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ABSTRACT Nowadays, computer vision with 3D (dimension) object detection and 6D (degree of freedom)
pose assumptions are widely discussed and studied in the field. In the 3D object detection process,
classifications are centered on the object’s size, position, and direction. And in 6D pose assumptions,
networks emphasize 3D translation and rotation vectors. Successful application of these strategies can have a
huge impact on variousmachine learning-based applications, including the autonomous vehicles, the robotics
industry, and the augmented reality sector. Although extensive work has been done on 3D object detection
with a pose assumption fromRGB images, the challenges have not been fully resolved. Our analysis provides
a comprehensive review of the proposed contemporary techniques for complete 3D object detection and
the recovery of 6D pose assumptions of an object. In this review research paper, we have discussed several
proposed sophisticated methods in 3D object detection and 6D pose estimation, including some popular data
sets, evaluationmatrix, and proposedmethod challenges.Most importantly, this studymakes an effort to offer
some possible future directions in 3D object detection and 6D pose estimation. We accept the autonomous
vehicle as the sample case for this detailed review. Finally, this review provides a complete overview of
the latest in-depth learning-based research studies related to 3D object detection and 6D pose estimation
systems and points out a comparison between some popular frameworks. To be more concise, we propose
a detailed summary of the state-of-the-art techniques of modern deep learning-based object detection and
pose estimation models.

INDEX TERMS Machine learning, deep neural network, computer vision, image processing, convolutional
neural network, 3D object detection, 6D pose estimation.

I. INTRODUCTION
Recently with the advancement of three-dimensional (3D)
technology, the reconstruction of 3D models with pose
assumptions has become a popular research topic. The main
purpose of 3D model identification is to extract powerful
features from RGB or RGBD images that can automatically
improve the transportation system. Advanced models can
make the map smarter and reduce vehicle costs. There
are many challenges to this research concept, such as dif-
ferentiation of perspectives, scaling, posture determination,
illumination change, partial inclusion, adaptation detection,
and background clutter.

Although many approaches and algorithms have been
proposed and implemented for 2D image detection, the
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challenges of retrieving 3D objects from 2D images are still
being explored. Moreover, estimating poses from this model
is also important for the robot industry. One of the core
examples in the 3D object detection and pose estimation
research sector is the autonomous vehicle, where image
detection plays a vital role in recovering 3D objects from
2D images [109]. The modern world is automatically moving
towards an intelligent transportation system that requires
the successful implementation of autonomous vehicles. The
most important issue for self-driving systems is how various
modern technologies can be applied to enhance the efficiency
of self-driving vehicles.

The great debate in smart car systems is which one works
better for object detection, the LiDAR (Light Detection and
Ranging) or camera. Also, it needs to be studied whether it
is effective to use a combination of the LiDAR and camera
systems. For example, bothWaymo and Uber include LiDAR
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where Tesla only uses cameras in their smart car system. Yet
no technology has been universally accepted as a final self-
driving solution on the road [182].

LiDAR, a proven technique of measuring distance, applies
light pulses to determine both the distance and range of
the surrounding object to avoid a collision and reduce the
vehicle’s speed. The technology helps self-propelled vehicles
create visual 3D maps using on-board software, sending mil-
lions of pulses per second based on readings from light pulses
and providing the vehicle with information about its sur-
roundings. LiDAR is used in conjunction with cameras that
provide a 360-degree view of the surroundings in self-driving
cars, so they are not a standalone solution in themselves.

The camera provides images in intelligent car software
that can analyze with a high level of accuracy using AI
(artificial intelligence). The autopilot system uses cameras to
provide a 360-degree view of its surroundings. The system
returns entirely visual data from the lens’s optics to on-board
software and does not rely on the range and detection like
LiDAR for situation analysis. With the development of NNs
(Neural Network) and CV (Computer Vision) algorithms,
objects can be identified to provide surrounding information
while driving. This helps the car avoid collisions, slow down
or brake when there is traffic, change lanes safely, and read
text from road or highway signs using OCR (Recognition of
Optical Character).

