so they do not learn.

To illustrate the pitfalls of heuristic approaches in
DCB WLANSs, let us consider the toy scenario in
Figure 2, with two potentially overlapping BSSs with DCB
capabilities, A and B, in a system of x4 20-MHz channels
(so-called basic channels) following the IEEE 802.11ac/ax
channelization. Assume also that both BSSs continuously
require 40 MHz to satisfy their traffic load demands. There-
fore, by allocating channels 1 and 2 to one BSS, and
channels 3 and 4 to the other, the problem would be solved.
However, in decentralized multi-agent settings, it is up to the
BSS:s to find satisfactory configurations.

A possible heuristic for this particular case could be to rely
on the primary channel selection that is expected to provide
the highest throughput given the occupancy of both the tar-
get primary and the neighboring secondary channels [15].
In this case, an AP periodically measures all the channels’
occupancy. After each monitoring period, the AP switches to
another primary if not satisfied with the current performance.
For instance, BSS A, starting with primary channel 2 would
switch to channel 3 or 4 with the same probability given
that both were free during period 1, so they are likely to
be good candidates to increase the throughput by bonding
them. However, since BSS B also determines that switching
from primary channel 1 to 3 would be beneficial, a loop is
started. This occurs because observations are outdated from
one period to the next, and action selection is never based on
the past performance of the actions. It follows that heuristics
get even less effective in larger multi-agent settings.

Learning from past experiences represents then a very
strong alternative to pre-fixed rules. The capability of ML to
go beyond rule of thumb strategies by automatically learning
(and adapting) to (un)seen situations can cope with heteroge-
neous wireless network scenarios [7], [8].
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B. TOWARDS RL SPECTRUM MANAGEMENT

Practically, in RL, an agent tries to learn how to behave
in an environment by performing actions and observing
the collected rewards. At a given iteration f, action a
(e.g., switch primary channel) results in a reward obser-
vation (e.g., throughput) drawn from a reward distribu-
tion r¢(a) ~ 6,. In the context of WLANSs, an agent could
be installed into an AP that tries to maximize a cer-
tain performance metric by testing different configurations
and adapting to the collected reward observations through
trial-and-error.

In particular, since system interactions in problems such
as decentralized spectrum management are critically com-
plex and generated by multiple actors (i.e., wireless devices),
it is often preferable to rely on model-free approaches. That
is, after getting rid of strong assumptions like Markovian
channels, it would not make sense to have an agent trying
to infer what is the model behind the interactions perceived
at the varying power levels detected at each of the channels.
Moreover, even in the case where such interference model
was stationary (and let us also assume simple enough to be
accurately captured through a model), in the very moment
that the agent-empowered AP initiated a transmission, the
contention and interference generated to surrounding nodes
could completely change the learned model. Thus, one can
easily derive that having a giant model considering all the
possibilities or a specific model per each configuration is
merely unpractical.

C. WHY RL? ML IN DYNAMIC ENVIRONMENTS

Even though observations can be misleading in RL as well,
agents rely on the learning performed through historical
state/action-reward pairs, generating action selections poli-
cies beyond current observations, thus outperforming heuris-
tics in dynamic scenarios. There are, however, two other main
ML alternatives to RL: supervised learning (SL) and unsuper-
vised learning (UL). We next justify why such categories are
unpractical for this type of problem.

Supervised Learning (SL): Is the ML task of learning a
function that maps an input x to an output y based on example
input-output pairs (x;, ;). It infers a function from labeled
training data consisting of a set of training examples. An SL
algorithm then analyzes the training data and produces an
inferred function, which maps new examples (i.e., general-
izing). One way to use SL in our problem would be to try to
learn the general and true WLAN behavior, function f(x) =
y, through an estimate /g (x) = y, where hg(x) is the learned
function. Then, once the hypothesis %g(x) is learned —i.e.,
the error is sufficiently low with respect to f(x) — one could
try to infer the input (or configuration) x* that maximizes
the performance y*, hoping that x* would also result in the
actual y*.

The main three drawbacks of SL for our problem are i) the
model design, which should consist of a vast number of
attributes (e.g., nodes’ locations, configuration parameters,
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performance metrics, etc), ii) the need for a lot of data to fit
such a complex model, leading to the need for unmanageable
training,' and iii) the target of SL is to generalize to unknown
scenarios, which is not the focus of our problem because we
want the agent to adapt to potentially infinite different worlds
from scratch.

The only way to overcome such a task with SL would be
to measure the performance of plentiful settings in a lot of
scenarios (primarily offline), then try to infer some general
behavior from the true and unknown function y = f(x),
where input x is the representation of the action setting and
the environment around the agent, and finally predicting the
performance y = hy(x’) for unlabeled (unknown) input x’.
The significant issues are that the input domain of x is multi-
dimensional (with even categorical dimensions) and tends to
infinity. The function f representing WLANS’ behavior is so
complex that learning an accurate estimate /g in reasonable
time is simply inconceivable. Moreover, there is another issue
when trying to replicate Wi-Fi through (deep) supervised
learning: the problem of estimating a function is different
from the problem of maximizing an unknown function. That
is, even though we could get a good estimator hg(x) of the
true function, the optimal of such estimated function may
be completely different than the frue optimal of f. In other
words, our oracle may work well for most of the inputs x but
fail for the input x* maximizing f(x).

In unsupervised learning (UL), there are only inputs x and
no corresponding output variables. That is, there is no y. UL’s
goal is to model the underlying structure or distribution in the
observed data to learn more about it. It is called unsupervised
because unlike SL there are no correct answers since samples
are unlabeled. Algorithms are left on their own to discover
potentially meaningful structures in the data. UL problems
can be further grouped into clustering problems (to discover
the inherent groupings in the data) and association (to dis-
cover rules that describe large portions of the data).

As in SL, the underlying structure of the observed data
in the problem at issue is expected to be so complex that
any attempt to model it through UL will be most likely
fruitless. Hence, we believe that following an RL black-box
approach is preferable: try to rapidly adapt from scratch to
whatever the system’s observations are, no matter its intrinsic
nature.

lIl. RELATED WORK

There are many valuable works in the literature dealing
with spectrum allocation and channel bonding in wireless
networks (e.g., [11]-[14]). However, only a few of them
treat the joint problem altogether in the context of WLANS,
from which we highlight the following ones. A distributed
spectrum assignment for home WLANs without control

IWe state that generating a dataset rich enough to generalize the spectrum
management problem in DCB WLANSs is unfeasible since data samples
should have large multi-dimensional attributes to be meaningful. So, for
instance, simply by moving one STA one meter away, a new scenario (or
data sample) would be generated.
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traffic is proposed in [16]. Continuous time Markov networks
are employed in [17] to study a centralized approach for
maximizing the network fairness. In addition, a heuristic-
based algorithm for primary channel selection based on the
bonding direction likelihoods was recently presented in [18].
However, such likelihoods are estimated by assuming a
known number of users in each channel, which is normally
not feasible in real deployments. It is worth noticing that the
aforementioned works consider fully-backlogged traffic, thus
missing insights on more realistic patterns with different traf-
fic needs. Conversely, an uncertain traffic channel allocation
approach was presented in [19]. Still, a centralized controller
in the back-end is required. Recently, authors in [15] formu-
lated a decentralized algorithm, adaptive in the sense that a
new primary channel is only adopted when the WLAN perfor-
mance is below a heuristic based on a throughput satisfaction
threshold.

