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ABSTRACT We develop a new method for characterizing the lift force on a baseball. The methodology
addresses this task from the novel perspective of considering a large set of radar measurements acquired
outside of a laboratory setting. The reduced degree of standardization in the measurements is countered
by several elements of the approach. A new optimization method is developed that incorporates domain
knowledge and constraints derived from optical measurements. The optimization accounts for the uncertainty
in the different data sources while exploiting the size and diversity of the radar measurements to mitigate
the effects of systematic biases, outliers, and the lack of geometric information that is typically available
in laboratory experiments. Fine-grained weather data is associated with each radar measurement to enable
compensation for the local air density. By applying this methodology to a set of over two million trajectory
measurements, we achieve unprecedented accuracy in the characterization of the lift force. We show that the
lift coefficient is more than six percent greater than measured by previous laboratory experiments. We also
demonstrate the ability to predict increases in the lift coefficient in response to changes in seam height on the
order of a thousandth of an inch. Previous methods based on smaller sets of laboratory measurements have
been unable to discern changes in the lift coefficient in response to changes in seam height of 0.02 inches.
We demonstrate the statistical significance of the results. This work benefits several important application
areas including the monitoring of sensor calibration systems and the definition of ball specifications that
constrain trajectories to acceptable ranges.

INDEX TERMS Radar, air density, optical, sensor data, lift force, spin vector, surface roughness,
optimization.

I. INTRODUCTION
Baseball is a multibillion dollar industry that is popular in
many countries around the world. The mechanics governing
many facets of the sport can be represented using physical
models [1], [2]. Of particular interest is the flight of a pitch
which is a complicated function of the forces on the ball after
it leaves a pitcher’s hand. The force that the pitcher influences
the most, the lift force, determines how much a pitch trajec-
tory will change due to spin. A typical pitch is airborne for
about 400 milliseconds and the batter must predict its path
and start his swingwithin the first 200milliseconds [3]. Small
errors in prediction impair the batter’s ability to make contact
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and, as a result, pitchers benefit from using spin to alter pitch
trajectories [4].

The lift force acts perpendicular to the ball’s direction of
motion and is caused by a pressure differential between sides
of the spinning ball due to its interaction with surrounding air
molecules. This force is also known as the Magnus force [5]
and, contrary to the usual definition of the word lift, does
not necessarily act in the vertical direction. The magnitude
of the lift force depends on the air density, the ball speed
and cross-sectional area, and the lift coefficient. The lift coef-
ficient itself depends on physical quantities that the pitcher
controls including the velocity and spin vectors as well as
properties of the ball such as the surface roughness.

An accurate characterization of the lift force is important in
a variety of contexts. The ability to describe the dependence
of the lift force on quantities that the pitcher controls can be
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used to streamline the pitcher development process [6], [7].
Since aerodynamic properties of the ball have a significant
impact on player valuation and the competitive balance of the
sport [8], models that relate the lift force to characteristics
of the ball can be used to define specifications that ensure
that ball trajectories remain stable over time. This issue is
of such paramount importance that Major League Baseball
(MLB) has commissioned scientific committees [9], [10] to
study how the ball’s properties affect the game on the field.
In addition, models that relate the lift force to contextual
factors such as altitude can be used to inform decisions about
how to achieve success in different environments [11].

Key to quantifying the lift force is an accurate charac-
terization of the dependence of the lift coefficient on the
ball’s velocity vector, spin vector, and surface roughness [12].
Given the complex geometry of a baseball with a surface
composed of leather pieces that are stitched together to
generate a pattern of raised seams, this dependence can-
not be derived from first principles but must be measured.
Controlled experiments utilizing wind tunnels [13]–[15],
light gates [16], [17], or high-speed video systems [18]–[22]
have been used for these measurements. Each of these exper-
iments, however, has generated measurements for fewer than
200 pitches which limits the accuracy of the recovered
models.

In recent years, an array of sensors [23] has been deployed
that capture several terabytes of data during each Major
League Baseball (MLB) game. The Trackman (TM) radar, for
example, has captured data for more than 700,000 pitches per
year since being introduced as MLB’s primary pitch-tracking
technology in 2017. This data presents the opportunity to
characterize the lift force with improved accuracy due to the
reduction in the variance of estimators associated with larger
samples [24]. But this data also presents specific challenges.
Most MLB games are played outdoors where the weather
conditions are uncontrolled. The radarmeasurements are con-
taminated by outliers and there are systematic biases in sensor
output from site-to-site. In addition, the TM system does not
generate the full set of parameters that can be measured in
controlled experiments.