Although LiDAR has been proven to see things even in
dangerous or foggy weather, it is not always reliable, as it is
affected by wavelength stability, temperature, and detective
sensitivity. This difficulty makes LiDAR technology more
expensive. Moreover, LiDAR requires more space to apply
to cars, thus making self-driving cars look bulky and less
attractive. On the other hand, cameras are better, easy
to implement, and comparatively less expensive in visual
recognition. The software requires more data processing to
create images and identify objects for LiDAR data than
visual data. Finally, the camera has been implemented with
Tesla as a standalone system; however, other OEMs(original
equipment manufacturer) believe that applying other sensors,
including radar, to detect range and distance can improve the
performance of self-driving.

The ultimate visual recognition system also required
the accurate calculation of other vehicles pose on the
road. Without predicting the actual pose of other vehicles,
an autonomous car cannot make accurate decisions on
whether to slow, brake or change direction. Recent state-
of-the-art RGB-based 6 DoF (Degree of Freedom) pose
estimation frameworks can be divided into two stages [51],
[116], [241], including the object detection with 3D rotation
by applying a trained framework and the estimation of 3D
translation and 3D orientation (6D pose estimation) via
relative distance estimation. Basically, the camera pose
estimation is related to object localization, coordinates, and
orientation. It is a crucial task not only for the autonomous car
but also for the robot and navigation technology, the medical
sector, and AR (augmented reality) [269]. In this review,

we will mainly focus on the papers that work on the
autonomous car and predicting the position of on-road cars
or obstacles.

The rest of the section is organized as follows: In I-A
we present the contributions of this review article of deep
learning for 3D Object Detection and 6D Pose Estimation.
In I-B we have shown the difference between our review
and other existing review articles. In I-C and I-D we have
discussed the pervasiveness of both 3D object detection and
6D pose estimation. Finally, in I-E, we have briefly discussed
the paper collection process.

A. CONTRIBUTIONS OF THIS REVIEW TO DEEP LEARNING
The purpose of this thinking is to thoroughly review the
advanced essays in the 3D learning object detection literature
and the 6D pose assumptions from RGB and RGB-D images.
It provides a brief overview of current research that is easily
comprehensible, and anyone who is interested can grasp
the basics of 3D object detection (3DOD) and a 6D pose
aspiration (6DPE) system. Moreover, most importantly, this
review provides explicit knowledge of 3DOD and 6DPE
applications in the field of computer vision to encourage
a whole new set of novel methods and ideas. This paper
proposes a rich survey for academics interested in research,
the autonomous industry and the 3DOD and 6DPEfields. The
survey will provide rough guidelines and possible directions
for 3D object detection and 6D pose estimation methods,
where most of the paperwork relates to autonomous vehicles.

Altogether, the survey has several objectives, such as:
1) We have provided a comprehensive review for a 3D

object detection and 6D pose estimation system based
on deep learning.,

2) We have created an overview for advanced strategies,
3) We discussed the challenges, advantages, disadvan-

tages of the various proposed strategies
4) We have identified and cited a significant number of

innovative concepts and incoming directions in this
research sector

5) We can detect vision and broaden the horizons of 3D
object detection and research DL (Deep Learning)
methods of 6D pose estimation research techniques,

6) In this review, we have tried to give a brief overview
on some of the popular datasets available for computer
vision.,

7) We have focused on a few popular assessment methods
and created a shortlist.

B. DIFFERENCE WITH OTHER FORMER REVIEWS
To date, much work has been done on 3D Object detection
(3DOD) and 6D Pose estimation (6DPE), where most of
them are deep learning-based. Nevertheless, the progress of
a comprehensive review on the subject is still insufficient.
This review sought to create a broad abstraction of modern
research with DNN (Deep Neural Network) based 3D
object detection 6D pose estimation systems and showed
future directions. We can keep an eye on the paper by
Mukhtar et al. [173], where they reviewed 194 documents
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and worked on on-road-based vehicle detection and tracking
systems for collision avoidance systems. This review is
organized based on various vehicle detection processes,
including car detection and tracking sensors.

Sahin et al. [209], presents a comprehensive and up-to-
date review where authors discuss object detection, examine
more than 200 documents, and pose recovery methods
with some popular data sets. In addition, several evaluation
methods, open issues, and future research directions have
been discussed in the paper.

