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ABSTRACT This paper proposes an adaptive fuzzy observer-based command filtered discrete-time control
method for permanent magnet synchronous motors (PMSMs) with input constraint. First, the rotor angular
velocity is estimated by using an adaptive fuzzy observer and the unknown nonlinear function is approxi-
mated by using fuzzy logic systems (FLSs) in the PMSMs drive systems. Then, compared with the traditional
backstepping method, command filtered backstepping method is developed to solve the “complexity of
computation” problem. It is shown that all signals of the closed-loop system are semi-globally uniformly
ultimately bounded. Finally, the results of the simulation and experiment demonstrate that the new design
method can fully consider the influence of input constraint and load disturbance, and improve the tracking
performance for PMSMs drive systems.

INDEX TERMS Command filtered backstepping, adaptive fuzzy observer, input constraint, discrete-time,
permanent magnet synchronous motors.

I. INTRODUCTION
In recent years, PMSMs have played a vital role in industrial
and agricultural production and have occupied an important
position due to meaningful characteristics, such as simple
structure, convenient maintenance and reliable operation [1].
In practice, PMSMs drive systems are highly nonlinear,
strongly coupled and undetermined parameters in character,
which reduce system performance and control accuracy [2].
It can be observed that good control performance is affected
by an unknown load disturbance which makes the design
of the controller becomes more complicated [3]. For the
above cases, it is essential to find a good control method to
highlight the advantages of the PMSMs drive systems. In the
last decade, relevant scholars have put forward various con-
trol methods, such as backstepping control [4]–[8], sliding
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mode control [9]–[12], adaptive control [13]–[16], command
filtered control (CFC) [17]–[19], fuzzy control and so on.

Nevertheless, it is notable that the above control methods
have not explicitly taken input constraint into account on
PMSMs drive systems. In practical engineering field, input
saturation is inevitable, which will reduce the control accu-
racy of the system [20]. The sudden increase in voltage will
damage the PMSMs drive systems and affect the normal
use of the PMSMs in acute cases. A bounded saturation
function was used to solve the input saturation problem
[21]–[23]. In [24], [25], the function approximation method
was proposed to compensate actuator saturation nonlinearity.
The anti winding mechanism or auxiliary mechanism was
shown to solve the input constraint problem in [26]–[28].
Therefore, fully considering the effect of input saturation is
still a huge challenge in the process of controller design.
However, [20]–[28] were built on continuous-time conditions
and cannot be accurately reflected in the field of digital
computers. Generally, digital computer has the characteristics
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of fast operation speed and strong anti-interference ability,
which is widely used in discrete-time system [29], [30].
The digital computer as a controller, discrete-time system has
more advantages than continuous-time system in stability and
realizability. It is worth noting that considering the influence
of input constraint is still a challenging task for PMSMs
discrete-time system.

In another research field, backstepping method [31] is
an advanced control method which is widely used in the
control field. Unfortunately, in the process of calculating
the difference of virtual control function, the “complexity
of computation” problem will produce. For the “complexity
of computation” problem, dynamic surface control (DSC)
technique was investigated in [32]–[34]. DSC method uses
the first-order filters to obtain the information of the future
state and the difference problem of the virtual control function
is solved. However, the errors of first-order filters is generated
in DSC technology, which increases the complexity of the
algorithm and reduces the control accuracy of the system.
Guided by the above methods, [35], [36] proposed CFC
method and introduced compensation signal to eliminate fil-
tering errors. In [37], the command filter was designed based
on the backstepping method to solve the problem of repeated
derivation. The above method is that the state of the system
can be measured. References [31]–[37] will inevitably pro-
duce some shortcomings when using physical sensor in actual
engineering applications, such as cost of the system increases,
the reliability decreases and the performance degradation by
vibration. It is worth noting that the rotor angular velocity is
estimated through a reduced-order observer, which has the
characteristics of simple structure and low dimensionality
in [38]–[40]. As far as we know, the combination of reduced-
order observer and CFC method is not fully considered in the
PMSMs drive systems.

In view of the above analysis results, an adaptive fuzzy
observer based on command filtered discrete-time control
method is proposed for input constraints in this paper. The
input constraint and unknown load disturbance are fully
considered in the controller design. Specifically, the main
benefits of the controller design in this paper are as
follows:

• Compared with DSC method [32]–[34], the CFC
method solves the “complexity of computation” of
the traditional backstepping method and eliminates the
problem of filter errors by introducing compensation
mechanism.

• The rotor angular velocity is estimated by the designed
reduced-order observer. There is no need to directly
measure the state of the system, reducing the complexity
of the hardware and improving the reliability of the
motor.

• Considering the input constraints and load disturbance,
the stability of PMSMs drive system is improved, which
is more conducive to practical application.