While the aforementioned algorithms show good perfor-
mance under the studied scenarios, the complex dynamics
of multi-agent channel bonding WLANs make it necessary
to rely on some sort of learning in order to overcome hand-
crafted alternatives. In this regard, different ML solutions for
the spectrum management problem, especially in the form
of RL, have been conducted in the last years. However,
there are certain assumptions these papers have in com-
mon that hinder the accurate evaluation of ML solutions.
For instance, most papers consider synchronous time slots
(e.g., [20]-[25]), which is a strong assumption that does not
hold at all in carrier sense multiple access with collision
avoidance (CSMA/CA) WLANSs. Also, some papers define
a binary reward, where actions are simply good or bad
(e.g., [20], [24], [26]). This, while easing the RL frame-
work, hinders rewards taking into account continuous-valued
performance metrics like throughput or delay. Further, most
of the papers consider simple traffic patterns or even fully
backlogged regimes (e.g., [27]-[29]), thus overlooking the
effects of dynamic traffic loads. Also related to dynamism,
most papers do not consider packet aggregation, which is a
critical feature affecting the throughput and delay. To ease
their analysis, some papers even consider conflict graphs
rather than actual carrier sense areas (e.g., [21], [27]), thus
disregarding spatial distribution effects. Last, but not least,
a majority of the papers provide custom, ad-hoc RL solu-
tions where the design of states, actions, and rewards is
not justified, but simply formulated. This leaves short room
for extrapolating such solutions to slightly different prob-
lems, and it even makes it harder to reproduce the presented
results.

In this paper, we methodically introduce an RL framework
for the spectrum allocation problem in DCB WLANS by justi-
fying each of its components (e.g., actions). Besides, we study
complex Wi-Fi scenarios, where the physical and MAC layers
are not abstracted, but simulated with the Komondor wireless
simulator [10], from which we derive conclusions on the per-
formance of RL in WLANS otherwise not possible. We do so
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in a reproducible way, by providing our code and algorithms
will full detail.?

IV. MAPPING THE PROBLEM TO RL

This section depicts the modifiable attributes, actions, states,
and rewards composing the learning framework for the joint
problem of primary channel and maximum bandwidth allo-
cation in DCB BSSs. Notice that by defining the primary
channel and maximum bandwidth, we actually determine the
secondary channels since we follow the IEEE 802.11ac/ax
channelization.

A. SYSTEM MODEL

1) WLAN DEPLOYMENT AND AGENTS

We consider a static deployment of W potentially overlapping
BSSs # = {wi, w2, ..., ww}, each of them composed by
one AP and one or multiple STAs. The TMB path-loss model
is assumed [30] and spatially distributed scenarios are cap-
tured. Namely, we cover scenarios where the BSSs may not
all be inside the carrier sense range of each other. Therefore,
the typical phenomena of home Wi-Fi networks like flow
in the middle and hidden/exposed nodes are captured as
in [6], [15], [31].

2) CHANNELIZATION

We consider C 20-MHz channels (or basic channels),
e.g., C = 8 from channel 36 to 64 following the IEEE
802.11ac/ax standards. Accordingly, a transmitter may bond
up to C x20 MHz (e.g., 160 MHz if C = 8). Note that not any
bonding combination is permitted by the IEEE 802.11ac/ax
ammendments. For instance, 60 MHz transmissions (3 basic
channels) are not permitted [3], [4]. As for the channel access,
we assume all the BSSs to have DCB capabilities to bond up
to C channels on a per-frame basis [6]. In particular, DCB is
a standard-compliant channel bonding policy that adapts to
the idle secondary channels on a per-frame basis, selecting
the largest combination of basic channels available when the
backoff terminates. Nevertheless, as explained later in § IV-B,
the maximum number of channels to be aggregated is limited
by the maximum bandwidth attribute, b. So, for instance,
we can easily restrict a BSS to single-channel transmissions
by setting such an attribute to » = 1. The adaptive RTS/CTS
mechanism introduced in the IEEE 802.11ac standard [3] for
dynamic bandwidth is considered, meaning that the receiver
broadcasts the CTS only on the subset of secondary channels
that was found available at the destination.

3) TRAFFIC GENERATION
We consider downlink data traffic from the AP to one STA

at each data frame transmission. However, control packets in
the uplink (CTS and ACK/BACKSs) are also simulated. When

2All of the source code used in this paper is open, encouraging
sharing of algorithms between contributors and providing the ability
for people to improve on the work of others under the GNU Gen-
eral Public License v3.0. The code used in this work can be found at
https://github.com/sergiobarra/MARLforChannelBondingWLANs
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multiple STAs are associated to an AP, the latter selects the
destination STA uniformly at random. So, we take the perfor-
mance of the whole BSS by averaging over the performance
of its associated STAs. Data packets generated by the AP of a
BSS w follow a Poisson process with mean duration between
packets given by 1/¢,,, where £,, is the mean load in packets
per second of w [6], [15], [31]. In contrast to much of the
works in the literature, we consider that the mean traffic load
of every BSS may vary over time, thus introducing mid/long-
term dynamism into the problem.

B. ATTRIBUTES AND ACTIONS

While it is clear that the primary channel is critical to the
BSS performance since it is where the backoff procedure
is carried, the maximum bandwidth is of significant rele-
vance as well. Indeed, once the backoff expires, the chan-
nel bonding policy and maximum allowed bandwidth will
determine the basic channels to transmit in. For instance,
in the example in Figure 1b, if the BSS was allocated 40 MHz
(channels 1 and 2) rather than 80 MHz (channels 1 to 4),
DCB would bond the first 2 channels at the end of the second
backoff, rather than 4. Notice that in some scenarios it is
much appropriate to limit the maximum bandwidth to reduce
adverse effects like hidden/exposed nodes. Next, we motivate
why the set of possible maximum bandwidth values b has a
deep impact on the BSS performance. So, the more flexible
the allocation of b, i.e., the more values it can take, the higher
the potential performance.

1) THE ROLE OF THE MAXIMUM BANDWIDTH
To illustrate why not restricting the maximum bandwidth can
be counterproductive, let us consider a toy scenario facing a
potential hidden node situation. The BSS in Figure 3a consists
of BSSs A and B, each with one AP and one STA to serve.
BSS A is allocated 160 MHz, Cpo = {1, 2, ..., 8}, whereas
BSS B is allocated just 20 MHz, Cg = {3}. Figure 3b and
Figure 3c represent the feasible system states through contin-
uous Markov chains when restricting and not restricting A’s
bandwidth, respectively. Notice that STA A is close to AP
B, so STA A experiences disturbing interference from AP B.
Likewise, AP B is far enough from AP A to avoid contention
whenever AP A bonds channel 3 (e.g., when using 80 or
160 MHz). Beyond contention, there is a potential hidden
node issue for STA A: if the power of the signal of interest
(received from AP A) is not sufficiently high with respect to
the interference power (received from AP B) and the back-
ground noise, STA A would not be able to decode any packets
from AP A. In particular, assuming a constant transmission
power, STA A would need AP A to transmit in 20 or 40 MHz
at maximum to receive enough power of interest to decode the
packets. So, in this example, AP A should not transmit in 80
or 160 MHz whenever AP B is transmitting, even when AP
A encounters its full allocated spectrum free at the backoff
termination.

With this simple example, we corroborate that, while chan-
nel bonding is necessary to improve the satisfaction under
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FIGURE 3. The effect of the maximum bandwidth b. BSS B (always using single-channel) interferes with STA A, which perceives:

(b) negligible interference and (c) critical interference.

demanding traffic loads, not limiting the maximum band-
width may also raise drawbacks, and such limitation should
be adapted to each scenario based on the heterogeneity and
chaotic nature of Wi-Fi deployments.

2) ACTION SPACE

Given the relevance of the primary channel and the maximum
bandwidth, we consider below two configurable attributes
each agent-empowered BSS can modify during the learning
process:

e Primary Channel p,,: Primary channel where the back-
off procedure is executed, p € C,, where C,, is the
channel allocation of BSS w.

o Maximum Bandwidth b: Maximum bandwidth (in num-
ber of basic channels), » € B8 = {1,2,4,...,|Cyl}.
Recall that, with DCB, the transmitter can adapt to the
sensed spectrum on a per-frame basis. So, the bandwidth
limitation just sets an upper bound on the number of
basic channels to bond.

The size of the action space .27, of a particular BSS w is
then
O(#,) = O(Cy) x O(By), ey
where O(-) represents the number of elements or cardinality
of a set, and every action, or spectrum configuration, a =
(Pw, byw) € 4, is a pair of the primary channel p,, € C,, and
maximum bandwidth b,, € 8,, attributes. Should we consider
a central single agent managing W' < W BSS’s, the action
space increases exponentially to

W/
[T o x o). )

w=1

O(e) =

Definition 4.1 (Spectrum Configuration): The spectrum
configuration of a BSS w is defined as the pair primary
channel p,, and maximum bandwidth b,,.

