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ABSTRACT Smart factories should be able to respond to catastrophic situations proactively, such as
recalls caused by production line disruptions and equipment failures. Therefore, the necessity for predictive
maintenance technology, such as fault detection or diagnosis of equipment has increased in recent years.
In particular, predicting the faults of collaborative robots is becoming increasingly crucial because smart
factories pursue efficient collaboration between humans and devices. However, collaborative robots have
the characteristic of executing programmable motions designed by an operator, rather than performing fixed
tasks. If existing fault diagnosis methods are applied to non–fixed programmable motions, problems arise
in terms of setting absolute criteria for fault analysis, interpreting the meanings of detected values, and fault
tracking or fault cause analysis. Therefore, we propose a method of programmable motion-fault detection by
analyzing motion residuals to solve the three problems mentioned above. The proposed method can expand
the fault diagnostic range of collaborative robots.

INDEX TERMS Programmable motion, collaborative robot, fault diagnosis, predictive maintenance, smart
factory.

I. INTRODUCTION
Smart factories should be able to respond to catastrophic
situations proactively, such as recalls caused by produc-
tion line disruptions and equipment failures. Therefore, pre-
dictive maintenance techniques are becoming increasingly
important, including device fault detection and diagnosis [1].
Additionally, environments are being prepared such that big
data can be collected from sensors embedded in equip-
ment and processed using machine learning techniques.
Predictive maintenance technology has attracted significant
attention [2].

Unlike factory automation, where the entire production
process is unmanned, smart factories use collaborative robots
to perform specific delicate and repetitive tasks during the
manufacturing process. The term ‘‘cobot,’’ which is short
for collaborative robot, refers to highly secure industrial
robots that perform physical interactions in the same space
with an operator. For conventional industrial robots, many
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overhead problems (e.g., reprogramming by experts and
remodeling of production lines) occur when moving previ-
ously installed robots to perform different jobs. Cobots can
freely learn motion commands by directly teaching by an
operator. Cobots can also detect minor collisions. When a
collision is detected, a cobot can be stopped and restarted
immediately, facilitating human collaboration, and increasing
productivity [3].

A cobot performs dynamic tasks driven by programmable
motions rather than fixed tasks. First, the operator designs
a program for the target task. They then instruct a cobot by
considering the type of task, the end–effectors (e.g., grip-
per, vacuum pump, or presser) required for the target task,
and collaboration processes (e.g., workspace size and range,
and motion sequences) with humans. Typically, a cobot can
execute two to three or more different programs per day,
where each program is composed of tens to hundreds of
motion command combinations. Each motion that makes up
a program can be extremely diverse in terms of the radius or
speed of rotation and the start and end points of movement
(changing position coordinates).
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FIGURE 1. The complexity of programmable motions in cobot.

Fig. 1 illustrates the hierarchical structure of pro-
grammable motion for cobot tasks (Fig. 1(a) ‘‘Assemble’’
and Fig. 1(b) ‘‘Inspection’’). A cobot can complete one
task using multiple programs (Fig. 1(b) ‘‘Inspection: P2 and
P4’’), or by repeatedly calling a single program (Fig. 1(a)
‘‘Assemble: P3’’). In addition, one program can perform a
task by combiningmultiplemotions. For example, in program
‘‘P3’’ in the assembly task, there are three motion com-
mands: ‘‘Move_Pose()’’, ‘‘Gripper_Open()’’ and ‘‘Gripper_
Close()’’. An operator can design a program (‘‘P3’’) using
various combinations of motions depending on the end
effector type.

Cobot faults are detected by collecting and analyzing data
such as position, speed, and torque data, as shown at the
bottom of Fig. 1 (‘‘Sensing & Logging’’), from built–in
sensors. Sensing data have very different patterns according
to various settings for tasks, programs, motions, and end
effectors in each axis (‘‘J1’’ to ‘‘Jn’’) that is equipped with a
sensor. Therefore, it is necessary to analyze the sensing data
by considering all these factors for fault diagnosis. However,
it is difficult to apply conventional fault diagnosis meth-
ods directly to cobots because such methods only focus on
environments that utilize fixed motions [4–8]. The detailed

problems faced when applying the existing methods are dis-
cussed below:

First, we cannot define the diagnostic threshold for detect-
ing programmable motion-faults of cobots at the time of
production line testing. A program is composed of various
motions that are defined by an operator and one motion is
operated under the various conditions, including load, end
effector, moving speed, temperature, and so on. After ship-
ment to the cobot’s operator, a cobot is driven by many
programmable motions, as shown in Fig. 1, depending on
the target working conditions. Fig. 2 illustrates the data pat-
terns from a torque sensor when a cobot repeatedly executes
various motion commands according to the target manufac-
turing process. The x-axis represents the passage of time
during which the cobot performs different motions and the
y-axis represents the torque data from one axis collected
while executing motions. The torque data sensed from each
movement (motions A, B, and C) can be used to define a
standard data pattern (green line) by statistically analyzing
the data during each execution cycle. However, it is difficult
to determine the expected value (traditional data pattern) of
the green line in advance. This is because we cannot consider
dynamic conditions such as all programs, operations, and
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FIGURE 2. Torque data generated from various motions.

work environments defined by an operator at the time of
shipment. In other words, it is difficult to accurately detect
faults in a cobot using a predefined model. Therefore, it is
necessary to find a reference pattern for the target situation
by structurally analyzing the executed programs and motion
commands.