II. REDUCED-ORDER OBSERVER-BASED DISCRETE-TIME
MODEL WITH INPUT CONSTRAINT
The discrete-time system model of PMSMs is descri-
bed as [6]:

θ (k + 1) = 1Tω(k)+ θ (k),

ω(k + 1) = ω(k) +1T
3npφ
2J

iqs(k)−1T
B
J
ω(k)

+
3np(ld − lq)ids(k)iqs(k)1T

2J
−
Tl1T

J
,

iqs(k + 1) = −
Rsiqs(k)1T

lq
−
npφω(k)1T

lq
+
uqs(k)1T

lq

−
npldω(k)ids(k)1T

lq
+ iqs(k),

ids(k + 1) = ids(k)−
Rsids(k)1T

ld
+
nplqω(k)iqs(k)1T

ld
+
uds(k)1T

ld
.

The physical meaning of symbols is listed in Table 1.

TABLE 1. Defining symbols.

For the convenience of calculation, the following system
variables are introduced and defined as:

ψ1 (k) = θ(k), ψ2 (k) = ω(k), ψ3 (k) = iqs(k),

ψ4 (k) = ids(k), a1 =
3npφ
2J

, a2 = −
B
J
,

a3 =
3np

(
ld − lq

)
2J

, a4 = −
1
J
, b1 = −

Rs
lq
, b2 = −

npφ
lq
,

b3 = −
npld
lq
, b4 =

1
lq
, c1 = −

Rs
ld
, c2 =

nplq
ld
, c3 =

1
ld
.

(1)

Then according to the above notations, the dynamic math-
ematical model of PMSMs can be transformed into:

ψ1 (k + 1) = ψ1 (k)+1Tψ2 (k) ,
ψ2 (k + 1) = a11Tψ3 (k)+ (1+ a21T ) ψ2 (k)
+a31Tψ3 (k) ψ4 (k)+ a41TTl,
ψ3 (k + 1) = (1+ b11T ) ψ3 (k)+ b21Tψ2 (k)
+b31Tψ2 (k) ψ4 (k)+ b41T uqs (k) ,
ψ4 (k + 1) = (1+ c11T ) ψ4 (k)+ c31T uds (k)
+c21Tψ2 (k) ψ3 (k) .

(2)
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For discrete-time model of the PMSMs drive systems (2),
the purpose of designing controller uqs(k) and uds(k) in this
paper is to ensure that the rotor position ψ1(k) quickly track
a given signal ψ1d (k).
Lemma 1 [36]: For discrete-time systems, command filter

is defined as:

ci,1(k + 1) = ci,1(k)+1Tωnci,2(k),

ci,2(k + 1) = ci,2(k)+1T [−2ζωnci,2(k)− ωn(ci,1(k)

−αi(k))].

If input signals αi(k) of the command filter satisfies |αi(k+
1) − αi(k)| ≤ $1 and |αi(k + 2) − 2αi(k + 1) + αi(k)| ≤
$2, where $1 and $2 are constants. |ci,1(k) − αi(k)| ≤ %,
1ci,1(k) = |ci,1(k + 1) − ci,1(k)| is bounded for % > 0,
0 < ζ ≤ 1 and ωn > 0.
Lemma 2 [35]: There are fuzzy logic systems (FLSs)

f (k) = W T S(Z (k)) + τ . f (k) is defined in the compact
set. τ is defined as the error, for sufficiently small con-
stants ε > 0, |τ | ≤ ε. W ∈ RN is the weight vector.
S(Z (k)) is the basis function vector, and S(Z (k)) satisfied
λmax[S(Z (k))T S(Z (k))] < l, l is a positive constant.

A. INPUT SATURATION MODEL FOR PMSMs
DRIVE SYSTEMS
In the actual operation of the PMSMs, considering the input
constraint of the system can improve the system performance
and control accuracy. The nonlinear description of input sat-
uration is as following:
v(k) is the saturated nonlinear input signal. u(k) represents

the plant input affected by the input saturation nonlinearity.

u(k) = sat(v(k)) =


umax, v(k) ≥ umax,

v(k), umin < v(k) < umax,

umin, v(k) ≤ umin,

where umax and umin are constants.
Approximate saturation function by using piecewise

function.

g(v(k)) =


umax tanh

v(k)
umax

, v(k) ≥ 0,

umin tanh
v(k)
umin

, v(k) < 0,

=


umax

e
v(k)
umax − e−

v(k)
umax

e
v(k)
umax + e−

v(k)
umax

, v(k) ≥ 0,

umin
e
v(k)
umin − e−

v(k)
umin

e
v(k)
umin + e−

v(k)
umin

, v(k) < 0.

sat(v(k)) is expressed as sat(v(k)) = g(v(k))+Y (v(k)), it was
defined that |Y (v(k))| = |sat(v(k))−g(v(k))| ≤ max{umax(1−
tan(1)), umin(tan(1)− 1)} = D, D is a constant and D > 0.