If we assume that BSS’s have the same attribute spaces C
and B, Vw, then we clearly observe the exponential growth of

the whole action space O(«) = (O(C ) X O(ﬂ))
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C. STATUSES, OBSERVATIONS AND STATES

Before addressing what is a state, which its definition highly
depends on the RL framework in use, let us coin a new
concept called system status.

Definition 4.2 (System Status): The system status 77 is
the minimum information we need to describe the entire
WLAN in a given time instant ¢.

The system status .7 of a static WLAN deployment® at
time ¢ is given by three key parameters of each of the W’
agent-empowered BSS in the WLAN like if we were taking
a screenshot of the system: the primary channel p,, ;, the
maximum bandwidth b,, ;, and the quantized mean load ¢,, ;.
Formally, a status is defined by the set

JG =16 b1,6. €1,8)s oo, Pwr g, bwr s Ewr )Y ()

First, notice that we only consider the attributes of the
agent-empowered BSS’s since the rest are not allowed to
modify their configurations; thus, they do not convey any
extra information for the system status. For instance, let us
consider a deployment with just two BSS’s, A and B. Assume
A is agent-empowered, whereas B is not, so W' = 1 and
W = 2. The system information relies just on the configura-
tion of A since B will never change its own. So, the number of
system statuses is just the number of possible configurations
A can take.

Second, we rely on a quantization .Z of the mean traffic
load ¢ to discretize its continuous domain. Further, notice
that the agent cannot modify the load £ by any means since
it is application-dependent. Naturally, the performance of
a BSS depends not only on its traffic load and spectrum
configuration but also on the rest of BSS’s configurations and
loads.

Definition 4.3 (World): The world (or environment) of a
particular BSS w is defined as the combination of spectrum
configurations and loads of each of the rest BSS’s.

From the point of view of a particular BSS w, the com-
bination of current spectrum configurations and loads of
the rest BSS’s compose its world or environment, which is

3Static refers to the fixed locations of all the nodes in the BSS’s, including
APs and STAs.
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determined as

jw,t = {pw/,t, bw/,t’ Ew’,t|w/ 7é W}- (4)

Finally, the amount of possible statuses a certain WLAN
deployment may have is given by the possible values each of
the status parameters can take,

W/
o) = [ [ 0)0b)OL), &)

w=1

which raises again exponentially with the number of agents
and size of the attributes’ spaces. Assuming all the agent-
empowered BSS’s have the same capabilities,

’

w
0t) = (0POBIO®) . (©)

Generally, the agents cannot know the system status in a
real-time fashion. However, they could rely on partial and
delayed observations of it to then infer an szate through some
discretization function. Hence, a state is a mapping of the
observation a BSS makes of its world into a manageable
piece of information about such a world. However, since
observations are architecture-dependent — given they may
be limited to local sensing capabilities or, on the contrary,
be shared via a central controller — the states’ definition is
also strictly dependent on the RL model under consideration.

D. PROBLEM DEFINITION

In general terms, our goal is to improve the BSS’s perfor-
mance (e.g., in terms of throughput, delay, energy efficiency,
etc). The key then is to let the BSS’s find (learn) the best
actions (p, b), where best depends on the problem formulation
itself. For instance, we could assess a max-min approach to
maximize the throughput satisfaction experienced by the less
favored BSS. Another common aim in network management
is to boost the fairness of some performance metrics among
contending BSS’s in the BSS. This paper does not stick to
one problem formulation, but we instead evaluate different
performance metrics, including individual and aggregated
ones.

In any case, we must define the individual performance
metrics of each BSS to assess whether such metrics tend to
improve (i.e., the learning is working) or not. As a particular
use case, we focus on the throughput satisfaction &, simply
defined as the ratio of throughput I', ; to generated traffic
load ¢, ;,

LN ©)

So, &,: € [0, 1], Vw, t. The throughput satisfaction is a
commonly used parameter to indicate the ratio of packets
acknowledged to the number of packets generated by a BSS
in a given time window. Thus, a satisfaction value £ = 1
indicates that all the traffic has been successfully received at
the destination.
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Once the main performance metric has been defined,
we may formulate the reward function R, the cornerstone of
any RL algorithm,

R() =&. (3)

In this case, we assume the reward is just throughput-based,
but other performance metrics could be included in such
formulation. Regardless of the reward function R, we aim at
maximizing the cumulative reward as soon as possible,

T
G=Y n. )

=1
where T is the number of iterations we have to execute the
learning, and r; is the reward at iteration ¢. Let us emphasize
the complexity of the problem by noting that r; depends on
the reward definition R, on the action a, selected at ¢, and also
on the world at each iteration .%,, ;.

V. MULTI-ARMED BANDITS

Among model-free RL approaches, we highlight MABs,
Temporal Difference (TD) methods like Q-learning, and deep
reinforcement learning (DRL) methods like deep Q-learning
(DQN).* Fig. 4 depicts a schematized representation of each
of them in order of increasing complexity.

Different variations of these approaches have been applied
to the spectrum management problem in wireless networks.
However, as stated in [1], a key benefit of stateless RL for-
mulations like MABs is the absence of states, which greatly
simplifies design by relying only on action-reward pairs.
Accordingly, we propose to have a MAB instance in each
agent-empowered AP to adapt to the environment without
the need of states. The reason lies in the fact that meaningful
states are normally multidimensional and their effectiveness
depends heavily on the application and the type of scenario
under consideration. In the end, a state is a piece of infor-
mation representing the environment that is expected to help
the agent by fitting it into its policy. Then, if the state is
meaningless, or worst, misleading, it is preferable to not rely
on it and go for a stateless approach.

A. THE MAB PROBLEM

The multi-armed bandit problem is a classic RL problem that
exemplifies the exploration vs. exploitation dilemma, where
no knowledge of the reward probability distribution of each
action is assumed. The typical example to introduce the MAB
problem is the gambler who faces multiple slot machines,
each with different probability distributions over the money
he/she can get after pulling the slots. Naturally, the gambler
wants to get as much money as possible, thus achieving the
highest reward in the mid/long-term. As for what strategy to
follow, MAB formulations arise in different variations. For
instance, a naive approach would be to pull each machine slot

4We discard Monte Carlo methods since they require episodes to even-
tually terminate in order to work, which contrasts our vision of WLANSs in
continuous online adaptation in a so-called infinite episode.
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FIGURE 4. Learning storage in MABs, Q-learning, and Deep Q-learning.

a lot of times, so the gambler could guess the ‘“‘authentic”
reward probability of each slot according to the law of large
numbers, and then select always the best slot machine. How-
ever, such an approach has obvious pitfalls like determining
how many times are enough to discover the “true” reward
probability or wasting too many trials (or iterations) in a
priori lousy machines. Further, in environments where the
distribution of such rewards may change due to external
factors (as is the case in WLANS), it would not be viable to
get accurate estimates of the reward probability distributions.
Simply because from one iteration to the next, the underlying
reward distribution may be completely changed.

Formally, a MAB can be described as a tuple of the set of
actions and the reward function < <7, R >, where:

o There are K arms (slot machines in the previous example
or spectrum management configurations in this paper)
with hidden reward probabilities {01, .. ., Ok }. <7 is the
set of actions (or action space), each referring to the
interaction with one arm.

o At each time step (or iteration) ¢z, we take an action (or
arm) a and observe a reward r; resulting from perform-
ing such action.

o We refer to the value of an action a as the expected
reward, Q(a) Eg,[r|a], determined by the reward
distribution 6,,.

« Finally, the reward function R defines the reward values
obtained at any time step ¢, r; = R(a,). For instance,
R(a;) could be defined in the previous example as the
money earned in the last slot pull or as the throughput
experienced by a WLAN when using action a; during
the last iteration 7.