Sivaraman et al. [229], has also conducted a literary survey
on the method of identifying, tracking and behaving on-
road aspects of self-driving vehicles. This study focuses
on the current literature related to vision and sensor-
based vehicle detection techniques. It began with about
200 papers on environmental perception on the road from
2005. The review papers are mostly related to single vision,
stereo vision, the combination of single and stereo vision
and sensor-fusion methods for vehicle tracking, detailed
image aircraft, 3D modelling, measurement and filtering.
Finally, they have called for visionary vehicle identification,
tracking, and behavioural analysis with future research
directions.

Ioannidou et al. [105], discussed the various method of
deep learning architecture on different types of 3D data
and provided a classification of multiple approaches.
Zhao et al. [295], provided a regular survey of DL-based
object detection frameworks by reviewing a total
of 194 research papers. This review begins with a brief history
of deep learning with several DL type classifications. Generic
Object Detection strategies are discussed here, along with
some changes and improved detection performance concepts
such as object detection, salient object detection, pedestrian
detection, and face detection.

Zhou et al. [301], have conducted a review for aspect-
based SFM (Structure Form Motion) method, VO (Visual
Odometry), and SLAM (Simultaneous Localization and
Mapping) based methods where the methods play an
important role for support in autonomous driving systems.
In their work, they focused on multiple sensor-based methods
such as Internal Measurement Unit (IMU) sensors, LiDAR,
GPS (global positioning system), monocular-based methods
(depending on the height of the camera).

One of the latest online reviews of 3D object detection
written by Liu [151], published in the science blog ‘‘Towards
Data Science,’’ has covered around 32 current state-of-the-
art mono3DOD methods as of November 2019. This review
did not focus on pose estimation and gave only a brief
idea about it. This review is more organized (papers are
grouped into several groups) than other previous surveys
and gives a more accurate picture of the related article.
Unfortunately, there are insufficient numbers of surveys on
DL (deep learning) - which stem from the 6D pose estimation
system, so researchers should focus on this.

Sahin et al. [210], wrote a review related to 6D pose
hypotheses where they cover numerous research articles that

analyze both object identification and pose hypotheses. Their
review article mainly focuses on multiple dataset challenges
such as occlusion, cluttered background, lighting conditions,
symmetry, texture, illustration, and appearance. The reviewed
datasets can be used to evaluate the effectiveness of methods
that work in the RGB theme modality. According to the
review, the 3D visual understanding is a challenge for
complex interactions between objects in terms of perspective,
fully or partially chaotic internal environments, and scale
changes in different scenes.

Lateef et al., [132] and Minaee et al. [167], have provided
a comprehensive review of the literature of pioneering works
for semantics and example level image division using over
one hundred deep learning-based segmentation methods
proposed in 2019 and 2020, respectively. Naseer et al. [177],
created a review of advanced technology based on visual con-
cepts, including visual classification, object identification,
pose estimation, semantic segmentation, 3D reconstruction,
salinity detection, physics-based reasoning and internal
visual skills.

In addition, a recent comprehensive review was presented
by Rahman et al. [199], where they reviewed the latest
3 DODTs (3D object detection technology). This review
maintains some common steps, including descriptions of
some popular public datasets, several performance appraisal
metrics, and 3D BB techniques. They focused on cutting-
edge technology in the 3DOD sector with their significance,
contributions and future directional flaws. Zaixing et al. [89],
discussed several approaches for 6D pose estimation in their
review, including the advantages and disadvantages. A further
up to date survey for 3D object understanding, classification,
identification, defining size and shape, and tracking with 3D
visualization and segmentation is present by Guo et al. [80].

Additionally, when listing recent approaches, we ignore
traditional solutions to offer up-to-date reviews. Our survey
paper looks back at later high profile research publications
from a variety of perspectives on object detection and pose
estimation. At the end of our survey, we proposed some new
insights. In short, as of June 2021, this survey summarized
and discussed more than 300 high profile states of art
techniques (most of them the most recent). We have tried to
make this review paper exceptional and comprehensive than
other existing reviews by presenting the graphical outlines
of the currently relevant papers. Also, we mentioned the
future directions given by multiple authors and aim to make
a decision based on them. This survey will help researchers
(from start to end) who want to work with 3D object detection
or 6D pose assessment.