Second, we face a problem in terms of interpreting the
meaning of the detected values. Even if the sensing val-
ues obtained from a cobot appear to have similar values,
they may have different meanings depending on the target
tasks and motion commands. Fig. 2 presents a red dot-
ted line through points 1© to 4© in motions A, B, and C.
All these points have the same torque values. However,
a programmable motion-fault appears only in the case of
point 1©. This is because we must detect abnormalities based
on a defined set of conditions (e.g., work performed, type of
motion, or number of repetitions). Here, the meaning of ‘pro-
grammable motion-fault’ is not a physical fault but abnormal
behavior of user-defined and command-level motions. If the
‘move_pose()’ motion, which stops at a fixed coordinate,
does not work properly, the motion may occur to draw a
slightly short-ended line. At this time, we want to prove that
there are anomalous patterns of some sensing values hidden
behind the faulty motion. As shown in ‘‘Motion A’’ in Fig. 2,
there is an anomalous pattern. This is because the previ-
ously analyzed standard data pattern (green line) and actual
measured value (blue line) differ when performing the same
motion. Thus, we defined the standard data pattern based on
the average values of several sections in which the cobot
executes the same motions. However, because data–driven
fault diagnosis methods cannot consider the diversity of the
programmable motions of a cobot, anomalies may occur in
a fixed test program. For example, it was difficult to detect
abnormalities in programs designed by an operator [9]–[13].
Similarly, component–level fault diagnosis models such as
motors [7], [8], rolling bearings [14]–[16], gears [17]–[19],
and sensors [20] are also designed based on predefined test
programs. Thus, it has a similar limitation in the conventional
approach.

Third, it is difficult to explain the causes of abnormalities
in a cobot using conventional fault diagnosis algorithms.
Excessive program operations are the main cause of faults

in the cobots. However, current fault diagnosis technology
focuses only on detecting fault points based on predefined
failure modes (e.g., position anomalies, vibration, or noise)
[21], [22]. Therefore, it is difficult to reveal the underlying
causes and prognostic symptoms in a scenario where a fault is
detected. Additionally, it is challenging to provide traceability
for programs and motions that affect the occurrence of faults.
However, to prevent or predict failures, it is crucial to deter-
mine the causes of a fault by backtracking programmable
operations when anomalies occur, including irrational pro-
gram operations and motions.

In this paper, we propose the followingmethods for solving
the three problems discussed above.

1. We construct a data model that can hierarchi-
cally analyze the relationships between sensing
values and cobot operation information. To this end,
in Section 3, three analysis data models (sensing, oper-
ation, and fault/failure) are proposed.

2. We analyzed data correlations between the sensing
data and operation data to track programmable
motions with anomalies. To this end, in Section 4,
we propose a program and motion PM) indexing
method and parsing technique.

3. We define the detection criteria of a programmable
motion-fault by statistically analyzing the sensing
values with the same PM. To this end, Section 5 pro-
poses a motion residual analysis method for each
parameter (position, speed, and torque). This method
extracts a representative pattern based on the expected
value for a regular operation and measures the abnor-
mality of the current execution section.

In Section 2, we discuss existing predictive mainte-
nance technologies for cobots based on related research.
In Section 3, we present three data models. Section 4 presents
a PM indexing method for understanding the correlations
between tasks, programs, and motion. In Section 5, we pro-
pose a motion residual analysis method for programmable
motion-fault detection. In Section 6, we present experimental
results for the three proposed methodologies (data model,
PM data indexing method, and analysis of motion residuals)
based on data collected from a cobot. The conclusions are
summarized in Section 7.
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II. RELATED WORK
Preventative maintenance is a method for maintaining device
health by replacing parts regularly, regardless of the presence
of malfunctions or abnormalities. Conventional preventive
maintenance utilizes cost–effective maintenance strategies
or work-scheduling techniques for equipment [23]. In this
strategy, it is difficult to determine the appropriate replace-
ment timings, which can lead to production line disruptions
based on unnecessary replacement. Predictive maintenance
technology attempts to detect faults in advance and predict
failure [2]. This approach is primarily divided into physical–
model–based approaches and data–driven approaches [24].

Physical model–based approaches attempt to diagnose fail-
ures by defining mathematical models of equipment physics.
Many studies utilize this method based on its high accuracy
for fault detection and the ability to diagnose based on small
amounts of fault data [25]. In addition, [26] proposed a
probabilistic fault estimation model for a single-link robot
arm. However, it is difficult to define failure mechanisms in
advance. This is because if a model has many conditions,
then it is challenging to implement the model considering
the complexity of multiple variables. Therefore, most facto-
ries apply these models based on experience from industry
experts.

In contrast, data–driven approaches utilize built-in sensors
to collect data. Technologies such as statistics, machine learn-
ing, and deep learning can be used to discover and detect
device fault patterns.We can apply this approach tomultivari-
ate systems that are difficult to analyze using model–based
approaches. However, this method has the disadvantage of
requiring larger amounts of high–quality failure data com-
pared to model–based approaches. Such data are not readily
available when the sensor data collection is difficult.

For example, it is challenging to collect failure data in
large–scale systems such as wind power generation [5] and
steam turbine systems [6]. The authors of [5], [6] statisti-
cally analyzed a small amount of data to obtain a predefined
fault detection model. In recent years, technologies of device
connectivity, such as the Industrial Internet of Things (IIoT),
have been applied, making it easier to collect sensor data.
Therefore, recent studies have collected large amounts of big
data to derive fault-detection models.

Data–driven fault detection methods can be divided into
two main categories: statistics–based and learning–based
methods. First, statistics–based methods attempt to detect
device faults by numerically deriving health factors. For
example, in studies related to the fault detection of
motors [7]–[9], rolling bearings [14]–[16], gears [17]–[19],
and sensors [20], the health factors of each device (e.g.,
vibration signal, speed signals, or kinetic signals) are derived
via physical and spatial analysis (e.g., frequency domain
analysis and spatiotemporal analysis). In addition, there is a
feature extraction method for defect detection and isolation.
The most representative feature extraction method is the prin-
cipal component analysis (PCA) method, and various studies
are being conducted using it. In [27], a PCA-based hidden

Markov model was proposed for intelligent fault diagnosis.
[28] used PCA method to extract spatial features from multi-
variate robot arm data.