Notice the difference between R(a;) and Q(a,). While r, =
R(a;) is the actual reward observed when applying action a; in
iteration ¢ (e.g., throughput observed when playing a; at iter-
ation t), Q(ay) is the expected value of playing a, (e.g., mean
future throughput when playing a, regardless ¢). In other
words, R(a;) is a particular outcome of the reward distribution
0(a;), whereas Q(a;) is a representation (or statistic) of the
arm’s value (e.g., mean reward).

The goal is to maximize the cumulative reward G
over a finite number of iterations 7 (9). The simplest
action selection rule (or policy ) is to select one of the
actions with the highest estimated value, that is, one of
the greedy actions, m; = a; = arg max,c s Q;(a). However,
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greedy selection always exploits current knowledge to max-
imize the immediate reward, i.e., it does not sample the rest
of a priori inferior actions. So, it might be the case that the
previously selected action is sub-optimal in the long term.
There are more sophisticated selection rule alternatives like
e-greedy methods, which force exploration with some prob-
ability € to achieve better knowledge on the rewards of the
actions in the whole action space. We depict some of the most
relevant ones in §V-C.

B. MAB TAXONOMIES

MABS can be categorized according to three main concepts:
the type of reward, the use of contexts, and the temporal
horizon.

1) REWARD TAXONOMY

According to their reward distribution, there are two main
classes of MABs: stochastic and adversarial. The stochastic
MAB is the most common one, and it is completely deter-
mined by the distributions of rewards {61, ..., 0k} of the
actions in the action space. In particular, at iteration ¢, the
distribution of the reward observed by a learner that chooses
action @, € & is 6,, regardless of the past rewards and
actions. The rewards for each action are independent and
identically distributed (i.i.d). That is, every time an action
is chosen, the reward is sampled independently from this
distribution. Both for simplicity and for guaranteeing theo-
retical convergence in certain MAB algorithms, the reward
function is bounded, r, = R(a;) € [0, 1], Ya, t, so normal-
ized performance metrics (e.g., throughput satisfaction) are
normally used. The main limitation of stochastic MABs is
the difficulty of finding real-world problems that rely on
suitable distributions. Indeed, rewards can be non-stationary;
thus, the reward distribution probability for a given action
may change over time. Next, we present adversarial MABs,
a paradigmatic example of non-stationary rewards.

In adversarial MABs, learning is still possible in the
sense that the regret can be kept sub-linear. However, selec-
tion rules methods must be completely different from the
stochastic ones since adversarial rewards can be arbitrary
as if they are chosen by an “omniscient adversary”, so the
stochastic assumption on the rewards being generated from
a fixed distribution does not longer hold. In plain, there are
no probability distributions to learn whatsoever. Then, what
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can the agent do to face such an adversary? The key idea is to
introduce noise in the exploration to choose random actions
that the adversary could not expect.

So, what class of MAB suits better the joint spectrum
management problem? We anticipate that the stochastic one.
Even though the different actions’ reward distributions are
generally complex to estimate, no omniscient adversary tells
what the rewards will be at every iteration. Instead, we have
different actors (nodes) that behave according to a certain
configuration. Such configurations determine what the actors
will do, resulting in a stochastic setting. Nonetheless, even
though the problem is likely to be stochastic, it is so com-
plex that an adversarial approach may also be appropriate to
design a fruitful algorithm. Accordingly, we assess in further
sections the convenience of both stochastic and adversarial
MABs.

2) CONTEXT TAXONOMY

While the general MAB formulation does not consider states,
contexts may be used to tune the arm selection based not
only on the gathered rewards but also on further observations
about the world .#. Essentially, we may categorize MABs
in context-less and contextual MABs. Context-less is the
general formulation where no contexts are assumed.

Conversely, in contextual bandits, reward distributions
depend on a context, which is fit to the RL algorithm before
making a decision. Now, the observed reward r; in each
iteration ¢ depends both on the context €2, and the chosen
action a;. For instance, assume that an AP observes that
a given basic channel, say basic channel 2, is busy most
of the time. The derived context would then represent that
channel 2 is active. Thus, it is not the same to apply the
action corresponding to pick primary p = 2 when the context
indicates channel 2 is busy rather than applying the same
action when such channel is idle. Henceforth, it seems that
contexts may aid the spectrum management problem, espe-
cially if we leverage knowledge from previous contexts (e.g.,
similar contexts stochastically repeated every day). However,
contextual MABs also pose the challenge of appropriately
defining contexts, meaning that a good representation of the
world .# should be captured in each context.

There are different approaches to the contextual ban-
dit problem. The simplest one, while the most versatile,
considers a separate MAB per context (as if each context
was a state). Then, the goal is to find the optimal action
a*(y) = m*(;) per context ;. Defining effective con-
texts is challenging. And what would be an appropriate
context definition? Any observed parameter in the MAB’s
world might be chosen, such as the current action ; =
a;, the current reward €2; = r; or possible combinations
such as a mix of the action selected and the reward Q; =
f(ay, ry) or A mix including also historical information €, =
fQa—p,....as}, {r,—y, ..., rs}) and so on. Unfortunately,
we do not find any definition that suits our multi-agent and
non-stationary reward problem. The reason lies in the fact
that we want to boost the learning speed to raise the user
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experience in the short/mid-term. Then, relying on a different
MAB per action in a contextual fashion would entail large and
potentially unfruitful learning periods.

3) TEMPORAL TAXONOMY

The last taxonomy we identify is the temporal one, defined
by the time limit imposed to the MAB to converge to a good
solution, which determines the horizon: finite or infinite.

Finite-Horizon: Refers to when there is a need to per-
form (explore and exploit) during a given time window
(e.g., 5 minutes). So, the number of iterations 7" available to
the agent is finite: the RL algorithm must try to maximize the
accumulated reward (9) within that time limit.

Infinite-Horizon: In contrast, poses no time limit to the
agent to converge, i.e., T — o00. As a matter of fact,
in many problems, a finite time horizon cannot be easily
specified, so the infinite horizon formulation fits more nat-
urally. More importantly, stationary problems with infinite
time horizon lead to optimal stationary strategies, which offer
great simplicity.

For the joint spectrum management problem of this paper,
we will rely on finite horizons to assess the myopic nature
of the MABs. We call it myopic in the sense that they try
to optimize rewards now without any explicit use of forecast
information or any direct representation of decisions in the
future. Meaning we want WLANSs to improve their perfor-
mance as soon as possible.

C. MAB EXPLORATION STRATEGIES

We depict the different action selection strategies of choice
below.

1) EXPLORATION-FIRST

The simplest MAB algorithm dedicates the first Texp rounds
to exploration, and the remaining T’ — Texp rounds to exploita-
tion. In this paper, we mandate the full exploration of the
action space, i.e., Texp = K in order to explore all the
arms. Notice that in the event of an environment change
after the exploration phase, action rewards may drastically
change. Exploration-first copes with this issue by simply
ranking actions according to their last observed reward,
i.e., the estimated action value Q(a) of action a is set as the
reward r of applying a the last time it was chosen. So, if the
best action in iteration t — 1 turns out to be the worst in ¢,
since its reward is updated, the second-best action in ¢t — 1
is now the best in ¢ and it is picked accordingly in ¢ + 1.
Consequently, exploration is implicitly carried when action
rewards vary over time.

2) ¢-GREEDY

The e-greedy algorithm takes the best known action with
probability 1 — €, and explores a random action (previously
explored or not) with probability € [32]. The action value Q
is estimated, such estimation being represented as Q, accord-
ing to the past experience by averaging the rewards associ-
ated with the target action a that we have observed so far
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(up to the current time step ?), i.e., Qt(a) = m thzl rel
[a; = a], where 1 is a binary indicator function telling
whether the action a was used in a given iteration, and N;(a)
is the number of times the action a has been selected so far,
ie., Ni(a) = Zi:l 1[a; = a]. In an exploring iteration,
any action is picked with same probability, whereas in an
exploitation iteration, the best estimated action is picked,
i.e., a = argmax, 0:(a). To avoid inefficient exploration
after enough iterations, we decrease the parameter epsilon in
time to reduce the probability of exploring over time [33].