In addition, according to the mean-value theorem, there is
constant λ(0 < λ < 1), then

g(v(k)) = g(v(0))+ gvλ(k)(v(k)− v(0)),

where

gvλ(k) = (g(v(k + 1))− g(v(k)))|v(k)=vλ(k),

and vλ(k) = λv(k)+ (1− λ)v(0).
By defining v(0) = 0 and g(v(0)) = 0, g(v(k)) is again

represented as g(v(k)) = gvλ(k)v(k), 0 < gvλ(k) ≤ 1. u(k) is
expressed as:

u(k) = gvλ(k)v(k)+ Y (v(k)). (3)

According to Eq.(3), uqs(k) and uds(k) are described as:{
uqs(k) = gvλ(k)vq(k)+ Y (vq(k)),
uds(k) = gvλ(k)vd (k)+ Y (vd (k)),

(4)

where gvλ(k) satisfied 0 < gvλ(k) ≤1. vq(k) and vd (k) are the
input signals of saturation nonlinearity in q-axis and d-axis
respectively.

B. REDUCED-ORDER OBSERVER DESIGN
In the traditional control method, rotor angular velocity
of PMSMs is measured by the physical sensor. However,
the application of physical sensor has some disadvantages
such as high cost, noise immunity, low feasibility. In view
of the above shortcomings, the rotor angular velocity is esti-
mated by using a reduced-order observer, which replaces the
physical sensor.
In system (2), the equation of the subsystem can be

obtained as:
ψ1(k + 1) = ψ1(k)+1Tψ2(k),
ψ2(k + 1) = ψ3(k)+ f2(k),
y(k) = ψ1(k),

(5)

where the unknown nonlinear function f2(k) = (1 +
1T a2(k))ψ2(k)+a11Tψ3(k)+a31Tψ3(k)ψ4(k)+a41TTl−
ψ3(k). According to lemma 2 [35], there are FLSs f2(k) =
W T

2 S2(Z2(k))+τ2, τ2 is defined as approximation error, which
satisfies τ2 ≤ ε2(ε2 > 0). So Eq. (5) can be recalculated as:

ψ1(k + 1) = 1Tψ2(k)+ ψ1(k),
ψ2(k + 1) = ψ3(k)+W T

2 S2(Z2(k))+ τ2,
y(k) = ψ1(k).

(6)

The adaptive fuzzy observer is constructed as:
ψ̂1(k + 1) = 1T ψ̂2(k)+ ψ̂1(k)+ g1[y(k)− ŷ(k)],
ψ̂2(k + 1) = ψ3(k)+ χ̂2||S2(Z2(k))||
+g2[y(k)− ŷ(k)],
ŷ(k) = ψ̂1(k),

(7)

where ||W T
2 || = χ2, χ2 > 0, χ̂2 = χ2 − χ̃2 is the

estimation of χ2. χ̃2 is the estimation error of χ2. Z2(k) =
[ψ̂1(k), ψ̂2(k), ψ3(k), ψ4(k), ψ1d (k)]T .
In order to express the reduced-order observer clearly,

equation (7) is written as follows:{
ψ̂(k + 1) = Bψ̂(k)+ Gy+ Cψ3(k)+ f̃ ,
ŷ(k) = DT ψ̂(k),

(8)
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where B =
[
−g1 + 1, 1T
−g2, 0

]
, G =

[
g1, g2

]T , ψ̂(k) =[
ψ̂1(k), ψ̂2(k)

]T
, C =

[
0, 1

]T , D = [
1, 0

]T , f̃ =[
0, χ̂2||S2(Z2(k))||

]T . B is a strict Hurwitz matrix by select-
ing the appropriate G. e(k) =

[
e1(k), e2(k)

]T , eh(k) =
ψh(k) − ψ̂h(k), (h = 1, 2), then define the error of the
reduced-order observer as:

e(k + 1) = Be(k)+ ε + f̃ , (9)

where ε =
[
0, τ2

]T . Select V0(k) = eT (k)Pe(k) and
substitute Eq. (9) into the first-order difference of V0(k) as
follows:

1V0(k) = eT (k + 1)Pe(k + 1)− eT (k)Pe(k)

= [Be(k)+ ε + f̃ ]TP[Be(k)+ ε + f̃ ]

− eT (k)Pe(k),

≤ −eT (k)Ye(k)+ 3||P||2ε22
+ 3||P||2χ̃2

2 (k)||S2(Z2(k))||
2, (10)

where PT = P > 0, Y = P− 3BTPB.

III. REDUCED-ORDER OBSERVER-BASED DISCRETE-TIME
CFC WITH INPUT CONSTRAINT
In this section, reduced-order observer-based discrete-time
CFC method for PMSMs with input constraint and load
disturbance will be designed. The block diagram is shown
in Fig. 1.

FIGURE 1. Block diagram of reduced-order observer based on input
saturation for PMSMs.

Assumption 1: The given reference signal ψ1d (k) and
ψ1d (k + 1) are known smooth bounded signals.