In contrast, learning–based methods use collected data to
generate a predictive model and derive health factors. For
example, several machine learning techniques, such as lin-
ear discriminant analysis [29], support vector machine [30],
and extreme learning machines [15], [16], have been used
to diagnose faults in rolling bearings. Many recent studies
have used deep learning techniques for fault diagnosis by
collecting unprecedented amounts of failure data. In [31],
[32], a rolling bearing fault diagnosis model was proposed by
applying the structures of a convolutional neural network [31]
and a recurrent neural network [32]. Additionally, many stud-
ies have used learning–based approaches to diagnose systems
with high complexity, such as systems where physical models
cannot be applied or fault patterns are difficult to analyze
physically.

The cobot considered in this study is a multivariate system
that detects signals from various sensors, such as position,
speed, and torque sensors installed in industrial robot arms.
The programs and operations are complex depending on
the work environment. Therefore, a data–driven approach
that analyzes the physical aspects of dynamic scenarios is a
promising technique. In [10], a method for detecting faults in
gearboxes based on vibration signals from industrial robots
was developed. In this method, a health factor that maximizes
and quantifies the fault information from vibration signals is
defined.

However, this health factor does not consider dependencies
on industrial robot operating environments (e.g., work type,
PM type, end effector type, and load weight). Therefore,
it cannot be generalized and applied to all the operation
scenarios. Hidden Markov models [10], discrete wavelet
transform artificial neural networks [11], and unsupervised
learning models using signal analysis [12], [13] also sup-
port restricted operation environments. Most previous studies
performed data–driven failure pattern analysis. However,
because such methods have only been applied to fixed oper-
ating environments, it is difficult to detect faults when oper-
ating different programs in a smart factory. Therefore, it is
necessary to analyze sensing data related to the conditions of
various operating environments (e.g., PMs) and the criteria
for determining ideality according to different operations.

Industrial robots should also consider risk, safety, and per-
formance based on the ISO/TS 15066 standard [33]. There-
fore, cobot developers perform various tests such as assembly
tests, durability tests, and calibration for each joint, at the
time of production. However, at the time of shipment, it is
impossible to perform tests for all programmable motions
that a cobot can perform. Therefore, various studies have
attempted to develop more efficient testing methods.

The authors of [34] guided safe cooperation between
humans and robots under the standard discussed in [33].
The research in [35] focused on welding work performed by
cobots and humans and attempted to understand equipment
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conditions based on cobot performance evaluations in a work
cell. Such industrial cobot testing methods aim to assess
device health or performance and identify the causes of errors
or failures (e.g., excessive program operations or overload-
ing). However, previous studies have mainly performed test-
ing under constraints related to specific tasks or scenarios
(e.g., welding cells or assembly cells) and have focused on
diagnosing relatively simple faults or failures. Therefore,
the causes of faults, such as overloads or excessive program
operations, cannot be analyzed in detail.

This study aimed to construct a data analysis model
and develop an execution–oriented data analysis method for
identifying the causes of faults under different conditions
according to programmable motion, which is the most signif-
icant collaborative robot feature. The proposed method pro-
vides a basis for presenting sensing data and programmable
motion information by backtracking the constructed data
model when detecting anomalies.

III. DATA ANALYSIS MODEL FOR
PROGRAM-MABLE OPERATIONS
In this section, as illustrated in Fig. 3, we propose a data
model that can analyze the execution data using built–in
sensors. The proposed data model utilizes sensing data that
are periodically generated, and operation data that are aperi-
odically generated. The details of this model are discussed in
the following subsections.

FIGURE 3. Data analysis model for a cobot.

A. SENSING DATA
Cobots have six or seven joints depending on the desired
degree of freedom (DOF), and each joint has various built–in
sensors (e.g., torque, speed, and position). Fig. 4 presents
the schema of the sensor data model. Sensing data are
divided into three main categories, namely devices, joints,
and sensors, according to the corresponding physical object.
Figs. 4(a) - 4(c) present the structure of each type of data.
The detailed characteristics of each element are summarized
below.

• Device Data: Information regarding cobot specifi-
cations, including device identification number (ID),
device name, DOFs, manufacturer, date of manufacture,
and development version.

• Joint Data: Information regarding defined physical
ranges, including joint IDs, load (payload), maximum
speed (maxSpeed), radius of motion (range of travel),
and peak torque.

• Sensor data: Various sensors can be installed on each
joint, including position, speed, torque, temperature,
pressure, and vision sensors. Sensor data can be gen-
erated according to each sensor’s characteristics, and
they include a sensor ID, sensor name, and measured
value. In this case, the measured values were measured
in real time. A detailed description of this is provided
in Table 1.

TABLE 1. The description of sensor data.

B. OPERATION DATA
We can collect the sensing data described above in real time
according to the motion of the cobot. However, because
sensing data are information acquired from sensors, it is
non-trivial to derive operating information regarding the
cobot’s tasks, programs, and motions. Therefore, we propose
a model for operation data (e.g., boot information, program
information, motion information, and execution informa-
tion) that can be analyzed by linking the sensing data of
cobot. We classify the operation data into boot, program,
and motion information according to the data characteristics.
Data are generated aperiodically (intermittently) when an
event such as a boot, program, or motion execution occurs.
Fig. 5 presents the operation data schema, and a detailed
description is provided below.

• Datetime: Indicates the date/time log. The logging for-
mat is ‘‘YYYY–MM–DD HH:MM:SS.SSS.’’

• Level: Indicates the importance of a recorded event.
In the case of providing simple information, we can use
level 1 (INFO), with level 2 for warnings (WARN) and
level 3 for errors (ERROR).

• Identifier: As a field for identifying events, different
identifiers can be recorded depending on the type of
event that occurs. We can express boot information
as #BOOT, program information as #PROGRAM, and
motion information as #MOTION.

• Message: This is a field for detailed information in
free text format. For example, in #PROGRAM, we can
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FIGURE 4. The schema for sensing data.

FIGURE 5. The schema for operation data.

record additional information regarding the program’s
name or version. In #MOTION, we can record informa-
tion such as the type of movement or target position.