3) UCB1

Random exploration allows trying out options that we have
not known much about. However, due to the randomness, we
may end up exploring a bad action that we have confirmed in
the past. To avoid such inefficient exploration, one approach
is to decrease the parameter € in time (as done in e-greedy),
and the other is to be optimistic about options with high uncer-
tainty and thus to prefer actions for which we have not had a
confident value estimation yet. Or in other words, we favor
the exploration of actions with a strong potential to have an
optimal value. The Upper Confidence Bounds (UCB1) algo-
rithm, introduced first in [34] and further analyzed in [33],
measures this potential by an upper confidence bound of the
reward value, U, +(a), so that the true value is below the bound,
0(a) < 0;(a)+ U;(a) with high probability. The upper bound
ﬁ,(a) is a function of N;(a); a larger number of trials N,(a)
should give a smaller bound U;(a). InUCB1, we always select
the greediest action to maximize the upper confidence bound:
a; = argmax,c .z Q,(a) + Ut (a). For the cases where no prior

knowledge on the distributions is given, the upper confidence

,/%. So, by looking at

U, (a), for a given value estimation Q, (a), we see that the more
times an action is picked — the larger N (a) — the less probable
it becomes since the uncertainty about its reward distribution
is reduced.

bound can be derived as Ut(a) =

4) THOMPSON SAMPLING

In the previous algorithms, we do not assume any prior on
the reward distribution 6, of action a and therefore we have
to rely on pure randomness or a generalized estimation of
the upper confidence bound. If we can know the distribution
upfront, we would be able to make better bound estimations.
For example, if we expect the mean reward of every arm
to be Gaussian, we can set the upper bound as 95% con-
fidence interval by setting U;(a) to be twice the standard
deviation. Bayesian bandits follow a well-known approach
from Bayesian statistics: posit that the unknown quantity is
sampled from a known distribution, and optimize in expecta-
tion over this distribution [35].

Ateach time 7, we draw a sample from the prior distribution
of every action a € &7, O(a) ~ 6,. The best action is then
selected among the drawn samples: a; = arg max, ./ 0(a).
After the last actual reward r(a;) of the selected action a;
is observed, we update its reward distribution parameters
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(e.g., mean and standard deviation for the normal distribution,
or « and B parameters for the Beta distribution) accordingly,
which is essentially performing Bayesian inference to com-
pute the posterior with the known prior and the likelihood of
getting the sampled data. In this work, we assess two widely
used distributions for Thompson Sampling: Beta distribution
and Gaussian distribution.

5) EXP3

Unfortunately, reward probability distributions are so com-
plex that having optimism is arguably naive, especially when
it comes to competitive scenarios like WLANs. To conceive
rewards that could operate in any manner, the adversarial
model was proposed, where the agent must face an omni-
scient adversary that secretly chooses a sequence of rewards
at the start of the game. An illustrative example made by Auer
is to think about a gambler that plays in a rigged casino [36].
In this work, we use the well-known algorithm for adversarial
bandit learning, the Exponential-weight algorithm for Explo-
ration and Exploitation (Exp3) [37].

Exp3 works by maintaining a list of weights for each of
the actions, using these weights to decide which action to
take next at random, and increasing (decreasing) the relevant
weights when a reward is good (bad). We further introduce an
egalitarianism factor y € [0, 1] which tunes the desire to pick
an action uniformly at random (y > 0 to avoid probabilities
P too close to 0). That is, if y = 1, the weights have no effect
on the choices at any step. In other words, the distribution
P is a mixture of the uniform distribution and a distribution
that assigns to each action a probability mass exponential in
the estimated cumulative reward for that action. The uniform
distribution encourages exploration, whereas the other prob-
ability encourages exploitation. Then, parameter y controls
the exploration.

VI. EVALUATION

In this section, we evaluate the performance of the MABs
depicted in §V-C. We first benchmark them against the opti-
mal global configuration in a toy self-contained deployment,
from which we know the optimal configuration for every
traffic load. Then, we generalize the results to denser random
deployments.

A. A SELF-CONTAINED DATASET

We study the deployment presented in [1] illustrated in
Figure 5a, consisting of W = 4 BSS’s (with one AP and
one STA each) in a system of C = 4 basic channels. The
traffic load is quantized and can take three values, ¢,, € .Z =
{20, 50, 150} Mbps Vw.> As for the action attributes, the
primary channel can take any of the C channels in the system,
p € {1, 2, 3,4}, and the maximum bandwidth is allowed to
be set to b € {1, 2, 4} fulfilling the IEEE 802.11ac/ax chan-
nelization restrictions for 20, 40, and 80 MHz bandwidths.

5The 4-BSS’s self-contained dataset for spectrum management in BSS’s
can be found at https://www.upf.edu/web/wnrg/wn-datasets
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FIGURE 5. Toy deployment of the self-contained dataset.

So, according to (5), the total number of statuses when
considering all BSS’s to have an agent-empowered AP
(e, W = W = 4) raises to O(#) = (4 x 3 x 3)* =
1, 679, 616. Notice that even a petite deployment like this one
leads to a vast number of possible statuses.

The interference matrix elements in Figure 5b indicate
the minimum bandwidth in MHz that causes two APs to
overlap. So, we note that this deployment is complex in
the sense that multiple different one-to-one overlaps appear
depending on the distance and the transmission bandwidth
in use since the higher the bandwidth, the lower the power
per Hz. This leads to exposed and hidden node situations
hard to prevent beforehand. For instance, AP5 and APc can
only overlap when using 20 MHz, whereas AP5 and APp
do always overlap regardless of the bandwidth because their
proximity. Instead, AP and APp overlap whenever 40 MHz
(or 20 MHz) bandwidth is used.

To generate the self-contained dataset, we simulated all
the possible statuses 7 in Komondor v3.0.1b [10].° So,
we first deploy the APs and STAs in fixed positions in the
map (as in Figure 5a). Then, we define the values of the
modifiable attributes and the mean traffic load experienced
by each BSS. Likewise, we set the configuration capabilities
of each BSS, so we empower each agent with the action space
“,y = {{pw}, {bw}}. For simplicity, we consider all the BSS’s
to have the same action space <%, = p x b, Yw. Finally, for
every BSS’s global configuration, we must generate all the

SIn this work, we directly tackle the simulation analysis of RL algorithms
given the high complexity of dynamic channel bonding WLAN deployments,
which are unfeasible to accurately assess through analytical models.
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TABLE 1. Komondor simulation parameters.

Param. Description Value
f Central frequency 5180 MHz
C No. of 20-MHz channels 8
P Transmission power 14 dBm
PL Path loss model TMB [30]
MCS MCS index 0-11
CCA CCA threshold -82 dBm
CE Capture effect threshold 10 dB
N, Background noise level -95 dBm
Ly Length of a data packet 12000 bit
N, Max. no. of agg. packets per frame 64
T. Duration of an empty slot 9 us
Ts1rs SIFS duration 16 us
TbiEs DIFS duration 34 us
Trirs PIFS duration 25 ps
Lrts Length of an RTS 160 bits
Lcts Length of a CTS 112 bits
Lack Length of an ACK 112 bits
Lyack Length of a block ACK < 432 bits
CWhin Min. contention window 16
m No. of backoff stages 5

input files corresponding to each possible status 7 to be
later simulated with Komondor. Notice that the input x =
¢ is mapped to the output y, where y is an array contain-
ing multiple performance metrics of each BSS, including
throughput and delay. Every status .77 is evaluated during
T ,» = 5 seconds. Given that the BSS remains steady during
any status, we empirically found that 5 seconds is enough to
accurately estimate the stationary performance of a system
status. We use Wi-Fi parameters according to 802.11ax [15]
as detailed in Table 1.