In this work, we develop a new methodology that exploits
large sets of TM sensor data acquired under uncontrolled
conditions to characterize the lift force. The characterization
considers all of the more than two million pitches that have
been measured in Major League games since the introduction
of the TM sensor in 2017. At the heart of the methodol-
ogy is an optimization technique that utilizes the knowledge
generated by previous laboratory experiments, accounts for
the uncertainty in different data sources, and leverages the
size and diversity of the radar data to overcome the lack
of an explicit spin vector measurement. To compensate for
variation in weather conditions, the TM data is augmented
with measurements from weather sensors near the time and
location of each pitch. Systematic biases due to pitchers,
pitch types, and site calibration differences are accounted
for by partitioning the TM data into pitch groups. Outliers

are a common problem for sensor systems and we use a
robust estimation process to mitigate their effects. The new
optimization method also enhances the generality of the char-
acterization by enabling sensor fusion of the TM data with
optical measurements acquired for a wide range of pitch
parameters. The new approach can be adopted for a range of
tasks that utilize large sets of sensor data that are frequently
becoming available.

The new approach allows the lift force to be modeled with
unprecedented accuracy. We show that a model derived using
the new methodology provides a significantly better fit to a
large set of sensor data than a previous model [2] that was
derived from several sets of optical measurements [18], [19],
[22]. We also show that the new model can account for small
changes in surface roughness due to variation in seam height.
This effect is important in the quantification of pitches [4], but
has not been detectable by previous models developed using
sophisticated experimental setups [17], [20].

We demonstrate that an accurate characterization of the
lift force can be used for several applications. We show that
a measured upper bound on the value of the lift coefficient
as a function of pitch parameters can be used to monitor
sensor calibration systems. We also show that the new model
can be used to derive pitch descriptors including the spin
efficiency [25] and spin vector that are useful for pitcher
evaluation and development [6], [7]. This work continues the
recent trend of exploiting sensor data to develop improved
models for the mechanics of sports [23], [26]–[28].

II. METHODOLOGY
In this section we provide an overview of the process devel-
oped in this paper and summarized in Figure 1 for modeling
the lift force on a baseball. Sec. III presents the physical
model for the lift force and introduces the key parameters
which include the dimensionless lift coefficient and spin
parameter which are typically measured using controlled lab-
oratory experiments. Sec. IV describes the Trackman radar
which has been used to measure the trajectories of millions
of pitches during games and we show that these measure-
ments can be combined with weather data to estimate the
model parameters. In Sec. V we explain the challenges in
using the radar data that include biases, outliers, and the
lack of information about the geometric relationship between
the spin and velocity vectors. We show that an important
advantage of the new approach as compared to the use of
laboratory measurements is that the availability of millions
of pitch trajectory measurements allows the use of groupings
and robust estimates to overcome these challenges. We also
show that small sets of optical measurements can be used
to further constrain the model. The physical properties and
statistical uncertainty associated with each of the data sources
are accounted for by an optimization method that generates
the new model presented in Sec. V. We use the Akaike
information criterion [29] to show that the new model is
significantly more accurate than a previous model derived
from small sets of laboratory measurements. We also show in
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FIGURE 1. Summary of model generation methodology.

Sec. V that the new approach recovers a statistically signifi-
cant relationship between the lift coefficient and seam height
which could not be discerned by previous methods [17], [20]
using sophisticated experimental setups.

III. BASEBALL AERODYNAMICS
A. THE FLIGHT OF A BASEBALL
Abaseball traveling through the air with a translational veloc-
ity vector v is acted on by three forces as shown in Figure 2.
Gravity pulls the ball down, drag acts opposite the velocity
direction, and the lift force causes the ball to change direction
due to spin. The lift force depends on the spin vector ω which
has a magnitude defined by how fast the ball is spinning, e.g.
2400 revolutions per minute (rpm), and a direction defined
by the spin axis and the right-hand rule as shown in Figure 3.
The magnitude of the lift force [22] is given by

|FL | =
1
2
ρACL |v|2 (1)

where ρ is the air density, A is the ball cross-sectional area,
and CL is the dimensionless lift coefficient. Increases in CL
increase |FL | and cause larger spin-induced changes in pitch
trajectory which typically lead to improved pitch quality [4].
If we define the velocity and spin vector directions by the unit
vectors v̂ = v/|v| and ω̂ = ω/|ω|, then the lift force is in the
direction of ω̂ × v̂.

The spin vector ω can be written as

ω = ω‖ + ω⊥ (2)

where ω‖ is parallel to v̂ and ω⊥ is perpendicular to v̂. ω‖
is known as the gyro component of the spin and does not
contribute to the lift force [30]. The magnitude of ω⊥ is given
by

|ω⊥| = |ω||ω̂ × v̂|. (3)

The dimensionless spin parameter S [12] plays an impor-
tant role in determining CL and is defined as the ratio of
the speed of the ball surface relative to its center to the
translational speed of the ball center

S =
2πR|ω|
|v|

(4)

where R is the ball radius.

FIGURE 2. Forces on a spinning baseball in flight.

FIGURE 3. Spin vector ω.