C. FAULT & FAILURE DATA
Fault and failure data are data from the time that we recognize
as a fault or failure. Sensing data and operation data are
synthesized and generated aperiodically (intermittently) only
in the fault and failure cases. The window size for synthesis is
defined by a particular time before and after the occurrence of
a fault or failure. It should be defined such that we can analyze
data associations with failures. The event of a fault or failure
refers to a period at level 2 (WARN) or level 3 (ERROR) in
the operation data. The level of operation data is defined as
follows depending on the severity of the fault.
• Level 2 (WARN) represents an abnormal movement
(such as ‘‘Anomaly’’) that can be a precursor to malfunc-
tions or faults.

• Level 3 (ERROR) represents a case in which abnormal
motion operations occur as a result of a malfunction or
fault.

Fig. 6 presents examples of the data generated by a cobot
based on the proposed model. Anyone is free to organize
data generation based on the proposed schema. Sensing data
are continuously generated according to the horizontal time
axis and operation data are aperiodically generated when
an event occurs. Here, we can assign INFO, WARN, and
ERROR information according to the operation data level.
The three XML–based operation data displayed at the top of
Fig. 6 represent the cases of WARN and ERROR. Each block
represents information including the current anomaly data,
runtime errors, and torque anomaly data. Additionally, these
data are synthesized as fault data because their severity is two
or higher. The proposed data model can aid in analyzing the
sensing and operation data of a cobot. Furthermore, fault and
failure data can be systematically managed by defining the
severity levels.

IV. INDEXING OF PM DATA
Because cobots perform various programs and motions for
workers, it is necessary to establish systematic analysis units,
which are criteria for identifying normal and abnormal data
sections. Therefore, in this section, we propose a method
for extracting analysis units from the data model discussed
above. We define analysis units in the form of the index
hierarchy illustrated in Fig. 7 by reflecting the characteris-
tics of repeated executions from the programmable motion
relationship illustrated in Fig. 1. In Fig. 7, id is a unique
number and idx is a number that automatically increases with
iterations.

In summary, in Fig. 7, the designed index’s roles are
boot, program, motion, and each type of execution distinc-
tion. When the robot is booted up (boot) and the program
(program) is repeatedly executed (program execution),
the system counts the number of times of the internal
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FIGURE 6. Data generation for the analysis of cobot operations: sensing data, operation data, and fault & failure data.

FIGURE 7. The PM index hierarchy for the analysis of cobot abnormalities.

motions (motion) thatmake up the program have been repeat-
edly executed (motion execution).

A. HIERARCHICAL OPERATION DATA
Operation data are designed to generate information regard-
ing the tasks, programs, and motions executed by the cobots.
Therefore, there is a dependency between the execution of
programs and motion. There are four large hierarchical units:
boot, program, motion, and execution. Boot and execution
can be identified sequentially, and thus they are assigned in
the form of idx. Because PM information is unique depending
on the configuration, a value in the form of an id is assigned.
A description of each component index is provided below.
• boot_idx is a section from powering the cobot on to
turning it off.

• program_id is a unit according to the type of program
and configuration content executed during one boot.

• program_idx is a unit of program execution when run-
ning a program that has the assigned program_id.

• motion_id is a unit of motion that comprises each
program.

• motion_idx is a unit of motion execution when running
a motion that has the assigned motion_id.

To determine whether there is an abnormality in the cobot,
data generated under the same conditions (i.e., the same
program (program_idx) and motion (motion_idx)) should be
grouped. Therefore, in this study, we define three analysis
units: PM_id, PM_idx, and PMI_idx. PM_id represents a
PM type. For a given PM_id, we define the PM unit for
each program execution as PM_idx and the motion execution
section as PMI_idx (repetition of PM).

• The PM Identifier (PM_id) is a unit that can classify
the same PM (Program + Motion). If both program_id
and motion_id are the same, they can have the same
PM_id.

• The PM Index (PM_idx) is a unit that can classify
the same motion and program execution. When both
program_idx and motion_id are the same, they can have
the same PM_idx.

• The PM–Iteration Index (PMI_idx) is a unit that can
classify the same motion execution and program exe-
cution. If both PM_idx and motion_idx are the same,
they can have the same PMI_idx. Additionally, multiple
PMI_idxs are included in one PM_idx.

Fig. 8 presents a diagram of an actual robot execution sce-
nario using the proposed index hierarchy. As shown in Fig. 8,
the operator powers the cobot on at 20/10/29 15:30:27.301
and four different programs are executed 18 times (e.g., repeat
Program A 5 times, repeat Program B 2 times). Additionally,
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FIGURE 8. An Example of index hierarchy for operation data.

the type of motion that exists in each program differs depend-
ing on the program. For example, Program A contains three
motions (light blue, blue, and yellow bars), and Programs C
and D contain two motions. According to the proposed index
hierarchy, 1 boot_idx, 4 program_ids (A to D), 10 motion_ids
(A: 3, B: 3, C: 2, D: 2), 5 program_idx(A: 2, B: 1, C: 1, D:
1), and 48 motion_idx(A: 10 × 3, B: 2 × 3, C: 3 × 2, D:
3 × 2), B: are allocated. Additionally, 10 PM_ids (A: 3, B:
3, C: 2, D: 2), 13 PM_idxes (A: 3+3, B: 3, C: 2, D: 2), and
48 PMI_idxes are allocated according to the combination of
PMs. Thus, we can use these index hierarchies to define the
detection criteria for anomalous sections.

For example, suppose we have a PMI_idx execution
section with a consistent PM_id or PM_idx. If we find any
other data patterns in this section (PMI_idx with the same
PM_idx), it represents a deviation from the commonly per-
formed pattern and is detected as an abnormal execution
section. Fig. 9 presents multiple PMI_idx values of 100, 104,
108, 112, 116, 118, 122, 124, and 132 for PM_id 3 and
PM_idx 17. The execution start times of all indexes are
normalized to zero and sampled.