Define the error signals and the compensating signals as:
e1(k) = ψ1(k)− ψ1d (k),
e2(k) = ψ̂2(k)− c1c(k),
e3(k) = ψ3(k)− c2c(k),
e4(k) = ψ4(k),


ξ1(k) = e1(k)− ς1(k),
ξ2(k) = e2(k)− ς2(k),
ξ3(k) = e3(k)− ς3(k),
ξ4(k) = e4(k)− ς4(k),

where c1c(k) = c1,1(k) and c2c(k) = c2,1(k) are the output
signal, the virtual control functionα1(k) andα2(k) are defined
as the input signals of the command filter. The compensation
signal is defined as ξm(k) = em(k)− ςm(k), (m = 1, 2, 3, 4).
em(k) is the tracking error signal. ςm(k) is compensated error

signals, which is used to compensate the filtering error gener-
ated by the first-order filter and improve the control accuracy
of the system.
Step 1: Choose the Lyapunov function V1(k) = 1

2ς
2
1 (k),

1V1(k) is described as follows:

1V1(k) =
1
2
[ψ1(k)+1T ψ̂2(k)

−ψ1d (k + 1)− ξ1(k + 1)]2 −
1
2
ς21 (k). (11)

Virtual control function α1(k) is constructed and the com-
pensating signal is adopted as:

α1(k) =
1
1T

[ψ1d (k + 1)− ψ1(k)]+ t1ξ1(k), (12)

ξ1(k + 1) = 1T [ξ2(k)+ c1c(k)− α1(k)+ t1ξ1(k)] , (13)

where |t1| ≤ 1.
Put Eq.(12) and Eq.(13) into Eq.(11) to get:

1V1(k) =
1
2
[1T (ψ̂2(k)− c1c(k))− ξ2(k)]2 −

1
2
ς1

2(k),

≤ 12
Tς

2
2 (k)+1

2
T e

T (k)e(k)−
1
2
ς21 (k). (14)

Remark 1: Using the backstepping method, the virtual

controller is selected as: α1(k) =
1
1T

[ψ1d (k + 1) − ψ1(k)],

which contains the information of future state ψ1d (k + 1).
Therefore, the “noncausal problem” appears in the traditional
backstepping method.
Step 2: Choose the Lyapunov function V2(k) = V1(k) +

1
2ς

2
2 (k), 1V2(k) is described as follows:

1V2(k) =
1
2
[ψ3(k)+ χ̂2(k) ‖S2 (Z2(k))‖ + g2e0(k)

− c1c(k + 1)− ξ2(k + 1)]2 +1V1(k)−
1
2
ς22 (k).

(15)

Virtual control function α2(k) is constructed and the com-
pensating signal is adopted as:

α2(k) = c1c(k + 1)− χ̂2(k) ‖S2 (Z2(k))‖

− g2e0(k)+ t2ξ2(k), (16)

ξ2(k + 1) = ξ3(k)+ c2c(k)− α2(k)+ t2ξ2(k), (17)

where |t2| ≤ 1.
Put Eq.(16) and Eq.(17) into Eq.(15) to get:

1V2(k) =
1
2
[ψ3(k)− ξ3(k)− c2c(k)]2 +1V1(k)

−
1
2
ς22 (k)

=
1
2
ς23 (k)+1V1(k)−

1
2
ς22 (k). (18)

Remark 2: By using reduced-order observer, this paper
does not need to measure the rotor angular velocity directly.
Moreover, system complexity is increased by the use of phys-
ical sensor. Reduced-order observer simplifies the complex-
ity of the system and is widely used in practical engineering.
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Remark 3: In the traditional backstepping method, α1(k)
includes ψ1(k) and ψ1d (k + 1), and the virtual control

function α1(k) =
ψ1d (k + 1)− ψ1(k)

1T
; Then, α2(k) con-

tains ψ1(k), ψ2(k) and α1(k + 1), and the virtual con-

trol function α2(k) =
−(1+ a21T )ψ2(k)+ α1(k + 1)

a11T
.

Since α1(k + 1) =
ψ1d (k + 2)− ψ1(k + 1)

1T
, α2(k) =

−(1T+a212
T )ψ2(k)+ ψ1d (k+2)− ψ1(k+1)

a112
T

is obtained.

Therefore, when the difference of the virtual control func-
tion is calculated repeatedly, the “complexity of computa-
tion” problem appears. With the increase of system order,
the derivation process is also complex. In this paper, the CFC
method is developed to effectively solve this problem.
Step 3: Choose the Lyapunov function V3(k) = V2(k) +

1
2
ς23 (k), 1V3(k) is expressed as:

1V3(k) =
1
2
[b41T uqs(k)+ f3(k)]2 +1V2(k)

−
1
2
ς23 (k), (19)

where f3(k) = (1 + b11T )ψ3(k) + b21Tψ2(k) +
b31Tψ2(k)ψ4(k)− c2c(k + 1)− ξ3(k + 1).
According to lemma 2 [35], there are FLSs:

f3(k) = W T
3 S3(Z3(k))+ τ3, (20)

where Z3(k) = [ψ̂1(k), ψ̂2(k), ψ3(k), ψ4(k), ψ1d (k)]T , τ3 is
defined as the approximation error and |τ3| ≤ ε3(ε3 > 0).
Remark 4: There are fuzzy logic systems f3(k) =

W3
T S3(Z3(k)) + τ3. f3(k) is an unknown nonlinear function.

f3(k) contains the future information c2c(k + 1), ξ3(k + 1)
and higher order nonlinear functionsψ4(k) which increase the
complexity of the algorithm. Therefore, using FLSs to design
controller becomes simple.