B. THE RELATIONSHIP BETWEEN CL AND S
Watts and Bahill [31] speculated in 1990 that the lift coeffi-
cient CL depends on the ratio |ω̂× v̂| of |ω⊥| to |ω| and Jinji
and Sakurai [19] later confirmed this using an experiment
with measurements for 168 pitches using a set of synchro-
nized video cameras. Nagami et al. [21] used a similar setup
to make measurements for 75 pitches and to show experimen-
tally that

CL = f (S)|ω̂ × v̂| (5)

where f (S) is an increasing function of S with f (0) = 0.
They also showed that this conclusion was consistent
with previous video-based optical measurements made by
Alaways and Hubbard [18] (17 pitches) and Nathan [22]
(22 pitches) for the special case where |ω̂ × v̂| = 1. The
studies reported in [18] and [22] assigned uncertainties to the
measurements using methods described in the articles.

A frequently used approximation to f (S) was presented
in [2] that is based on a fit of experimental data from several
sources including [18], [19], [22]. These data sets, however,
include a relatively small number of pitch measurements as
detailed above. These measurements also have significant
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scatter, particularly in the region 0.1 ≤ S ≤ 0.3which is most
relevant forMLB pitches. In this workwe consider estimating
the function f (S) by combining these optical measurements
with a large set of radar measurements collected during MLB
games.

IV. PARAMETER ESTIMATION
A. TM PITCH DATA
The Trackman (TM) phased-array Doppler radar operates in
the X-band at approximately 10.5 GHz and has been used to
measure 3-D pitch trajectories and spin information for over
two million pitches thrown in MLB games between 2017 and
2019. The TM system generates a nine-parameter model for
each pitch in terms of the three-dimensional acceleration vec-
tor a = (ax , ay, az) which is assumed constant over the pitch
trajectory and the three-dimensional velocity and position
vectors for a point on the trajectory. These parameters can be
used to recover the full path of the pitch from the measured
release point using the equations of motion [32]. The system
also estimates the magnitude of the spin vector |ω| from the
distribution of Doppler shifts.

B. ESTIMATING CL AND S
The TM radar data can be used to estimate the lift coef-
ficient CL and the spin parameter S for each pitch using
equations (1) and (4). Since both CL and S depend on the
velocity magnitude |v|which is not constant, we use the mean
velocitymagnitude |vµ| over each pitch trajectory to construct
the estimates. A similar approach has been used in previous
studies [33]. The acceleration vector recovered by the TM
system can be represented by

a = aD + aL + aG (6)

where aD, aL , and aG are the accelerations corresponding to
the drag, lift, and gravitational forces depicted in Figure 2.
Since the drag force is parallel and opposite to the velocity
direction and the lift force is perpendicular to the velocity
direction, we can compute the magnitude of aD as the pro-
jection of a− aG onto the velocity direction so that

aD =
[
(a− aG) · v̂µ

]
v̂µ (7)

where v̂µ = vµ/|vµ|. Therefore the lift acceleration is given
by

aL = a− aD − aG = a+
[
(a− aG) · v̂µ

]
v̂µ − aG (8)

and using equation (1) the lift coefficient for the pitch trajec-
tory can be estimated by

CL =
2m|aL |
ρA|vµ|2

(9)

where m is the mass of the ball and Newton’s second law is
used to relate the lift force FL and the lift acceleration aL .
Equation (4) can be used to compute the spin parameter for
the trajectory using

S =
2πR|ω|
|vµ|

· (10)

Each quantity on the right-hand side of equations (9)
and (10) is known or can be recovered from the TM mea-
surements except for the air density ρ.

C. ESTIMATING AIR DENSITY
The air density ρ can be computed from the altitude, tem-
perature, relative humidity, and barometric pressure. MLB
provides the temperature for the start of each game and
information on whether a retractable roof is open or closed.
We obtained additional weather information by identifying
the three closest weather stations that report on Weather
Underground (wunderground.com) for each MLB stadium.
Using the time stamps provided by the TM system, we deter-
mined the closest station that reported within thirty minutes
of each pitch. For pitches with multiple weather reports from
the closest station within this time window, we associated
the closest weather data in time. For domed stadiums or
cases where a retractable roof was closed, the air density
was computed using the MLB game temperature, a relative
humidity of 50 percent, and the barometric pressure retrieved
from a nearby weather station as described above. The alti-
tude for each MLB stadium was obtained from the Seam-
heads Ballparks Database (seamheads.com). We used this
approach to assign weather data to the 2.164 million pitches
analyzed in this study over the 2017 to 2019 MLB seasons.
The average time difference between pitches and weather
data was 14.06 minutes and the average distance between the
stadium and the weather station used for the measurement
was 1.93 km.

The air density ρ associated with each pitch was computed
in units of kg/m3 using the model from [34] given by

ρ =
(1.2929 ∗ 273.0)(P− 0.01VH )

760.0(T + 273.0)
(11)

where H is relative humidity in percent and T is temperature
in degrees Celsius. P is the absolute atmospheric air pressure
given by

P = b ∗ exp [(−gME)/(RT + 273.15)] (12)

where b is the barometric pressure in millimeters of mercury,
g is the earth’s gravitational acceleration in m/sec2, M is the
molecular mass of air in kg/mole, E is the elevation in meters,
and R is the universal gas constant in joules/(◦ K mole). V is
the saturation vapor pressure in millimeters of mercury which
is computed using the model in [35] given by

V = 4.5841 ∗ exp
[
(18.687− T/234.5)T

257.14T

]
· (13)

The estimated value of ρ obtained using equations (11),
(12), and (13) is used in (9) to complete the estimate of CL .