C. UNIVERSALITY AND UBIQUITY OF DEEP LEARNING IN
3D OBJECT DETECTION (3DOD) SYSTEMS
One of the critical and mandatory tasks for developing
computer vision (CV) in the autonomous field is 3D object
detection. Driving without a driver, for example, requires
an authentic representation of 3D space around autonomous
vehicles of various important categories (prediction, plan-
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ning, detection and speed control). Although LiDAR point
cloud has proven successful for accurate 3D object detection,
it is weather sensitive and expensive. Although the concept of
monocular 3D object detection (mono3DOD) from RGB or
RGB-D image is not a fancy concept, it still differs immensely
from the LiDAR-based approach.

In order to detect a 3D object and guess the pose, we need
to fully understand an image, rather than just knowing the
classification or image localization. 3DOD is a significant
work that can be broken down into several subtasks to
make important steps for accurate knowledge of images
and videos, such as some other notable applications are
classification [110], [123], human behavior analysis [26],
pedestrian detection [53], skeleton detection [121], face
recognition [299] and autonomous driving [33].

There are some significant hurdles in achieving the
identification and object localization tasks such as occlusions,
chaotic environment, lighting conditions, size differences
and viewpoints. Due to the notable impact of accurate
object detection in robotic and autonomous fields, more
efforts are being made to identify a (3D / 2D) object more
accurately with intense care and attention [76], [77], [202],
[203]. 3D object identification can be divided into object
localization (specific content located in a test image) and
object classification (category by object). Conventional 3D
object detection models can be divided into three main
categories: informative zone selection, feature extraction, and
classification.

Any given image can have multiple objects in different
positions of the image with different aspect ratios or sizes;
It is best to handle the whole image with a different
image sliding window. Strategies attempt to identify all
possible positions and orientations of objects. Due to a
large number of test windows, the process is comparatively
expensive and generates additional windows. Moreover,
if some stable sliding window template is applied, it will
create unsatisfactory areas.

Some important steps to detect object:
• Feature extraction: This step helps to identify diverse
objects and reveal features with meaningful and strong
representations about complex cells as neurons in the
human brain [157] such as HOG [45], Haar-like [145]
and SIFT [157]. However, due to the varied lighting
conditions, it is challenging to accurately describe all
kinds of things.

• Classification: A classifier has to differentiate the
target object from different types to create recognition
of more semantic, categorized, and informative ocular
objects. The common classifier used for classifications
is SVM [41], AdaBoost [68], DPM (Deformable Part-
bas edModel) [64] (more flexible for low level features).

A state of the art results has been achieved in the Pascal-
VOC [62] object identification competition by applying the
concept of describing local features. However, there were
some issues with this model, such as inaccurate bounding
boxes, inefficient and unwanted low-level descriptors, and

improperly trained models. These earlier object detection
problems were overcome with the emergence of the Deep
Neural Network (DNN) [123]. Eventually, identifying and
detecting 3D objects from 2D images is a difficult task. The
task becomes even more challenging as the level of depth of
the 2D image during formation. Nevertheless, it is possible
to identify 3D objects from 2D images with some efficient
proposed methods.

D. UNIVERSALITY AND UBIQUITY OF DEEP LEARNING IN
6D POSE ESTIMATION SYSTEMS
To detect 3D objects from monocular 2D RGB images,
we need to create a 3D oriented BB (bounding box), while
3D reasoning from a single 2D input is a complex and
difficult task. In the autonomous sector, other than object
detection, pose estimation is a complex job that needs to
be done. It is easier to predict the 6D pose in RGBD
images than in RGB images because the 6D pose is a
complex combination of 3D rotation of an object (raw, pitch,
yaw) and 3D coordinates (X, Y, Z) at the camera focal
point [152]. One significant step in identifying the 3D object
and estimating the 6D pose of any object from the image
can be divided into egocentric and allocentric positions [119].
In the context of autonomous driving, the orientation related
to the camera is called egocentric, and the orientation related
to an object is called allocentric. Also, full 6D pose estimation
is required for successful implementation of AR (augmented
reality) [163], robotics grasp [39], autopilot [33], and so on.

Recent improvements to visual depth sensors and the avail-
ability of low-cost depth data have significantly improved
object pose estimation. In addition, successful implementa-
tion of 6D pose estimation method to solve some problems
such as variability of viewpoint, similar objects, symmetrical
property, occlusion and cluttered environment; All have
been overcome due to the availability of RGB-D sensors
and the recent improvement of the Convolutional Neural
Networks (CNN).