With ξ3(k) = 0, the saturated nonlinear input signal
vq(k), the input signal uqs(k) of PMSMs drive systems are
selected as: vq(k) = −

1
b41T

Ŵ3(k) ‖S3(Z3(k))‖ ,

uqs(k) = gvλ(k)vq(k)+ Y (vq(k)),
(21)

where gvλ(k) = 1. Define ‖W T
3 ‖ = χ3 (χ3 > 0). χ̃3(k) =

χ3 − χ̂3(k) is an estimation error.
The adaptive law χ̂3(k + 1) are chosen as:

χ̂3(k + 1) = χ̂3(k)+ ι3 ‖S3(Z3(k))‖ ς3(k + 1)

− η3χ̂3(k), (22)

where ι3 and η3 are positive parameters which greater than 0.
Substitute Eq.(20) and Eq.(21) into Eq.(19) to obtain:

1V3(k) =
1
2
[W̃3(k) ‖S3 (Z3(k))‖ + τ3 + b41TD]2

+1V2(k)−
1
2
ς23 (k),

≤ 2χ̃2
3 (k)‖S3(Z3(k))‖

2
+ 2b241

2
TD

2
+ ε23

+1V2(k)−
1
2
ς23 (k). (23)

Step 4: Choose the Lyapunov function V4(k) = V3(k) +
M
2 ς

2
4 (k), whereM > 0, 1V4(k) is described as follows:

1V4(k) =
M
2
[c31T uds(k)+ f4(k)]2 +1V3(k)

−
M
2
ς24 (k), (24)

where f4(k) = (1 + c11T )ψ4(k) + c21Tψ2(k)ψ3(k) −
ξ4(k + 1).
According to lemma 2 [35], there are FLSs:

f4(k) = W T
4 S4(Z4(k))+ τ4, (25)

where Z4(k) = [ψ̂1(k), ψ̂2(k), ψ3(k), ψ4(k), ψ1d (k)]T , τ4 is
defined as the approximation error and |τ4| ≤ ε4(ε4 > 0).

With ξ4(k) = 0, the saturated nonlinear input signal
vd (k), the input signal uds(k) of PMSMs drive systems are
selected as: vd (k) = −

1
c31T

χ̂4(k) ‖S4(Z4(k))‖ ,

uds(k) = gvλ(k)vd (k)+ Y (vd (k)),
(26)

where gvλ(k) = 1. Define ‖W T
4 ‖ = χ4 (χ4 > 0). χ̃4(k) =

χ4 − χ̂4(k) is an estimation error.
The adaptive law χ̂4(k + 1) are chosen as:

χ̂4(k + 1) = χ̂4(k)+ ι4 ‖S4(Z4(k))‖ ς4(k + 1)

− η4χ̂4(k), (27)

where ι4 and η4 are positive parameters.
Substitute Eq.(25) and Eq.(26) into Eq.(24) to obtain:

1V4(k) =
M
2

[
χ̃4(k) ‖S4 (Z4(k))‖ + τ4 + c31TD

]2
+1V3(k)−

M
2
ς24 (k),

≤ −
M
2
ς24 (k)−

1
2

(
1−12

T

)
ς22 (k)−

1
2
ς21 (k)+ ε

2
3

+ 2M χ̃2
4 (k)‖S4(Z4(k))‖

2
+ 2χ̃2

3 (k)‖S3(Z3(k))‖
2

+ 2M + c231
2
TD

2
+Mε24 + 2b241

2
TD

2. (28)

Next, it is proved that the closed-loop system is semi-
globally uniformly ultimately bounded by Lyapunov stability
analysis. Theorem 1 is shown as follows:
Theorem 1: For discrete-time systems (2) under Assump-

tions 1 and the given signal ψ1d , the reduced-order observer
(8), the nonlinear input saturation controllers (21) and (26),
the virtual control functions (12) and (16), compensating
signals (13) and (17), the adaptive laws (22) and (27) can
guarantee that the position tracking error can converge a small
neighborhood of the origin and all closed-loop signals are
semi-globally uniformly ultimately bounded. The proof of
detail is given as follows:
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Proof: In order to verify the feasibility of the command
filtered discrete-time control method proposed in this paper,
Lyapunov function is used as follows:

V (k) = V0(k)+ V4(k)+
1
2ι2
χ̃2
2 (k)+

1
2ι3
χ̃2
3 (k)+

M
2ι4
χ̃2
4 (k).

The first-order difference of V (k) is expressed as:

1V (k)

= 1V0(k)+1V4(k)+
1
2ι2

[χ̃2
2 (k + 1)− χ̃2

2 (k)]

+
1
2ι3

[χ̃2
3 (k + 1)− χ̃2

3 (k)]+
M
2ι4

[χ̃2
4 (k + 1)− χ̃2

4 (k)].