In Fig. 9, the programmable motion information execution
is consistent; therefore, the torque values of a similar pattern
should be observed. If we observe a pattern exhibiting large
differences from the common pattern, such as the torque
value of PMI_idx 118, we can identify an abnormal section.
The proposed index hierarchy can solve the difficulty of

FIGURE 9. Torque data for a given PM_idx.

establishing analysis criteria that arise from the complexity of
cobot tasks. If an abnormal section is detected, we can track
the running PM information of the abnormal PMI_idx.

B. PM PARSING RULES
This section discusses the extraction of PM information from
the generated operation data. First, we define parsing rules
to refine the operation data according to an XML schema.
We then design the database schema presented in Fig. 10.
This schema consists of five tables based on the indexes
described in the previous section. In the database, the ID
and index values that serve as primary keys for each table
are automatically assigned incremental values. The value
acting as a foreign key copied the value stored first in
the other table and assigned it. The rule for extracting
this value is defined in three steps, as shown in Fig. 11
(Boot Info→Program Info→Motion Info). Finally, we store
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FIGURE 10. Data structure of PM indexes.

the information derived from each step in a table in the
database.

The proposed method derives boot, program, and motion
information by analyzing the generated operation data.
We now describe the parsing process using example oper-
ation data generated based on the data model discussed in
Section 3.
• Parsing #Boot: Fig. 12 presents the boot information
of the cobot, and the time points of turning the cobot’s
power on and off are recorded as level 1 (INFO). This
information can be attracted according to the rules
in Fig. 11: # 1). The example in Fig. 12 can be extracted
based on the ∗ON and ∗OFF strings recorded in the
Message field of the data.

• Parsing #Program: Fig. 13 presents the information of
the program executed by the cobot. First, we can refer
to the Message field of the data and extract the program
information, as shown in Fig. 11: # 2–1). Additionally,
we can extract the program name and program version
information as shown in the same figure. In Fig. 11:
# 2–2), information regarding the program execution
point and endpoint can be extracted based on ∗ON and
∗OFF by referring to the Message field for program
execution information, such as boot information.

• Parsing #Motion: Fig. 14 presents the motion informa-
tion generated by the cobot. Like the program informa-
tion, we can extract motion information according to the
rules established in Fig. 11: # 3–1) and # 3–2). First,
we extract motion identification information according
to the rules shown in Fig. 11: # 3–1). Here, we can obtain
information such as commands, the current position, and
target position by referring to the Message field. Motion
execution information extraction is performed next. The
rules in Fig. 11: # 3–2) can be applied, and the start and
end points of motion are collected based on the ∗START
and ∗END strings in theMessage field and the DateTime
field, where we record the corresponding strings. These
data are extracted and saved simultaneously.

The extracted #Boot, #Program, and #Motion informa-
tion is saved in the form shown in Fig. 15 based on the data
structure in Fig. 10.

FIGURE 11. The pseudo code of PM parsing rules.

FIGURE 12. An example of boot information.
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FIGURE 13. An example of program information.

FIGURE 14. An example of motion information.

FIGURE 15. An example of the parsing data: boot, program, and motion
index.

In this manner, the proposed index system facilitates the
hierarchical identification of programs and motions executed

by the cobot, allowing consistent conditions (same PM) to be
used for detecting abnormal motions. This allows us to sup-
port programmable motion tracking to determine the causes
of abnormalities in the detected values.

V. PROGRAMMABLE MOTION-FAULT DETECTION
This section discusses how to select a representative pattern
for each programmable motion based on the PM index and
detect programmable motion-fault based onmotion residuals.
Before describing the detailed method, we define anomaly,
representative patterns, and motion residuals.

• Anomaly: Indicates an out–of–normal property and
refers to a case that exhibits a pattern different from the
typical pattern.

• Representative: Expected data pattern according to the
target movement.

• Motion residuals: Differences between the expected
values of representative patterns and measured values of
the execution data.

As shown in Fig. 16, we can detect an abnormal section at
a specific threshold value by analyzing the motion–specific
residuals for each PMI_idx.

FIGURE 16. Analysis of motion residuals for a target PM.

The detailed process of calculating residuals to find typical
patterns according to the target motion and detect execution
anomalies is discussed in the following sections.

A. REPRESENTATIVE PM PATTERNS
This section proposes a method for extracting representative
patterns for each PM index based on the established analysis
unit index hierarchy. First, the expected values of the sensor
data for each PMI_idx are measured. Second, the PMI_idx
with the median value is extracted and defined as a repre-
sentative pattern. A detailed description of each procedure is
provided in the following.

1© PMI Expectation (EPMI_idx): The expected value can
be measured by slicing the sensing data (e.g., torque,
current, and speed) collected by the PMI. The expected
value is calculated using Equation (1). In this equation,
Dsensor(t) is the value measured by the sensor at time t.
Here, t is the TICK value of the PMI execution section,
and T is the maximum execution time.

EPMI (Dsensor ) =
1
T

T∑
t=1

Dsensor (t) (1)
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In Fig. 17, PM_id is assigned a value ranging from
one to three. PM_idx is assigned a value ranging from
14 to 16 for motions A, B, and C in program A1. Each
motion is executed repeatedly. Therefore, PMI_idx is
ultimately assigned values ranging from 100 to 102.
The y-axis represents the torque value measured during
each PMI_idx and the length of each section is the same
as those of T100, T101, and T102. The expected PMI
value (red line) represents the average value obtained
by dividing the sum of the torque data for each section
by the length of each PMI_idx.

FIGURE 17. Expected torque data for a partitioned PMI.

The PMI expectation is the temporal mean of a series
of sensing values over a single motion time. First,
we cut out the sensor data for each section of the pro-
grammable motion. The length of each section varies
depending on the type ofmotion. Second, we calculated
the arithmetic mean of each parameter in the PMI_idx.
Here, because all the comparative sections have the
same motion type, the motion lengths are the same, and
the calculated arithmetic means are all equidistant.