We examined the sensitivity of the air density estimate to
small changes in location and time using the 2019 pitch data.
For each pitch we considered the three closest weather sta-
tions W1,W2, and W3 and the measurement for each station
that was nearest to the time of the pitch. This yields three pairs
of stations (W1,W2), (W1,W3), and (W2,W3) for each pitch
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with the associated absolute differences1Time,1Space, and
1ρ for each pair. The average1Time and1Space differences
over the pairs were 7.18minutes and 5.53 km. Using the more
than 2.032 million resulting (1Time,1Space,1ρ) vectors
we fit a model of the form

1ρ = a ·1Time+ b ·1Space (14)

and found a = 3.27 × 10−4 and b = 1.44 × 10−3 using
units of minutes, kilometers, and kg/m3 for ρ. For the average
time (14.06 minutes) and space (1.93 km) differences associ-
ated with the estimate for each pitch, the model predicts a
1ρ of 0.0078 kg/m3 which is less than one percent of the
average air density of 1.149 kg/m3 over the pitches. We will
show in Sec. V-C that this uncertainty in air density has a
negligible effect on the new model that we develop for the
lift coefficient.

V. OPTIMIZATION TO RECOVER f (S)
A. SOURCES OF SCATTER IN (S, CL) DATA
The goal of this work is to find the function f (S) that defines
the mapping CL = f (S)|ω̂ × v̂|. We showed in Sec. IV that
by combining TM measurements and weather data we can
estimate S and CL for each pitch. In contrast to the video
setups described in Sec. III-B, however, the TM system does
not allow direct measurement of |ω̂ × v̂|. To alleviate this
difficulty, we can consider using the domain knowledge that
|ω̂× v̂| is often close to one for fastballs. If this were exactly
true, then we would expect a scatterplot of CL versus S for
fastballs to generate a curve that gives the function f (S).
Figure 4 is a scatterplot of CL versus S for pitches classified
as four-seam fastballs in 2017. We see that there is significant
variation in the values of CL for a given value of S which
prevents the direct use of these points for determining f (S).
Thus, we will develop a new methodology for finding f (S)
that overcomes this variation.

There are several sources that contribute to the scatter
in Figure 4. We examine a few of these sources in more detail
in Figure 5which plots the S andCL values for four-seam fast-
balls thrown by pitcher Ervin Santana in 2017. The pitches in
blue were thrown at Santana’s home ballpark, Target Field
in Minnesota, and the pitches in red were thrown at twelve
different ballparks when his team was not playing at home.
We see that there is a significant positive bias in the CL
values for Target Field which can be traced to calibration
issues with the TM system at that site [36]. If we restrict
the analysis to either the Target Field games (blue points)
or the away games (red points), we see that the points are
clustered around a central value with scatter that includes
multiple outliers. Scatter is due to factors that include natural
variation in pitches, variation in the physical properties of the
baseball [9], [10], sensor noise, and pitch classification errors.
We can further examine the scatter within the Away Games
cluster in Figure 5 by partitioning the data by day. Figure 6
plots the average S value for points in this cluster for each of
the twelve days that included at least twenty pitches. Figure 7
is the corresponding plot for the average CL values. We see

FIGURE 4. CL versus S for four-seam fastballs, 2017.

that the day-to-day variations appear random and are smaller
than the effects of park bias shown in Figure 5.

B. ROBUST ESTIMATES AND UNCERTAINTY
A specific pitch type thrown by a particular pitcher will have
unique velocity and spin characteristics which can change
from year-to-year as a pitcher ages and makes adjustments.
Thus, we generate a set of (S,CL) points from the TM data
by considering separately pitches corresponding to a specific
pitcher, pitch type, and year. We reduce the effects of ballpark
bias by only considering pitches thrown by a pitcher in away
games. After imposing this constraint, we identify all (pitcher,
pitch type, year) pitch groups, e.g. (Ervin Santana, Four-seam
fastball, 2017), which include at least 200 pitches. There were
a total of 1678 of these groups in our data set which were
nearly equally distributed over the three years with 549 in
2017, 565 in 2018, and 564 in 2019.

For a given pitch group, we reduce the measurements
to a single estimate of (S,CL). Since the data is contam-
inated by outliers, we use robust estimates based on the

FIGURE 5. CL versus S for Ervin Santana, Four-Seam Fastball, 2017.
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FIGURE 6. Average S by day for Ervin Santana, Four-Seam Fastball, away
games, 2017.