(29)

According to χ̃n(k + 1) = χn − χ̂n(k + 1)(n =
2, 3, 4), the adaptive laws (22) and (27), the following can
be obtained:

χ̃2
n (k + 1)− χ̃2

n (k)

= χ2
n + (1− ηn)2χ̂2

n (k)

+ ι2n‖Sn(Zn(k))‖
2ς2n (k + 1)

+ 2(1− ηn)ιn‖Sn(Zn(k))‖ςn(k + 1)χ̂n(k)

− χ̃2
n (k)− 2ιn‖Sn(Zn(k))‖ςn(k + 1)χn

− 2(1− ηn)χnχ̂n(k). (30)

Using ‖Sn(Zn(k))‖ ≤ ln and according to Young’s
inequality:

2ιn‖Sn(Zn(k))‖ςn(k + 1)χ̂n(k) ≤ ς2n (k + 1)ln
+ιnχ̂

2
n (k),

−2‖Sn(Zn(k))‖ςn(k + 1)χn ≤ ς2n (k + 1)ln + χ2
n ,

ι2n‖Sn(Zn(k))‖
2ς2n (k + 1) ≤ ι2nς

2
n (k + 1)ln,

−2χnχ̂n(k) ≤ χ̂2
n (k)+ χ

2
n . (31)

According to ςp(k) = ep(k) − ξp(k)(p = 3, 4), Eq.(1),
Eq.(20), Eq.(25) and Young’s inequality, the compensation
error signal is described as:{

ς23 (k + 1) ≤ 4χ̃2
3 l3 + 4b241

2
TD

2
+ 2ε23,

ς24 (k + 1) ≤ 4χ̃2
4 l4 + 4c231

2
TD

2
+ 2ε24.

(32)

Put Eq.(31) and Eq.(32) into Eq.(30) to get:

χ̃2
2 (k + 1)− χ̃2

2 (k)

≤ χ̂2
2 (k)

(
2+ η22 − η2(3+ ι2)+ ι2

)
+χ2

2 (ι2 − η2 + 2)− χ̃2
2 (k)+ ς3(k) (l2(1− η2 + ι2)) .

(33)

χ̃2
3 (k + 1)− χ̃2

3 (k)

≤ χ̂2
3 (k)

(
2+ η23 − η3(3+ ι3)+ ι3

)
+χ2

3 (ι3 − η3 + 2)+ 4b241
2
TD

2 (l3 − l3η3 + l3ι3)

+ χ̃2
3 (k)

(
4l23 − 4l23η3 + 4l23 ι3 − 1

)
+ 2ε23 (l3 − l3η3 + l3ι3) . (34)

χ̃2
4 (k + 1)− χ̃2

4 (k)

≤ χ̂2
4 (k)

(
2+ η24 − η4(3+ ι4)+ ι4

)
+χ2

4 (ι4 − η4 + 2)+ 4c231
2
TD

2 (l4 − l4η4 + l4ι4)

+ χ̃2
4 (k)

(
4l24 − 4l24η4 + 4l24 ι4 − 1

)
+ 2ε24 (l4 − l4η4 + l4ι4) . (35)

Put Eq.(28), Eq.(33), Eq.(34)and Eq.(35) into Eq.(29)
to get:

1V ≤ −eT (k)(Y −12
T )e(k)−

M
2
ς24 (k)−

1
2
ς21 (k)

−
1
2ι2

(l2η2 − l2 − l2ι2) ς23 (k)−
1
2

(
1− 212

T

)
ς22 (k)

+
1
2ι2

[(2+ η22 − η2(3+ ι2)+ ι2)χ̂
2
2 (k)

+(6ι2||P||2 − 1)χ̃2
2 + β2]

+
1
2ι3

[(2+ η23 − η3(3+ ι3)+ ι3)χ̂
2
3 (k)+ β3

+ (4l23 − 4l23η3 + 4l23 ι3 + 4l3ι3 − 1)χ̃2
3 (k)]

+
M
2ι4

[(2+ η24 − η4(3+ ι4)+ ι4)χ̂
2
4 (k)+ β4

+ (4l24 − 4l24η4 + 4l24 ι4 + 4l4ι4 − 1)χ̃2
4 (k)]. (36)

where

β2 = (ι2 − η2 + 2)χ2
2 + 6ι2||P||2ε22,

β3 = (ι3 − η3 + 2)χ2
3 + 2ε23(l3 − l3η3 + l3ι3)

+4b241
2
TD

2(l3 − l3η3 + l3ι3 + ι3/2),
β4 = (ι4 − η4 + 2)χ2

4 + 2ε24(l4 − l4η4 + l4ι4)
+4c231

2
TD

2(l4 − l4η4 + l4ι4 +M ι4/2).

By choosing the appropriate parameters M , ι3, ι4, η3 and
η4, the inequality are satisfied: 1 − 212

T > 0, l2η2 − l2 −
l2ι2 > 0, 4l2h − 4l2hηh + 4l2h ιh + 4lhιh − 1 < 0(h = 3, 4),
2 + η2j − ηj(3 + ιj) + ιj < 0(j = 2, 3, 4) and Y is positive

definite. If the error |ς2(k)| >
√

β2
2ι2(1−212

T )
, |ς3(k)| >√

β3ι2
ι3l2(η2−1−ι2)

and |ς4(k)| >
√

β4
M ι4

, then 1V (k) ≤ 0, which

means lim
k→∞
‖ς1(k)‖ ≤ σ for a small constant σ > 0.