Once we gather the whole dataset of the deployment
through Komondor, we use it to benchmark the performance
of the MAB algorithms depicted in §V-C under different
traffic patterns. For the sake of explanation, assume that the
WLAN starts at fp = 0 with status J%). At ¢, one agent-
empowered BSS picks an action a; (e.g., switches the primary
channel), leading to status .7#]. Notice that, since we already
have the dataset generated, it is straightforward (and fast) to
check the performance y of all the BSS’s at such given status.
We essentially use the dataset as a lookup table x = 72 — y,
to speed up the computation speed of RL simulations.

B. BENCHMARKING RL ALGORITHMS
1) LEARNING UNDER CONSTANT TRAFFIC DEMANDS
We first aim at assessing the learning capacity, including the
achievable reward and the corresponding convergence speed
of the presented MABs in a BSS with constant traffic loads.
The purpose is to determine whether MABs converge to good
rewards under steady load conditions and, if so, how long
does the process take.

We assume each BSS has a high average traffic load, ¢,, =
50 Mbps, Yw. So, this experiment’s long-term dynamism is
due exclusively to the MABs progression in the multi-agent
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FIGURE 6. Self-contained toy dataset under constant traffic loads.

setting. The inner traffic load condition does not vary, but the
spectrum management configurations (or actions) do. We run
a single simulation for each MAB intending to display a
realization of how they behave.

Figure 6a shows the throughput satisfaction evolution of
the MABs. For each MAB, and each BSS w, we plot the
instant reward r,, ;, the normalized cumulative reward G, ; /¢,
the optimal reward of each separate BSS, and the minimum
and maximum optimal of the whole BSS. Notice that some
BSS’s can only achieve their optimal by forcing the others
to underperform, so we refer to the minimum of the BSS

“min.” in the Figure) as the most important metric to assess
the MAB fairness. We observe that while exploration-first
and e-greedy do converge (learn) to higher satisfaction values
close to the optimal, the rest of MABs seem not to learn at
all. This relates to the fact that learning based on parameter
estimation is fruitless in dynamic and chaotic multi-agent
deployments like this. So, it seems preferable to act quickly
with a low-level knowledge of the actions’ rewards. Besides,
we find that win-win relations are established as shown by
the minimum and mean convergence of the whole BSS. That
is, on average, BSS’s tend to benefit from others’ benefits.
As for the learning speed, exploration-first takes approxi-
mately a full exploration of the action space with erratic
rewards to provide a super-steady performance, whereas
e-greedy keeps switching configurations throughout the
simulation.
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(b) Prob. BSS A to select each
action.

Figure 6b shows the probability of BSS A (picked as an
example) to select each possible action. We observe that
exploration-first and e-greedy tend to use one single action
that behaves sufficiently well, so they waste less time in
exploring than exploiting. In contrast, the rest of MABs waste
too many iterations exploring the different actions.

Finding: In small deployments with constant traffic load,
exploration-first and e-greedy (so-called ligthweight MABs)
achieve near-optimal rewards after enough exploration,
showcasing their ability to learn in multi-agent Wi-Fi deploy-
ments by establishing win-win relationships between BSS’s.
Further, exploration-first is the only one to lead to a super-
steady performance at the cost of experiencing vacillating
rewards during the early exploration phase.

2) THE USEFULNESS OF MAB PARAMETERS INTO THE
SPOTLIGHT: WHY DO SOPHISTICATED MABs NOT WORK?
From the previous experiments, we concluded that UCBI,
Thompson Sampling, and Exp3 are not an option for the
multi-agent setting of the joint spectrum management prob-
lem in BSS’s. First, UCB1 cannot benefit from computing
an estimation of the upper confidence bound of any action
a. In essence, the action selection relies on the sum of such
confidence bound and the estimated value Q(a). Given the
non-stationarity of the multi-agent setting, the estimation
Q(a) is lousy and may highly vary from one iteration to the
other. The algorithm then falls in a loop where most of the
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FIGURE 7. Probability distributions of the reward of each action BSS A can take.

actions are selected with similar probability, thus wasting lots
of iterations with low performance and generating even more
dynamism to the BSS.

Second, even though Thompson Sampling is usually
known to outperform the rest of the presented MABs in
stationary environments [38], its performance is well below
exploration-first and e-greedy under the multi-agent setting.
Similarly to UCBI, the reason lies in trying to estimate the
parameters (e.g., @ and B in the Beta distribution) defining
the probability distribution of the reward of each action while
assuming that it is constant, or at least, slowly varying in
time, so it would be worth to learn. However, that is not the
case in the multi-agent setting, where from one iteration to
the next, the actual probability distribution of any action may
change completely. Therefore, the gathered knowledge from
past iterations becomes not useful at all to estimate the new
distribution.

To illustrate the low utility of estimating the probability
distribution of an agent’s actions in a multi-agent setting,
let us consider an elementary example. Assume two single-
channel BSS’s overlap, and there are two possible primary
channels to pick in the system C4 = Cp = {1, 2}. We call the
BSS’s A and B, respectively, and assume they have a constant
traffic load. From the point of view of A, its world .y is
determined just by B’s action selection. That is, B selecting
primary pp = 1 generates a first world for A where it is better
to select p4 = 2 to avoid contention and collisions. Likewise,
B selecting primary pp = 2 generates a second world for A
where it is better to select p4 = 1. Figure 7 shows possible
probability distributions (modeled as Gaussian variables for
simplicity) of the reward of A in terms of throughput satis-
faction. As anticipated, it is much better for A to select B’s
opposite action, i.e., the probability of getting a better reward
is much higher. However, since MABs do not count on states,
the agent does not have a separate reward distribution of each
action per world (or state). In contrast, it generates a state-
blind distribution like the one shown in the rightmost plot
in Figure 7. And the information contained in there, beyond
simple statistics like the mean, is of very little use.’

Finally, Exp3 tackles adversarial settings, where the
urgency of an action is the sum of two terms: an exponential

TMoreover, notice that generating the reward distribution with accuracy
for every state-action pair is a costly task itself that requires extensive
exploration.
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term in the success of the action for exploitation, and a
constant term for exploration. Like UCB1 and Thompson
Sampling, Exp3 relies on estimating the reward for the expo-
nential term related to exploitation. And, as in the previous
algorithms, such estimations are not reliable in the short-term.

Finding: In contrast to the sound performance of
exploration-first and e-greedy, the rest of MABs (i.e., Thomp-
son Sampling, UCBI1, and EXP3) cannot learn due to their
need to over-explore the action space for estimating algorithm
parameters resulting in flawed and unfruitful in uncoordi-
nated multi-agent setups.

3) ADAPTING TO VARYING TRAFFIC LOADS

In this experiment, we focus on the performance of the
MABSs under varying traffic loads patterns. We now consider
a traffic load pattern where each BSS w changes its mean
traffic load to £,, € {20, 50, 150} Mbps every 100 iterations
uniformly at random. This time, we focus our analysis only
on exploration-first and e-greedy because they were the
only MABs capable of learning under non-varying traffic
loads.

Figure 8a shows the throughput satisfaction evolution
as in Figure 6a, this time considering load changes
every 100 iterations. We find that both exploration-first and
e-greedy can raise their performance after every traffic
change, so they learn after every environment alteration.
Again, we observe that exploration-first is much more steady
than e-greedy. In fact, after the initial full exploration phase,
exploration-first can quickly adapt to each environment
change.

This steadiness is corroborated by looking at the num-
ber of action switches shown in Figure 8b. Exploration-first
hardly changes an action after the full exploration phase in
the early stages, whereas e-greedy keeps changing often,
although decreasing the update function of the € parameter.
This number of switches is an essential metric to the BSS
performance: after any change in the spectrum management
configuration, the PHY and MAC overheads required to set
up the AP and STAs in the BSS entail delays hindering the
overall performance. In this regard, exploration-first seems a
much more favorable choice. Indeed, one well-known pitfall
of e-greedy is its poor asymptotic behavior because it usually
continues to explore long after the optimal solution becomes
apparent [39].
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the scenario with varying traffic loads.

FIGURE 8. Self-contained toy dataset under varying traffic loads.