2© PMI Representative(PMIRepresentative): The follow-
ing process is used to select the index with the
median value from a set of PMI_idxs with the same
PM_idx. We define the representative PMI_idx using
Equation (2). This equation targets PMI_idxs with the
same PM_idx and selects the PMI with the median
value among the calculated expected PMIs as the rep-
resentative PMI_idx.

PMIRepresentative = medianIndex(List [EPMI ]) (2)

In the example in Fig. 18, the estimated torque value
of PMI_idx is displayed for each PM_idx. We select
the PMI_idx with the median value for each PM as
an execution index with a representative pattern. In the
example in Fig. 18, we can extract PMI_idxs 112, 101,
and 120 as PMIRepresentatives. Representative pattern
extraction is performed when the operation data level
is 1 (INFO) for all PM_idx executions. In other words,
we exclude exceptions such as level 2 (WARN) and
level 3 (ERROR) to ensure standardness or ideality.

B. MOTION RESIDUAL ANALYSIS
This section proposes a motion residual analysis technique
based on the selected representative pattern (PMIRepresentative).
In legacy studies, residual analysis is widely used for fault

FIGURE 18. The selection process of an EPMI (PMI expec-tation).

detection in discrete-time systems, such as [36]. In this study,
a motion residual was obtained by quantifying the difference
between the current motion and a typical motion. Here,
we use the PMI representative as a criterion for determining
abnormality to calculate motion residuals using Equation (3).
The MR(PMI) is calculated according to each PMI_idx,
as shown in (3). For each PM_idx, we calculate the differ-
ence between the expected value of the PMI representative
(ERepresentative) selected using (2) and the expected value of
the corresponding PMI (EPMI).

MR (PMI ) = EPMI − ERepresentative (3)

By applying (3) to the example in Fig. 18, we can analyze
the residuals for each motion, as shown in Fig. 19. In the
example in Fig. 19, we select a representative execution
index of 112 for the nine execution indexes with a PM_idx
of 14 (PM_id of 1). The expected torque value for the index
of 112 is 30.4. For each PMI_idx torque value, calculat-
ing the residual for each motion yields values ranging from
−2.0 to +1.5. This residual analysis method can be used as
an indicator to evaluate the abnormality of each execution
indicator.

FIGURE 19. Analysis of motion residuals for a given PM.

C. PROGRAMMABLE MOTION-FAULT DETECTION
Finally, we propose a method for detecting programmable
motion-fault exhibiting abnormalities using the calculated
residual values for each operation. The proposed detection
method consists of two main steps, as shown in Fig. 20.

First, we detect a case in which the program execution data
show large differences from the average data for the same
motion. Variance filtering was used to extract PM_idx with
many anomalies. This primary classification process detects
anomalies in an execution dataset with large fluctuations
caused by persistent anomalies and filters small sections that
temporarily take anomalies.
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FIGURE 20. Analysis of motion residuals in PM.

Second, we detect execution indexes that show actual
abnormalities based on the selected candidate set. The step–
by–step detection method is summarized as follows.

1© PM anomaly detection: For each PM_idx (σ (EPMI)),
the variance (standard deviation) of the residual values
for each motion is evaluated for each PMI_idx with the
same PM_idx. Then, PM_idxs with a large variance
(standard deviation) are detected.

2© PMI anomaly detection: PMI anomalies are detected
among indexes when executing the corresponding PM
for the pre-selected PM_idxs. In this case, we use the
residuals (MR: (3)) for each motion calculated for each
PMI_idx. Additionally, any PMI_idx outside a certain
threshold represents a section with an abnormality.
Here, the threshold can be adjusted experimentally.

We proposed a data indexing method for modeling com-
plex working conditions (e.g., programs and actions). This
method makes it possible to identify abnormalities and per-
form a precise diagnosis based on typical data for a target PM.
It also provides traceability of the type and behavior of work
programs for identified anomalous executions, as well as the
actions that generate faults.

VI. EXPERIMENTAL RESULTS
The proposed method was applied to a real cobot to analyze
and evaluate the proposed method. We describe data gener-
ation, data indexing, and data analysis (anomaly detection)
in the following subsections. Additionally, the experimental
results were verified and evaluated.

A. DATA GENERATION
In this study, as shown in Fig. 21, we developed two soft-
ware applications: one that generates sensing data and oper-
ation data (dataGenerator), and another that collects data
from sensors built into or externally mounted on a cobot
(dataCollector).

• Configuration of the experimental environment:
Niryo One [37], which is a six–axis cobot, was used
in our experiments. For motion control, position data
(x, y, z, roll, pitch, yaw), angle value (radians), and tem-
perature of each axis are internally recorded by sensors
using the provided application programming interface.
The sensors were mounted at the end of the robot arm.
Additionally, by using a Raspberry Pi 3B+ board and
installing sensors externally, we constructed an environ-
ment in which the current and voltage values applied

to the motor could be collected. Therefore, a total of
five parameters (position, angle, voltage, temperature,
and current) were measured for each joint. We collected
time-series data with a time step of 10 ms.

• Test program design: To fabricate car mats in a real
car factory, we considered the gluing task as a tar-
get scenario. As shown on the right side of Fig. 21,
the environment for producing car mats was simplified.
Specifically, experiments were conducted by simulating
the end effector of the cobot arm using touch and draw
operations on a touch screen instead of attaching a real
edge shape. There are five programs and the starting and
ending points of each program are the same. However,
the parameter compositions of the motion commands
and number of motion commands vary.

• Data generation and collection: Each time we exe-
cuted the task program, the sensing data were gener-
ated in XML format. Fig. 22 presents an example of
constructing a database from sensing data and operation
data generated in this environment. The detected end
position values (x, y, z, roll, pitch, and yaw) can be
observed in the sensing data. Events were generated
in the format (OperationData.xml, SensingData.xml)
shown in Fig. 6 according to the proposed data model
standard.