Assuming cic(k) − αi(k) are bounded and |ti| < 1. Thus
the compensation signal ξi(k)(i = 1, 2) is bounded. Since
ς1(k) = e1(k) − ξ1(k) and ξ1(k) are bounded. Then it can
get that e1(k) is bounded. From Eq.(36), the conclusion is
summarized as follows:

1V (k) ≤ −aV (k)+ b (37)

where

a=min{l2η2 − l2 − l2ι2, 1− 212
T ,Y −1

2
T },

b=
1
2ι2

[(2+η22−η2(3+ι2)+ι2)χ̂
2
2 (k)+(6ι2||P||

2
−1)χ̃2

2+β2]

+
1
2ι3

[(2+ η23 − η3(3+ ι3)+ ι3)χ̂
2
3 (k)+ β3

+ (4l23 − 4l23η3 + 4l23 ι3 + 4l3ι3 − 1)χ̃2
3 (k)]

+
M
2ι4

[(2+ η24 − η4(3+ ι4)+ ι4)χ̂
2
4 (k)+ β4

+ (4l24 − 4l24η4 + 4l24 ι4 + 4l4ι4 − 1)χ̃2
4 (k)].
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FIGURE 2. Trajectory of the ψ1 and ψ1d (CFC).

FIGURE 3. Trajectory of the ψ1 and ψ1d (DSC).

FIGURE 4. Noise disturbance d(t).

According to reference [8], V (k) satisfies:

V (k) ≤
λ2

λ1
||V (0)||2(1− a)k +

b
λ1a

where V (0) is the given initial of V (k), λ1 > 0, λ2 > 0,
0 < a < 1, b ≥ 0.

Finally, all closed-loop signals are proved to be semi-
globally uniformly ultimately bounded.

FIGURE 5. Tracking error e1 (CFC).

FIGURE 6. Tracking error e1 (DSC).

FIGURE 7. The controller uqs (CFC).

Remark 5: It can be seen from the definition of a
and b that parameters η2, η3, η4, ι2, ι3, ι4 are selected to
ensure 0 < a < 1 and b ≥ 0. In order to meet{
|ς2(k)| >

√
β2

2ι2(1−212
T )
, |ς3(k)| >

√
β3ι2

ι3l2(η2−1−ι2)
, |ς4(k)| >√

β4
M ι4

}
, large control parameters ι2, ι3, ι4 and small control

parameters β2, β3, β4 are selected.
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FIGURE 8. The controller without input constraint uqs (CFC).

FIGURE 9. The controller uqs (DSC).

FIGURE 10. The controller uds (CFC).

IV. SIMULATION AND EXPERIMENT
A. SIMULATION RESULTS
In the simulation part, the CFC method is compared with the
DSC method for PMSMs drive systems. The parameters are
selected in Table 2.

TABLE 2. Parameters of PMSMs.

FIGURE 11. The controller uds (DSC).

FIGURE 12. Current signals for iqs and ids (CFC).

In this paper, the purpose of designing the controller is that
rotor position ψ1(k) can track given signal ψ1d (k) quickly
and effectively. The reference signal is selected as: ψ1d (k) =
4 cos(1T kπ/2). Choosing a smaller sampling time is con-
ducive to improving the control accuracy of the system,1T =

0.0025s. The initial value of system (2) is defined as:ψ1(0) =
ψ2(0) = ψ3(0) = ψ4(0) = 0. The load torque is described
as: when k < 4000, Tl is 1.0 N ·m. When k ≥ 4000, Tl is
2 N ·m.

The selection of fuzzy logic systems are as follows: µFbi =

exp[−(ψ̂i(k)+l)2 ] (i = 1, 2) and µFbj = exp[−(ψj(k)+l)2 ](j =

3, 4) contain eleven nodes b ∈ [1, 11] with l ∈ [−10, 10].
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FIGURE 13. Current signals for iqs and ids (DSC).

FIGURE 14. ψ̂1 (CFC).

In order to emphasize the rationality of the CFC method,
the CFC method and the DSC method are compared in this
paper.

(a) In the simulation, the CFC method is applied to the
PMSMs drive systems, and the design parameters are selected
as: ζ = 0.478,wn = 295, ι2 = 0.1430, ι3 = 0.0006, ι4 =
0.0001, η2 = 0.5514, η3 = 0.2581, η4 = 0.7991, g1 =
0.4907, g2 = 300.

(b) The DSC method is compared with the CFC method.
Both methods select the same optimal control parameters.