FIGURE 7. Average CL by day for Ervin Santana, Four-Seam Fastball, away
games, 2017.

sample median [37]. Figure 8 demonstrates the action of
the sample median as compared to the standard sample
mean. This figure plots the histogram of the CL values for
the 294 pitches in the (CC Sabathia, Sinker, 2017) group
after restricting to away games. We see that the distribution
includes outliers to the right which contribute to the mean
of 0.191 exceeding the median of 0.178. To minimize the
impact of outliers, the (S,CL) estimate for each pitch group
is given by (̂S, ĈL) where Ŝ is the sample median of the
group S values and ĈL is the sample median of the group CL
values.

For a sample of size n derived from a distribution with
probability density p(x) and median m, the uncertainty in
the sample median m̂ can be approximated by the asymptotic
variance of the estimator [38] which is given by

Var(m̂) =
1

4np2(m)
· (15)

For a computed m̂,we can approximate the right-hand side
of equation (15) by evaluating a kernel density estimate [39]
for p(x) at the sample median m̂. Figure 9 illustrates this pro-
cess for the ĈL estimate for two pitch groups. The first group
is (Matt Boyd, Changeup, 2017) with a size of 244 pitches
and a sample median of ĈL1 = 0.191. The second group
is (Marco Estrada, Four-seam fastball, 2017) with a size
of 908 pitches and a sample median of ĈL2 = 0.264. The
kernel density estimates p̂1(CL) and p̂2(CL) for these two
groups are plotted in Figure 9 and yield values of p̂1(ĈL1) =
5.793 and p̂2(ĈL2) = 17.975. Equation (15) then yields a
standard deviation for ĈL1 of 1/(2∗

√
244∗5.793) = 0.00553

and for ĈL2 of 1/(2 ∗
√
908 ∗ 17.975) = 0.00092. Thus,

Group 2 has a significantly smaller uncertainty due to both
its larger sample size and its more concentrated distribution.
The average standard deviation for the ĈL estimate over the
1678 pitch groups is 0.00201.

FIGURE 8. Distribution of CL for CC Sabathia, sinker, 2017, away games.

C. COMBINING RADAR AND OPTICAL MEASUREMENTS
Figure 10 is a scatterplot of the 1678 (̂S, ĈL) points generated
by applying the method described in the previous section to
TM radar data.We see that there is still significant variation in
CL for a given S. SinceCL depends on both S and |ω̂× v̂|, this
variation is due largely to differences in |ω̂ × v̂| for different
pitch groups. Based on the results of multiple previous exper-
iments [2], we can reasonably assume that there are (̂S, ĈL)
points for which |ω̂ × v̂| = 1 which allows estimation of
f (S) by finding a curve that is an upper bound to the points.
To improve the accuracy of the estimate, we can also consider
the use of the optical video measurements with assigned
uncertainties [18], [22] that were described in Sec. III-B.
In addition to having known values for |ω̂ × v̂|, the optical
data also includes measurements over a wider range of S
values.

Let (SO (i),CLO (i)) for 1 ≤ i ≤ NO denote the set
of (S,CL) points estimated using the optical video-based
techniques and let σO (i) be the standard deviation of each
CLO (i). Let (ST (i),CLT (i)) for 1 ≤ i ≤ NT denote the set of
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FIGURE 9. Kernel density estimates for CL, Boyd and Estrada pitch
groups, 2017.

(̂S, ĈL) points recovered from the TM data and let σT (i) be
the standard deviation of each CLT (i) as computed using the
approximation to equation (15) described in Sec. V-B. Given
a set of possible approximating functions f (S), we define the
optimizing function as the one that minimizes the sum of
the absolute errors weighted by the standard deviations of the
measurements

E =
NO∑
i=1

(
EO (i)
σO (i)

)
+

NT∑
i=1

(
ET (i)
σT (i)

)
(16)

where

EO (i) = |CLO (i)− f (SO (i))| (17)

and

ET (i) =

{
CLT (i)− f (ST (i)) if CLT (i) ≥ f (ST (i))
0 if CLT (i) < f (ST (i))

(18)

Since the optical measurements were generated for the
|ω̂ × v̂| = 1 configuration, the error EO (i) for each point
(SO (i),CLO (i)) is considered in E . Since |ω̂ × v̂| may be
less than one for the radar measurements, the error ET (i) in

FIGURE 10. ĈL versus Ŝ for 1678 TM pitch groups over 2017 to 2019.

equation (18) only contributes to E if a point (ST (i),CLT (i))
is above the approximating function value f (ST (i)).
We applied this optimizationmethod to the TM data (NT =

1678) in combination with the optical video data (NO = 39)
from Alaways and Hubbard [18] and Nathan [22]. After con-
sidering a range of increasing parametric functions, we found
that a Hill function of the form

CL(S) =
ASn

an + Sn
(19)

with parameters A = 0.370, n = 1.651, and a = 0.137
gave the best fit using the error measure in equation (16).
The computation to generate the model can be performed
by a search over the parameter space which requires less
than a minute on a standard PC. We recomputed the fit
after perturbing the air density estimate by 1ρ according to
equation (14) using the1Time and1Space separation of the
weather measurement from the pitch time and location and
found similar parameters A = 0.370, n = 1.658, and a =
0.138. The maximum difference between the two estimated
CL(S) functions was 0.0012 which corresponds to a differ-
ence of less than one percent so we conclude that uncertainty
in the air density estimate has little effect on the recovered
model.