FIGURE 21. The environment for data generation.

B. DATA INDEXING
This section presents the indexing results boot and PM infor-
mation according to the proposed structure of the collected
data. We executed the test program for approximately two
weeks using five test programs described above. The system
was turned on a total of 59 times and the five programs were
executed 257 times. The index created during this process was
analyzed, as shown in Fig. 23.
• Results of #BOOT Indexing: The horizontal axis
in Fig. 23 represents boot_idxs by date. During the
collection period, 59 boot_idxs were created, and the
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FIGURE 22. An example of the sensing and operation data.

FIGURE 23. Results of data indexing: boot, program and motion information.

cobot was booted at least thrice daily and at most ten
times per day.

• Results of #PROGRAM Indexing: Fig. 23 presents the
number of executions of the programs (program_idxs)
executed during the collection period. Five programs

(five mat-drawing programs) were executed during the
collection period.

• Results of #MOTION Indexing: Fig. 23 presents
the number of executions for the executed motions
(motion_idxs). Colors represent program types and
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motion types are represented by different gradients
within the same color tone. We confirmed that five
programs were executed for each operation section
(boot_idx) and that the number of motion executions
for each program was different. Because the number of
commands in each program differs, there are differences
in the numbers of accumulated operations per program
execution.

Based on the defined PM index, 44 PM_ids, 2,073
PM_idxs, and 57,855 PMI_idxs were generated for anomaly
analysis. This indexing system supports systematic analy-
sis by facilitating a hierarchical understanding of the work
performed.

C. DATA ANALYSIS
This section discusses the results of identifying anomalous
sections based on motion residual analysis. We extracted
the position, angle, current, voltage, and temperature data.
We performed residual analysis on the four parameters of
angle, current, voltage, and temperature (position values,
which only detect exact endpoint positions, were excluded)
to identify abnormal sections according to the derived crite-
ria. The analysis process for the detailed residuals for each
motion is summarized below.

1© Measurement of motion residuals: First, we calcu-
lated the expected PMI values using Equation (1).
We then extracted a representative pattern for each
PM_idx according to Equation (2). In this study,

2,073 representative patterns were identified. The
residuals of each motion for each PMI_idx were mea-
sured using Equation (3), as shown in Fig. 24. The
partial PM_idx sections (995 to 1004) for joint four
among the motion residual values extracted for each
operation for the parameters of voltage, temperature,
current, and angle at the bottom of the y-axis can be
observed. For example, if the angle value of the PM_idx
is either 996 or 1003, because each operation’s residual
value is almost zero, we can confirm that the operation
is similar to the typical pattern. In contrast, we can
observe that the residual value in 997 and 998 are
significantly different from the representative pattern
than other PM_idx (negative or positive depending on
the execution).

2© PM anomaly detection: The following results reveal
the detection of many abnormal PM_idxs. As shown
in Fig. 25, we analyzed the residual value variances for
each operation according to the PM_idxs. We calcu-
lated the variance values by dividing them according
to the parameters and joints. The PM_idxs with the
top 10% of variance values are indicated by the orange
color in Fig. 25. These PM_idxs were selected as can-
didate index for identifying abnormal sections.

The selected PM_idx refers to a group of motion perfor-
mance indexes with large execution errors, even though they
all represent the same motion when performing the motions
corresponding to each index. Figure 26 shows two samples

FIGURE 24. Results of motion residuals in PM (J4).
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FIGURE 25. Variance analysis motion residuals by PM_idx (J4).

with a large difference in variance between PM_idx(1650,
2412) with the same PM_id(11). When PM_idx is 1650 and
2412, themean and standard deviation of themotion residuals
are (586.5, 0.3) and (597.1, 5.019), respectively. As shown in
Figure 26, we can find that a continuous anomaly occurs with
a large deviation in the execution cycle. Therefore, we used
variance filtering to detect the PM anomalies.

1) PMI anomaly detection: Finally, a motion execution
index (PMI_idx) with an abnormality for the selected
PM_idx was detected. At this time, we should exper-
imentally determine the index for which the residual
value calculated for each PMI_idx exceeds a certain
threshold. In this study, we performed the experiment
shown in Fig. 26 to determine the optimal threshold.
Specifically, we identified the detection error of resid-
ual values exceeding 5%, 10%, 15%, 20%, and 25%
compared to the ideal value of zero. In this study,
we set 15% as the abnormal PMI_idx detection thresh-
old so that the number of indexes detected for each
joint and parameter did not exceed 5% of the total
execution indexes. This is a simple configuration and
is necessary to determine an ideal criterion for a spe-
cific application. An operator who wants to strictly
check the cobot’s behavior can lower the threshold
of the anomaly level, and an operator who wants to
check loosely can increase the threshold. For example,

the inspector can loosely check a cobot that man-
ufactures a car-mat by gluing. Because the pasting
range is wide, it can be neglected to some incorrect
positions even if the exact location is not reached.
In contrast, inspectors must rigorously inspect a cobot
that assembles the tiny chips or semiconductors. Even
a small error can be costly because it requires very
sophisticated work.

The abnormal PMI_idxs detected with an error threshold
of 15% are summarized in Table 2. Table 2 lists the inci-
dence rates of anomalies for each parameter and joint accord-
ing to the work program (P1 to P5). Over all executions
(57,855 PMI_idxs), we found an anomaly rate of 5.01%.
Specifically, in the cases of angle, current, and voltage,
the closer it is to the end-effector (six axes), the higher the
detection rate of abnormal sections is. This result is because
the executed program is the gluing task implemented by the
end effector and the 6-axis (J6) motion error was relatively
large because of the load (weight) on the end effector. In con-
trast, with respect to temperature, we found no anomalies
during the simple operations. This is because overheating
can occur at high ambient temperatures or excessive program
operation. However, our experiments did not reach this level
of conditions.