Finding: Both exploration-first and e-greedy perform sim-
ilarly in terms of cumulative (or long-term) reward, getting
close to the optimal minimum in the WLAN after relatively
few iterations. Nonetheless, exploration-first adapts much
more smoothly than e-greedy after each load alteration. That
is, it requires very few iterations to select its best action once
the first exploration phase is completed. This has substantial
benefits given that every time a different action is chosen by
the AP, the corresponding configuration must be broadcast to
the STAs, which require some non-negligible time to apply
it, leading to service interruptions and detrimental QoE.

4) CAN CONTEXTS OR STATES AID LEARNING?
Part of the reasoning we conducted on why MABs seemed
the most suitable approach was related to the fact of avoiding
states. This way, there is no need to seek meaningful state
definitions, and the learning can be executed more quickly
since only actions and rewards are used to execute the policy.
Nonetheless, in this experiment, we go beyond such qual-
itative reasoning and provide a quantitative measure on
Q-learning performance (relying on states), and contextual
MABSs (relying on contexts). For the sake of boosting the
learning speed, given we consider a relatively short time-
horizon, we define the state s and context 2 the same: as
merely the binary throughput satisfaction of the BSS,

t .
Qo rue $>0?5 (10)
false otherwise,

where £ is the throughput satisfaction, which we compare
against a 0.95 threshold to provide a safety margin. Notice
that state space . = {true, false} is small and therefore does
not provide much information on the environment. However,
other more meaningful state definitions considering parame-
ters like the selected action or spectrum occupancy statistics
would exponentially increase the size of . and reduce the
learning speed dramatically. For instance, if the state was
defined simply as the action, i.e., s = a, the state-action table
would be 12 x 12 given the |</| = 12 actions in the action
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switches.

space. Accordingly, 144 state-action elements would exist.
So, it would take at least 144 iterations to try each of the pairs
once. In contrast, the proposed state space generates a more
manageable state-action table of 2 x 12.8

Q-learning is a temporal difference algorithm seeking the
best action to take given the current state. It is considered off-
policy because the Q-learning function learns from actions
outside the current policy, like taking random actions. The
learning rate « or step size determines to what extent newly
acquired information overrides old information. A factor « =
0 makes the agent learn nothing (exclusively exploiting prior
knowledge). In contrast, a factor « = 1 makes the agent
consider only the most recent information (ignoring prior
knowledge to explore possibilities). We use a high value of
o = 0.7 because of the non-stationary deployment. The dis-
count factor y determines the importance of future rewards.
A factor y = 0 will make the agent myopic (or short-
sighted) by only considering current rewards, while a factor
approaching y — 1 will make it strive for a long-term
high reward. We use a relatively small y = 0.3 to foster
exploitation (for rapid convergence) in front of exploration.

Another way in which agents use partial information gath-
ered from the environment is in the form of contexts. In plain,
contexts can be formulated as states for stateless approaches.
That is, a contextual MAB can be instantiated like a particular
MAB running separately per context. The learning is sepa-
rated from one context to the other so that no information is
shared between contexts like it is the case for Q-learning and
other state-full approaches. In this case, we propose having a
separate MAB instance for each of the two contexts defined
(true and false).

Figure 9 is an extension of Figure 6a, this time showing
the performance of the proposed Q-learning and contextual
MAB. While we observe that both tend to learn, i.e., the

8From this brief discussion on the size of the state-action space we can
conclude that more complex approaches like DRL do not suit the scenarios
of this work. DRL relies on huge state-action spaces and normally takes long
periods to start learning.
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FIGURE 9. Q-learning and contextual MABs under constant traffic loads.

individual reward of all BSS’s increases over time, we find
unsteadiness with peaks of low (even zero) throughput sat-
isfaction throughout all the iterations. Remarkably, such low
throughputs may generate service interruptions causing poor
user experience. So, we have seen that, by considering states
and contexts, agents also tend to learn in the proposed finite
horizon, but at a slower pace than the lightweight MABs.

We envision using states and context for larger time hori-
zons when the BSS’s may support periods of poor perfor-
mance until the WLAN reaches steady dynamics providing
even higher rewards than MABs. In such cases, more complex
and larger state spaces may aid the task. We leave the study
of such approaches as future work since this work focuses
on rapid-adaptation mechanisms for zero-prior knowledge
scenarios.

Finding: RL algorithms harnessing states or contexts do
not boost the learning rate in short-term finite horizons like
those studied in this work. Therefore, we corroborate that
stateless approaches like MABs are a preferable choice for
such a task.

C. GENERALIZATION TO HIGH-DENSITY DEPLOYMENTS
We now evaluate dense multi-agent deployments presenting
more challenging dynamics.

1) DENSE MULTI-AGENT SETUPS

We propose a 20 x 20 m> map where multiple agent-
empowered BSS’s (from W/ = 6 to 16) are spread at
random over the area. We simply force a 4 m separa-
tion between APs, and STAs being separated up to 10 m
from their associated AP. As in the previous experiments,
each BSS w is assigned a random initial traffic load
£y, € {20,50, 150} Mbps, Vw. As for the channelization,
we consider now a standard-compliant maximum bandwidth
of 160 MHz, thus having 8 possible 20-MHz channels
(e.g., from channels 36 to 64 in the IEEE 802.11ac/ax
standards). Accordingly, the action space of a BSS w
is 2y = {pw, by}lpw € {1,2,...,8}, by, € {1,2,4, 8}, Vw,
thus having 32 (8 x 4) possible configurations. Notice that,
in contrast to the self-contained toy dataset, we now lose the
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FIGURE 10. Reward distributions at different iterations.

optimal baseline reference since it is unfeasible to simulate
all the statuses of the different deployments.

In this first experiment, we aim to generalize the assess-
ment on deployments of increasing BSS density investigat-
ing whether the lightweight MABs are still able to learn
effectively. We generate 100 WLAN random deployments for
three different numbers of BSS’s W/ = W € {6, 10, 16} and
run the same MAB algorithm at every AP in the network.
In particular, we simulate exploration-first, e-greedy, and a
fixed random configuration (random-fixed), where agents are
idle and do never change the initial configuration whatsoever.
We run each scenario for two different random seeds to
contemplate the randomness of the MAB algorithms. Notice
that the random-fixed algorithm can be viewed as an ablation
method of the MAB algorithms since a component of the Al
system (the agent’s action selection) is removed. With such a
baseline algorithm, we further motivate the need for learning-
based solutions.

Figure 10 shows the distribution of the throughput satis-
faction & of every BSS for each algorithm and each num-
ber of deployed BSS’s. Notice that each boxplot inside the
subplots is filled with the reward values gathered at a given
iteration (10, 50, 100, 150, and 200) in the different simula-
tions, thus covering a vast heterogeneous set of deployments.
We observe that, regardless of the node density, exploration-
first and e-greedy can learn, thus clearly outperforming
the static configurations. In particular, exploration-first out-
performs e-greedy as the simulation progresses. However,
we also notice that e-greedy is better at earlier stages of the
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FIGURE 11. Jain’s fairness distributions at different iterations.

simulation. This is due to the mandatory rule of exploration-
first of exploring the full action space, no matter whether the
agent is satisfied or not. If agents start from zero knowledge
on the reward per action, exploration-first will take more time
to converge. Still, once the full action space is explored, its
performance is significantly higher than e-greedy.

Finding: Both exploration-first and e-greedy can learn
even in high-density deployments, outperforming by far
static configurations. Besides, while exploration-first per-
forms worse than e-greedy at the early stages of the simu-
lation, it reaches much better performance as the simulation
progresses.

2) ON THE FAIRNESS
We observed that both exploration-first and e-greedy were
able to learn for every assessed BSS density. We investigate
now whether the MAB strategy of greedy reward optimiza-
tion has any impact on the overall system’s fairness. We keep
studying the 100 WLAN random deployments from the pre-
vious experiment.

Figure 11 shows the distribution of the Jain’s fairness
index,

J = (Zyzl ‘%_w)2
WY &2

for the throughput satisfaction &. Like in Figure 10, each
boxplot inside the subplots is filled with the reward values
gathered at a given iteration in the different simulations.