Figure 11 plots the new model f̂ (S) along with the TM
data and the optical video data. The Previous Model curve
in the figure was presented in [2] as a representation for
several sets of optical measurements [22] and is given
by

CL(S) =
S

2.32S + 0.4
· (20)

We see that there are significant differences between the
models represented by equations (19) and (20) and the New
Model curve is more than 6 percent greater than the Previous
Model curve in the 0.20 ≤ S ≤ 0.35 range which is important
for MLB pitches. In particular, the Previous Model which
is based on a small number of optical samples is unable to
account for a large number of TM pitch groups that are above
the Previous Model curve in Figure 11.

We can compare the new model M1 in equation (19) and
the previous model M0 in equation (20) using the Akaike
information criterion (AIC) [29] which is defined for a model
M by

AIC(M ) = 2q(M )− 2 ln(L(M )) (21)

where q(M ) is the number of estimated parameters in
model M and ln(L(M )) is the log-likelihood [40] of the
model. For the data analyzed in this section the log-likelihood
is given by

ln(L(M )) = −
1
2

NO∑
i=1

[
ln
(
2πσ 2

O
(i)
)
+

(
EO (i,M )
σO (i)

)2
]

−
1
2

NT∑
i=1

[
ln
(
2πσ 2

T
(i)
)
+

(
ET (i,M )
σT (i)

)2
]

(22)
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where EO (i,M ) and ET (i,M ) are the error values defined
by equations (17) and (18) for model M . The difference
ln(L(M1)) − ln(L(M0)) for this data is 427.625 and the dif-
ference q(M1) − q(M0) is 1. Thus, the AIC difference is
AIC(M1) − AIC(M0) = 2 − 2 ∗ 427.625 = −853.25. Since
AIC(M1) is much smaller thanAIC(M0), the newmodelM1 is
preferred. If we use the AIC difference to compute the relative
likelihood [41]we find thatmodelM1 has a relative likelihood
that exceeds 0.99 and we conclude that the new model M1
provides a significantly better fit to the data.

FIGURE 11. New model f̂ (S) with points recovered from TM and optical
systems.

We can also ask whether the increased accuracy of the
new model corresponds to differences in ball trajectories
that are important for quantifying pitcher skill. Pitch move-
ment [42] is defined as the displacement of a pitch over a
distance of 40 feet due to the lift force. From the equations of
motion [32], movement is proportional to the magnitude of
the lift acceleration which by equation (9) is proportional to
the lift coefficient CL . The average movement of a four-seam
fastball over the three years of our study was 10.8 inches and
the six percent difference between the new model and previ-
ous model corresponds to a difference in movement of about
0.65 inches. Since the radius of a baseball is about 1.5 inches
this difference in movement can significantly impact the
ability of the batter to make solid contact with a pitch and,
not surprisingly, an analysis over a large set of pitches [4]
has shown that a change in movement of 0.65 inches has a
meaningful impact on pitch value.

D. SURFACE ROUGHNESS
1) PREVIOUS WORK
We have seen that the lift coefficient CL has a strong
dependence on the spin parameter S. Watts and Ferrer [15]
suggested in 1987 that CL may also depend on the surface
roughness. For a baseball, surface roughness is often defined
in terms of the seam height. Laboratory measurements [16]
reported in 2011 confirmed the Watts/Ferrer hypothesis by
demonstrating that the high-seamed collegiate ball had a
lift coefficient that was measurably greater than for the
lower-seamed MLB ball.

More recently [20] accurate techniques have been devel-
oped to measure the seam height which has enabled

sophisticated experiments to be devised to analyze its
relationship to CL . In 2015 an experiment was reported
that used balls projected from a custom machine utilizing
a piston-based pneumatic cannon with wheels to impart
spin [20]. Radar and high-speed video sensors were used to
measure the flight path and spin rate of the projected baseballs
in a controlled indoor environment. The flight time and carry
distance were used to estimate CL for each projected ball.
A range of seam heights was considered that varied from
0.035 inches to 0.055 inches as measured by a custom surface
profiler. A total of 52 trajectories were analyzed and the study
concluded that there was no discernible difference in CL over
this range of seam heights.

Another experiment [17] was reported in 2018 that used
a similar custom machine to project baseballs but used light
gates to generate multiple speed and position measurements
along a trajectory to estimate CL .A high-speed video camera
was used to verify the measurements. The experiment con-
sidered a low-seam ball with a seam height of 0.034 inches
and a high-seam ball with a seam-height of 0.046 inches as
measured by a custom surface profiler. The study analyzed
fewer than 100 trajectories and concluded that CL was not
sensitive to these differences in seam height.