The simulation results are shown in Figs. 2∼17.
The CFC method with input constraint is illustrated
in Figs. 2, 5, 7, 8, 10, 12, 14, 16. By comparison, Figs. 3, 6, 9,
11, 13, 15, 17 reflect the DSC method with input constraint.
Trajectory of the ψ1(k) and ψ1d (k) are given in Fig. 2 and
Fig. 3. It can be seen that the tracking effect of Fig. 3 is
better than that of Fig. 2. The noise disturbance signal d(t)
is shown in Fig. 4. The tracking error curves e1(k) is given
in Fig. 5 and Fig. 6 for the noise disturbance signal. The
tracking error fluctuation curve of the CFC method is smaller
than that of the DSC method, so the CFC method has better
tracking effect and can improve the control accuracy of the
system. The curves of q−axis voltage uqs(k) is designed
in Fig. 7, Fig. 8 and Fig. 9. It is obvious that the controller

FIGURE 15. ψ̂1 (DSC).

FIGURE 16. ψ̂2 (CFC).

in Fig. 8 does not fully consider the input saturation problem.
Fig. 7 and Fig. 9 are comparative figures of the CFC method
and the DSC method. Although both methods can limit the
voltage to a reasonable range, the DSC method has a large
fluctuation near the zero point, which makes the PMSMs
run unstable and reduces the control effect of the system.
Fig. 10 and Fig. 11 are the curves of d−axis voltage uds(k).
The voltage fluctuation amplitude of the DSC method used
in Fig. 11 is relatively large. Fig. 12 and Fig. 13 show
the comparison of q-axis and d-axis current figures through
CFC and DSC method. The actual and estimated values of
the rotor position and rotor angular velocity are shown in
Fig. 14 ∼ Fig. 17 for the CFC and the DSC method. As can
be seen from Fig. 2 ∼ Fig. 17, the tracking effect of the CFC
method is better than that of the DSC method and the control
performance is good. The CFC method is more conducive to
industrial production.
Remark 6: It can be seen that Fig. 8 does not consider the

problem of input saturation, which will seriously affect the
control performance of the PMSMs. In Fig. 7, the input satu-
ration problem is considered, which can improve the control
effect of the motor and is suitable for practical applications.
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FIGURE 17. ψ̂2 (DSC).

FIGURE 18. Experimental platform.

Remark 7: As can be seen from Fig. 2 to Fig. 3, the control
method based on CFC and DSC can track the reference signal
ψ1d when the input saturation problem occurs. However,
Fig. 2 shows that the tracking error is small because the
error compensation mechanism is introduced into this paper.
Compared with the DSC method, CFC method used in this
paper has better tracking performance and is more suitable
for practice industry.
Remark 8: It can be seen from Fig. 5 and Fig. 6 that the

control method adopted in this paper can not only overcome
the influence of load disturbance and noise disturbance, but
also have small tracking error and anti-interference ability.
Remark 9: Note that the proposed discrete-time com-

mand filtered control method has good position tracking

FIGURE 19. Speed curves.

FIGURE 20. Current curve ids.

FIGURE 21. Current curve iqs.

performance without considering the iron losses. This work
is only a preliminary conclusion and will consider how to
reduce the above restriction. The traditional sampling control
wastes computing resources. The combination of ET mech-
anism and command filtered control method can not only
reduce the update frequency of the system, but also save com-
puting resources, which has important practical significance.

B. EXPERIMENTAL RESULTS
In this part, the experimental results of the PMSMs are pre-
sented and analyzed. A non-salient pole PMSMs based on
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FIGURE 22. A block diagram of the experimental setup.

130MB150A type was used in experiment. The controller
is the LINKS-RT rapid prototyping system. The simulator
be able to realize the simulation model. The parameters of
the motor are: rated speed is 1000r/min, rated torque is
14.5 N ·m, rated power is 1.5kW, rated current is 7.3A. The
experimental platform consists of hardware and software,
as shown in Fig. 18, which is divided into three parts: A,
B and C. The block diagram of the experimental setup is
shown in Fig. 22. In order to verify the feasibility of the
proposed control strategy, the experimental results are shown
in Fig. 19, Fig. 20 and Fig. 21. When t < 10s, the load
disturbance is 1N ·m. When t = 10s, the load disturbance
increases rapidly to 2N ·m. The given reference speed is
200r/min. Fig. 19 shows the corresponding speed curve.
Fig. 20 and Fig. 21 represent d-axis and q-axis current curves
respectively. The current fluctuation is small, which makes
the motor run more smoothly. The above experimental results
show that the proposed control method has small speed fluc-
tuation and strong anti-interference ability.

V. CONCLUSION
For the discrete-time system of PMSMs, this paper has pro-
posed adaptive fuzzy observer based on command filtered
control method for input constraint and load disturbance. The
rotor angular velocity is estimated by using a reduced-order
observer. The unknown nonlinear function is approximated
by FLSs. The “complexity of computation” problem is solved
by using command filtered control method, and the filtering
error is eliminated by using error compensation mechanism.
The stability analysis shows that all closed-loop signals are
semi-globally uniformly ultimately bounded. The simulation

results confirmed that the designed controller can consider
the influence of input constraint and load disturbance, so that
the designed controller has strong robustness and ensures
good tracking performance. In the future, wewill combine the
event-triggered mechanism with the CFC method and apply
it to practical industry.
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