Overall, in the case of the angular parameter, pro-
grammable motion errors of all axes can be checked.
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FIGURE 26. The threshold variation of motion residuals for parameter = angle, joint = J4, and PM_idx = {1650, 2412}.

TABLE 2. Anomaly Detection based on Motion Residuals. Therefore, it can be concluded that using the angular variable
to check for motion-fault has a high priority.

D. DISCUSSION
In this section, the experimental results are described in terms
of three goals: 1) hierarchical analysis of execution, 2) secur-
ing traceability for the causes of faults, and 3) establishing an
abnormality determination criterion.

• Hierarchical analysis of execution: PM execution
information can be analyzed as shown in Fig. 23 by
relating data in the order of ‘‘boot–program–motion.’’
In the example in Fig. 23, one can see that there are
a total of five programs representing approximately
1700 operations over the 33 job sections executed
on day two. Each program has a different number
of instructions. For example, Program 1 has seven
motion commands that are configured and executed.
The proposed index system can hierarchically identify
programmable motions.

• Securing traceability for the causes of faults:
Fig. 27 presents detailed explanations regarding the
traceability of each anomaly, and Figs. 28 presents
the angle anomalies extracted for each joint. We can
trace the extracted abnormal section to the PM com-
mand for which the abnormality appeared by applying
the proposed indexing method. For example, PMI_idx
35214 (green line) in Fig, 28(d) exhibits a data pat-
tern with more significant errors than other PMI_idxs
corresponding to the same PM. Therefore, we can
trace the responsible motion and program based on
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the anomaly, as shown in Fig. 27. The PM_idx con-
nected to the PMI_idx 35214 was 1392. Based on
this information, we can match the corresponding
PM index. In the example of index 35214, we can
determine that the executed motion index is 20, the
program index is 3, and the boot index is 47. These
processes provide traceability for the type of work pro-
gram and execution behavior over detected abnormal
sections, allowing us to prevent faults by analyzing
the work that causes faults and improving fault
detection.

• Establishing a programmable motion-fault detec-
tion criterion: We grouped each executed motion that
executes the same PM type to form a dataset that can
represent abnormalities. We also the selected execution
sections with representative patterns. The thick lines
from (a) to (f) in Fig. 28 represent execution indexes
with high motion residual values for each execution

based on typical patterns. A detailed causal analysis of
each abnormal section is presented below.
(a) PMI_idx = 23678 (J1): After identifying a typi-

cal pattern, the graph is cut in the middle, and we
can determine that an interruption occurs during
execution.

(b) PMI_idx= 53809 (J2): In another operation sec-
tions, the angle changes were small. An abnor-
mality was identified based on external shaking
during the forward motion.

(c) PMI_idx = 58906 (J3): As shown in Fig. 28(b),
an anomaly is caused by external vibration in a
static motion state.

(d) PMI_idx = 35214 (J4): We can identify
Fig. 28(d) as an error based on the difference
between the initial position values.
PMI_idx = 1 (J5): Because the graph of the
typical pattern appears to have been shortened

FIGURE 27. The PM identification of angle anomalies.

FIGURE 28. Angle anomalies of each joint (J1 to J6).
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within a relatively short timeframe, we can judge
that there is no problem reaching the location,
but the execution time is short, representing an
unstable operation.

(e) PMI_idx = 36900 (J6): This can be deduced as
a situation in which the initial position error and
execution definition instability are revealed

Fig. 29 and 30 show an example of a programmable
motion-fault detection. Fig. 29 shows a graph of the J3
angle with time. The green line is the normal pattern of
representative execution, and the gray line represents the exe-
cution of the program index (299) holding the PMI anomaly
on the 3-axis (J3). In Fig. 29, the execution of program
index 299 was delayed and later finished owing to the error
depicted by the red line. As shown in Fig. 30, the area of

the green line occupies 234713.5 pixels, and the area of
the gray line including an anomaly does 208249.0 pixels,
and the difference is 26464.5 pixels. In other words, we can
say that the 299th program execution commanded the same
programmable motion, but with a higher level of error com-
pared to the normal gluing task. This situation can be called
a programmable motion-fault situation. To experiment pro-
grammable motion-fault, we overloaded the robot above a
specific level, making a faulty situation for normal program
execution 189 times and fault-causing program execution 68
times. The programmable motion-fault detection was suc-
cessful with an accuracy of 92.6%.

In addition, we compared anomalies with and with-
out the PM to validate the effect of PM identification.
In Fig. 29 and 30, the red line represents the anomaly

FIGURE 29. An example of programmable motion-fault.

FIGURE 30. An example of gluing task failure due to programmable motion-fault on J3.
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detected in PM, and the blue line represents the anomaly
detected in a specific window through sequential compar-
isons. As a result, detection using a static window (40 ticks:
0.4 sec) showed a false-positive error interval that was
27.3% higher than that of the proposed method as shown
in Fig. 29 and 30. Without PM identification, it is sensitive
to noise and detects anomalies compared to other unequal
motions.

VII. CONCLUSION
This paper proposes a programmable motion-fault detection
method based on the motion residual analysis of cobots.
We constructed a data analysis model to identify the fault
causes during programmable motions, which are the most
significant feature of a cobot. Our method overcomes the lim-
itations of existing fault diagnosis methods that can only be
applied to limited operations and enable the following tasks.
We can establish absolute standards for the programmable
motion-fault analysis of cobots, interpret the meaning of
detected values, and analyze the causes of faults. Therefore,
it is possible to analyze the weak points in the operator work
programs. Additionally, effective predictive maintenance is
facilitated by expanding the fault diagnosis range of the
cobots. However, the proposedmethodwas tested on a dataset
that simulated a manufacturing environment. Therefore, our
fault diagnosis verification may not accurately represent a
real–world industrial facility environment. We plan to expand
the scope of data collection in the future, perform verification
and validation in industrial settings, and construct a statistical
or learning–based anomaly detection model.
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