2) USING f̂ (S) TO RELATE CL AND SEAM HEIGHT
Over the three years in our current study, the average seam
height for the MLB ball decreased from 0.0329 inches
in 2017 to 0.0305 inches in 2019 [10]. As described in
Sec. V-D1 measurements made with various custom exper-
imental setups were unable to discern differences in CL
over significantly larger changes in seam height. We can ask
whether the new method for modeling CL that uses large sets
of TM data partitioned into pitch groups is sensitive to these
small changes in seam height.

The large majority of the (̂S, ĈL) points in Figure 11 lie
well below the f̂ (S) curve and contribute an error of zero
to ET (i) in equation (18). These points do not affect the
recovered f̂ (S) function. The points that are most influential
in determining the function are points that lie above or near
f̂ (S). Some of these points are shown in Figure 12 which
plots the twenty (̂S, ĈL) points in Figure 11 for each of the
three years with the largest ratios ĈL /̂f (̂S). For a fixed S, we
observe that the value of ĈL depends on the year with the
largest ĈL values occurring for 2017. If we separately find
a model of the form Kf̂ (S) for each year that minimizes E
in equation (16) by considering only the measurements in the
TM range (0.1 ≤ S ≤ 0.35),wefindK2017 = 1.000,K2018 =

0.970, and K2019 = 0.968. This provides a separate esti-
mated f (S) function for each of the three years using the
measured trajectory and weather data. We can examine if
these estimated functions for predicting CL are sensitive to
the small changes in average seam height from year to year
as measured in the laboratory [10]. Figure 13 is a plot of K
as determined using the methodology developed in this paper
versus average seam height as measured independently in the
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laboratory for each year. We see that K and seam height have
a strong dependence as expressed by a sample correlation
coefficient of r = 0.995. The statistical significance of
this relationship can be assessed by testing the hypothesis
r > 0 [43]. This gives a t-statistic of 9.96 and a correspond-
ing p-value of 0.03. Thus, the relationship is significant and,
in contrast to methods [17], [20] described in the previous
subsection, the new approach can be used to model increases
in CL due to small increases in seam height.

VI. APPLICATIONS
In this section, we present applications that make use of the
recovered f̂ (S) function for monitoring TM system calibra-
tion and supporting pitcher development.

A. MONITORING SENSOR CALIBRATION
The function f̂ (S) represents the maximum value of the lift
coefficient CL for spin parameter S as described in Sec. V-C.
Since CL and S can be estimated from the TM data for each
pitch using themethod described in Sec. IV-B, we can use this
function to monitor the accuracy of the TM calibration. For
this purpose, we consider the distribution of the ratioCL /̂f (S)
where CL and S are estimated for each pitch in a game. As an
example, Figure 14 plots the distribution of this ratio for the
TMmeasurements for anMLB game played at SunTrust Park
in Atlanta on 11 June 2017. This is a fairly typical distribution
with a mean of 0.72 and a maximum of 1.4 with some of the
ratios exceeding one due to the sources of scatter described
in Sec. V-A.

FIGURE 12. (Ŝ, ĈL) points with the largest ĈL/̂f (Ŝ) for each year.

By accounting for variation in CL measurements we can
determine typical ranges for the CL /̂f (S) ratio. For 2017 the
average standard deviation ofCL within a (pitcher, pitch type)
group for away games is σC = 0.036.This standard deviation
captures sources of variability that include natural variation
in pitches and sensor noise. For a pitch with spin parameter
S and the maximum |ω̂× v̂| of 1, the expected value of CL is
f̂ (S). If the observed value of CL is two standard deviations
above this expected value, then the ratio CL /̂f (S) is given
by

f̂ (S)+ 2σC
f̂ (S)

· (23)

To approximate an upper bound for (23), we take a value
for f̂ (S) of 0.15 which is smaller than the f̂ (S) for nearly

FIGURE 13. Lift coefficient dependence on average seam height.

all of the measured S values in Figure 11. This gives a
ratio of (0.15 + 2*0.036)/0.15=1.48. Thus, we expect that
a large majority of the ratios should fall below 1.5 even after
allowing for a large |ω̂ × v̂|, a small f̂ (S), natural variation
in pitches, and variation due to sensor noise. We see that
this expectation is consistent with the distribution shown
in Figure 14.
Figure 15 plots the distribution of ratios for the next

MLB game played at SunTrust Park which occurred on
16 June 2017. We see that the distribution is shifted to the
right with a significant fraction of ratios exceeding two.
Based on the preceding analysis, this distribution is extremely
unlikely to result from variation in pitch parameters or sensor
noise and strongly suggests an issue with the sensor calibra-
tion system. Thus, by estimating the likelihood of theCL /̂f (S)
distribution we can identify potential calibration issues in
real-time.

FIGURE 14. Distribution of CL/̂f (S) for SunTrust Park, 11 June 2017.