Typically, the recovery of a 6D pose estimation depends
on two factors, the familiar instances and the raw/unknown
instance of an object. Moreover, some challenges such as
shape mood, target domain, shift distribution between several
sources, and classification of objects prevent calculating the
pose accurately. These challenges have been widely studied
in recent years because of their significance in augmented
reality (AR) [163], robotics [251], and autonomous vehi-
cles [74]. In the robotics and automated car industries,
accurate object detection, the successful application of self-
management of objects (robotic groups), and the assumption
of 6D poses by robots play an important role in advancing the
challenge of autonomous manipulation.

E. THE PAPER COLLECTION PROCESS
Google Scholar is one of the primary sources of our
paper collection. Also, the well-known Database ‘‘Web
of Science’’ is another notable source through which we
have introduced and collected a number of related papers.
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In addition, we should mention ‘‘Wikipedia,’’ which is an
authentic source of information and documentation. YouTube
plays a vital role in understanding any new concept in
this case. UTAS (University of Tasmania) Open Access
Repository [183], [184] is a great choice for collecting recent
papers.

The keywords we have used for searching references
include deep learning (DL), deep neural networks (DNN),
Convolutional neural network (CNN), object localization,
image processing, autonomous vehicle (AV), 2D/3D object
detection, 2D/3D bounding box (BB), 2D/3D object pro-
posal, 2D/3D object identification, and 6D pose estimation.
In addition, ACM Digital Library, IEEE Explore, Scopus,
ScienceDirect is a collection of the best research databases
that make our survey resourceful. Last but not least,
Researchgate is a legitimate source of information and paper.
Most importantly, we have gone through some highly ranked
conferences such as CVPR, ICCV, NIPS, AAI, ICLR, ECCV,
ICRA, ICML, IV, IROS, ACM, ITSC, ICIP, TPAMI, IRS,
WACV, ECCV, ACCV, and Sensors.

F. OUTLINE OF THE REVIEW
This paper proposes a comprehensive study reviewing the
current methods of object pose detection and recovery. Our
contributions are as follows:
• Discussed computer vision and deep learning networks,
autonomous car and its challenges in section II and III
briefly.

• The datasets used for the 3D object detection and 6D
pose estimation method were observed to identify its
challenges, which are represented in Table 1.

• We Discussed the range of state-of-the-art (SOTA)
technology from 3D BB detectors to full 6D pose
guessers in IV section.

• In Table 3 where some of the SOTA 3D object detection
methods are compared and in Table 5 some SOTA 6D
poses estimation methods are compared.

• The Table 4 represents the 3D Object Detection Paper
Collection and this table is represented graphically in
Figure 2. The significant amount of paper collection on
6D pose estimation in recent years is shown in Table 6
and this table is represented figuratively in Figure 3.

• Open issues are discussed to identify potential future
research directions in VI.

• Finally, section VII sums up the present situation of the
field and concludes the review work.

II. COMPUTER VISION AND DEEP LEARNING
A. COMPUTER VISION
Computer Vision (CV) in artificial intelligence trains com-
puters to interpret and understand the visual world, working
with technologies where computers can achieve a high-level
understanding of any digital image or video.

The CV system is a method of taking, processing,
exploring and mastering digital images and using models
built with the help of geometry, statistics, physics and some

teaching theories to generate numerical or symbolic data from
those images [108], [120], [170]. The CV process is gradually
seeing new revolutionary concepts related to object detection
where the main challenges are image processing and machine
vision [193].

Moreover, a self-driving vehicle is a notable example
where ANN and CV have been widely used. However, it is a
big challenge for autonomous vehicles to accurately estimate
the position of a 3D object from a 2D image. Although much
progress has been made in identifying 2D objects from an
image or video, identifying a 3D object and determining the
3D properties of an object from a single image is still a
challenging problem.
Typical Tasks of Computer Vision: Content-based image

retrieval [230], Pose estimation [269], Optical character
recognition (OCR) [165], 2D code reading [206], Automatic
face recognition, Recognition Features [67], Egomotion
[16], [303], Optical flow [10]. Scene reconstruction [233],
Image restoration [7], Image acquisition [46], Feature
extraction [46], Detection/segmentation [155], High-level
processing [46], Decision making [46].