We observe a similar behavior between the evolution of
the reward (Figure 10) and the evolution of the fairness
(Figure 11): e-greedy is fairer at the early stages, whereas
exploration-first provides significantly higher fairness as the
simulation progresses. This is an interesting result show-
ing that multi-agent settings like WLANSs can result in fair
settings without coordination between agents. The key fac-
tor is the mutual interests forming a win-win relationship
among agents. In plain, always on average terms, any pair of
BSS’s would mutually benefit if they do not overlap when
trying to satisfy their traffic load demands. Unfortunately,
we also find unfair outlier scenarios where some BSS’s do
not perform well due to different reasons like exposed/hidden
nodes. In that kind of situation, it seems necessary to coor-
dinate, thus changing the local greediness of the reward
definition towards a collaborative one. In turn, that would

(11)
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FIGURE 12. Run-chart of the probability of providing the highest instant
reward.

require communication overheads and compatibility issues
(or conflicts of interests between BSS’s).

Finding: The WLAN’s fairness tends to increase, thus
reaching global stable configurations where most (or all) the
BSS’s perform similarly. In particular, exploration-first tends
to outperform e-greedy, leading to fairer setups as simulations
progress.

3) ADAPTATION TO VARYING TRAFFIC LOAD

In this experiment, we assess how the lightweight MABs
respond to varying traffic loads, potentially affecting each
action’s reward. We provide a direct comparison between
exploration-first and e-greedy by assessing each agent’s
reward at every iteration in a 1-vs-1 fashion. In particular,
we compute the evolution of the probability of each MAB
outperforming the other. That is, for every agent, we count
the number of deployments per iteration where one MAB
provided the highest instant reward r,, ;.

Figure 12 shows the probability of each MAB outperform-
ing the other in terms of throughput satisfaction. Notice that
the curves do not sum 1 in any of the iterations because
of the cases where both MABs provided the same reward,
most often corresponding to maximum satisfaction, £ = 1.
We corroborate that exploration-first is only outperformed
by e-greedy in the first full exploration phase. Afterward,
it performs better even after the changes in the traffic loads.
So, it is preferable for every node density we studied to
use exploration-first for mid/long term reward and quicker
adaptation to environmental changes.

Finding: After paying the price of executing the first
full exploration phase, exploration-first outperforms e-greedy
both in terms of mid/long-term reward and fast adaptation
in front of environment alternations. We conclude that in
situations where there is room to spend a reasonable time for
learning, exploration-first should be the MAB of choice.

4) LIGHTWEIGHTING THE ACTION SPACE

Finally, we now ask if it is possible to increase the learn-
ing convergence speed and reach good performance levels
sooner. To that aim, we propose lightening the action space
of each agent by reducing the possible values the maximum
bandwidth attribute may take: from b € {1,2,4,8}to b €
{1, 8}, i.e., to allow only single-channel (b = 1) or to remove
any bandwidth restriction (b = 8). So, we expect to raise
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FIGURE 13. Comparison between the original and the lightened action
space when using exploration-first. The curves represent the mean value
of the rewards, and the shaded areas correspond to the standard
deviation (STD), respectively.

the convergence at the cost of renouncing to potentially better
configurations.

We run the MABs in the same deployments of the two
experiments before, but we now reduce the maximum band-
width space b to two values: 1 (20 MHz) and 8 (160 MHz).
Notice that the resulting action space has 16 actions rather
than 32, i.e., we halve the action space going from |7, | = 32
to || = 16, Yw.

Figure 13 shows the mean and standard distribution of
the throughput satisfaction when applying exploration-first
with the original and the reduced action space. We observe
that both action spaces have a similar convergence rate for
scenarios with moderate density (6 BSS’s). However, the
best performance is only reached with the original action
space (i.e., keeping all the configuration options in the max.
bandwidth). However, as the node density increases, it turns
out that having a reduced action space allows significantly
faster convergence while reaching a similar performance than
the original action space in the long term.

So, is there any rule of thumb for reducing action spaces?
We suggest limiting the domain of the less critical attributes,
always bearing in mind the trade-off between fast conver-
gence and maximum reachable reward. However, such a
task is not straightforward and requires expertise from the
RL designer. In our case, we have proposed reducing the
maximum bandwidth’s possible values {b} and keeping all
the values for the primary channel {p} since it is well-known
that the primary channel is critical in CSMA/CA networks.

Finding: 1t is preferable to lighten the action space in
challenging (dense and highly loaded) scenarios since it will
contribute to increasing the learning speed. The downside is
to renounce to a potentially better long-term performance. So,
we suggest reducing the less critical attributes from the action
space whenever possible.

5) MIXED REWARD: THROUGHPUT AND DELAY

Up to now, we have considered the reward to be exclu-
sively dependent on the throughput satisfaction, i.e., on the
throughput and the traffic load (7). In this experiment, we aim
to answer whether another reward definition, including the
delay, would vary our MAB analysis in any regard.
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FIGURE 14. Mixed throughput-delay reward assessment.

Delay is defined as the mean data packet delay, simply
computed as the time difference between a data packet being
generated and acknowledged. Unfortunately, the delay is not
bounded, which is convenient for guaranteeing most RL algo-
rithms’ convergence. Thus, we propose a bounded delay ratio
defined as

, (12)

aw,l dw,t
where d,,; is the mean delay during iteration ¢, and d*
is the known minimum achievable delay experienced when
transmitting a single data packet at maximum MCS 11.
So, éy,; < 1,Vw,t holds because every BSS will always
experience a delay higher than d* simply due to the MAC
interframes (SIFS, DIFS) and control packets exchange (RTS,
CTS, ACK).

We repeat the experiments on the action space lightweight-
ing (§VI-C4) and the direct comparison between exploration-
first and e-greedy (§VI-C3), this time using a mixed
throughput-delay reward definition,

R, 8)=¢§-6. 13)

Notice that we propose the latter’s product operation given
the high correlation between throughput satisfaction and
delay. Generally, a high £ leads to low & and vice versa.
However, for the cases where £ = 1, there may exist config-
urations providing different delay values. Thus, we anticipate
it is worth explicitly considering the delay as well.

Figure 14a and Figure 14b show the probability of each
MAB outperforming the other in terms of the mixed reward,
and the mean and standard distribution of the throughput
satisfaction when applying exploration-first with the original
and the reduced action space respectively. That is, such fig-
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ures are complementary to Figure 12, and Figure 13, respec-
tively. We observe similar patterns in both pairs of figures,
only varying the reward scale, which is expected since the
mixed reward is by definition lower than the throughput sat-
isfaction. Therefore, we conclude that exploration-first also
outperforms e-greedy when introducing other performance
parameters like the delay in the reward definition R.
Finding: Exploration-first keeps learning and outper-
forming e-greedy for the mixed throughput-delay reward.
We derive that exploration-first is convenient for the Wi-Fi
deployments considered in this thesis regardless of the per-
formance parameters included in the reward definition.

VII. CONCLUSION AND FUTURE WORK

In this paper, we postulate MABs as an efficient ready-to-use
formulation for spectrum management in multi-agent channel
bonding WLANSs. We call into question whether the use of
complex RL algorithms actually helps the quest and derive
that stateless algorithms, especially in the form of lightweight
MABsS, are an efficient solution for rapid adaptation avoiding
extensive or meaningless states. We anticipate this paper
will contribute to the design of novel spectrum management
techniques for next-generation WLANSs, we and expect that
our findings on channel bonding will help overcome the main
challenges imposed by spectrum sharing. Besides, we expect
that our reasoning on why stateless RL algorithms in the
form of lightweight MABs are an efficient solution for rapid
deployment will be useful as well for other techniques like
scheduling or transmission power control.

As for future work, we envision the use of states for larger
time horizons when the focus is not put on rapid-adaptation
but on reaching higher potential performance in the long-run.
Hereof, we believe that using MABs for generating training
datasets to be later fit in more complex ML models is an
interesting venue for research. Finally, we leave the design
of advanced channel allocation mechanisms that consider the
use of domain knowledge-empowered MABs for future work.
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