B. RECOVERING THE SPIN EFFICIENCY AND SPIN VECTOR
The function f̂ (S) is the link that enables the spin vector
ω to be derived from TM data [33]. This vector and the
associated spin efficiency [25], [44] are important tools for
pitcher development and evaluation [6]. The spin efficiency
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|ω⊥|/|ω| measures the proportion of the spin vector magni-
tude that is transferred to the lift force FL . The spin vector ω,
more generally, determines the magnitude and direction of
FL as detailed in Sec. III. The lift force causes a change in a
pitch’s location in a predefined plane which is described by
a movement vector [42]. The direction and magnitude of the
movement vector have been shown to be key determinants of
a pitch’s effectiveness [4]. Since a pitcher controls the spin
vector with the orientation of his hand and fingers when he
releases a pitch, the availability of measurements of the spin
vector under game conditions can allow for pitchermechanics
to be monitored and can streamline the process of refining
pitches to achieve desired results.

FIGURE 15. Distribution of CL/̂f (S) for SunTrust Park, 16 June 2017.

We briefly summarize the use of the estimated f̂ (S) func-
tion to recover the spin efficiency and the spin vector. The
spin efficiency is defined by

E =
|ω⊥|

|ω|
(24)

which simplifies to E = |ω̂× v̂| using equation (3). Since CL
and S can be estimated from TM data for a pitch as described
in Sec. IV-B, E can be estimated using equation (5) by

Ê =
CL
f̂ (S)
· (25)

In a similar way, f̂ (S) can be used to estimate the spin
vector ω. As described in Sec. III-A, the ω‖ component of
the spin vector ω is parallel to v̂ and can be expressed as

ω‖ = |ω‖ |̂v (26)

where since ω‖ and ω⊥ are perpendicular we can write

ω‖ =

√
|ω|2 − |ω⊥|2 v̂. (27)

Since theω⊥ component of the spin vector is perpendicular
to both the velocity vector v and the lift acceleration aL , the
direction of ω⊥ is specified by the unit vector v̂ × âL where
âL = aL/|aL |. Using equation (3) we can write

ω⊥ = |ω||ω̂ × v̂|(̂v× âL) (28)

where the estimate Ê from (25) can be used for |ω̂ × v̂|
and the remaining quantities in equations (27) and (28) are
either directly measured by the TM radar or can be derived as
described in Sec. IV. This allows an estimate of ω to be gen-
erated by combining the right-hand sides of equations (27)
and (28) according to

ω = |ω||ω̂ × v̂| (̂v× âL)±
√
|ω|2 − |ω⊥|2 v̂ (29)

where the ambiguous sign is positive for a right-handed
pitcher and negative for a left-handed pitcher. We observe
that measurements derived from individual pitches can have
substantial scatter as discussed in Sec. V-A. This suggests
the use of robust estimates over pitch groups and a careful
consideration of uncertainty as described in Sec. V-B when
using f̂ (S) to estimate E and ω.

VII. CONCLUSION
The use of sensor systems to acquire data at sporting events
has enabled a range of new applications [23], [26]–[28].
In this work, we have developed a new method for using sen-
sor measurements to characterize the lift force on a baseball.
The approach combines a large set of TM radarmeasurements
made under uncontrolled game conditions with smaller sets
of optical measurements made under controlled laboratory
conditions. We have shown that the new approach provides
a significantly more accurate characterization of the lift force
than previous methods. In Sec. V-C we demonstrate that the
new model is more consistent with a set of more than two
million pitch measurements than an alternative model [2] that
was derived using small sets of optical measurements [18],
[19], [22] and we use the AIC difference to demonstrate
the statistical significance of this result. In Sec. V-D we
show that the new model captures dependence of the lift
coefficient on small changes in surface roughness that could
not be discerned by multiple previous efforts [17], [20] that
employed elaborate experimental setups and we compute
a t− statistic to demonstrate the statistical significance of
this result. Each of the previous experiments considered the
analysis of fewer than 100 trajectories. The results presented
in this paper demonstrate that by applying the new methodol-
ogy to a large set of in-game sensor measurements we can
improve on the accuracy of models derived from smaller
sets of measurements acquired under carefully controlled
conditions.

The new model for the lift force can be used for a diverse
set of applications. We showed in Sec. VI-A that constraints
on the lift coefficient can be used to monitor sensor cali-
bration systems. The relationship between the lift force and
the velocity and spin vectors can be used to support pitcher
development [6] and evaluation [45]. In particular, we showed
in Sec. VI-B that the new characterization allows recovery of
the spin efficiency and spin vector which are critical deter-
minants of the effectiveness of pitches [25]. The new model
also relates pitch trajectories to physical characteristics of
the ball. This allows the definition of ball specifications that
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constrain trajectories to a suitable range which is a topic of
considerable interest [9], [10]. As an example, we showed in
Sec. V-D that the new model can quantify changes in the lift
coefficient in response to small changes in surface roughness.
These changes are masked by the uncertainty in less precise
models [17], [20]. The new model may also be helpful in
quantifying other effects that have been difficult to measure
such as a side force that can occur if the ball is rougher on one
side over a significant fraction of its trajectory [31], [46]. In
summary, this work enhances understanding of the lift force
and will improve the utility of the TM radar system which is
used at many professional, college, and high school baseball
facilities.
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