B. ARTIFICIAL NEURAL NETWORK (ANN)
The function of ANN is almost the same as that of
the human brain, as knowledge is acquired through the
network through a learning process from near it and stored
using some synaptic weight neurons. To achieve the final
design goal and change the synaptic weight of the network,
NN has implemented a learning process known as a learning
algorithm. Nowadays, ANN has been applied to multiple
jobs, including computer vision, image recognition, speech
recognition, social network filtering, machine translation,
diagnostics, and video games [72], [178].

C. DEEP NEURAL NETWORK (DNN)
Deep Neural Network (DNN), a section of a machine
learning (ML) where the machine has to predict any output,
can be supervised, semi-supervised or unsupervised [219].
Since traditional ML techniques cannot process natural
data in their raw form, DL (Deep Learning), an advanced
DNN technique, applies multiple layers to reveal high-level
features from the raw data. For example, in image processing,
where the lower layers of the DL model can recognize the
edges only, the upper layers can detect a certain number of
letters or objects or features of the object [239].

Eventually, DL processed unsorted/sorted, labelled or
unlabelled data and construct a pattern to make a better
prediction [120], [123], [176]. Though DL was popular
since 1980-90s, offered the concept of the back-propagation
classifier [207]; nonetheless, it soon lost its popularity due
to over fitting, scarcity of big data, and poor computation
capacity as compared to other ML tools.

The popularity of Deep learning algorithm has increased
since 2006 [94] with the advancement in speech recog-
nition [93] application. Convolutional Neural Networks
(CNN), the popular DL framework, which is applied on
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multiple sectors such as Natural Language Processing (NLP),
Computer Vision, Speech Recognition, Audio Recognition,
Machine Translation, Social Network Filtering, Bioinformat-
ics, Medical image analysis, and much more [171].

1) CONVOLUTIONAL NEURAL NETWORK (CNN)
The Convolutional Neural Network (CNN) has a deep feed-
forward architecture and remarkable ability to generalize to
better networks with fully connected layers. CNN has largely
applied to image analysis, especially pattern recognition,
which can also be employed to solve other data analysis
problems, such as classification problems. CNN is a deep
learning network developed for image and video processing
that has made significant progress since 2010 and is now
widely used worldwide.

The two most notable qualities as classified composition
and the ability to extract powerful features from an image
prove that CNN is one of the most powerful object
detection classifieds. Several important CNN architectures
have been proposed times for image processing such
as ImageNet [48], AlexNet [123], ConvNet [124], [134]
LeNet [243], VGGNet [228], ResNet [87], ZFNet [284],
GoogLeNet [243], GPU (Graphics Processing Unit) proces-
sor large-scale distributed clusters [47], and OverFeat [218].

On top of that, CNN is a powerful algorithm that is widely
used for image classification and object detection [123],
[284]. Because of the notable advantages, CNN has been
widely applied in many research fields including image
super-resolution reconstruction [179], [285], image classifi-
cation, image retrieval [110], face recognition [299], pedes-
trian detection [249], [272], [294] and video analysis [228],
[270], [284], car detection [33], and pose estimation [296].

Most importantly, CNN can be adequately trained that
does not suffer from over fitting and is easy to apply to
large networks [123]. However, CNN cannot provide accurate
results when the length of the output level is variable and
the presence of objects of interest is not fixed. Therefore,
more sophisticated algorithms such as R-CNN, Fast R-CNN
and YOLO have been developed to solve advanced image
processing problems.

2) REGION BASED CONVOLUTIONAL
NEURAL NETWORK (RCNN)
Girshick [76] proposed a method where a large number of
regions were selected, and the Selective Search (SS) [253]
method was applied to select only 2000 regions from an
image, which he named the region proposals.

Since each region of the image is applied to CNN individu-
ally, the training time is about 84 hours, and the forecast time
is about 47 seconds. As a result, the process becomes time-
consuming because it has to classify 2000 region propositions
for each image. Here, the CNN functions as a feature extractor
and the revealed features are processed through an SVM [41]
classifier to distribute the object inside the region proposal.
Additionally, to anticipate the region proposals and increase
the bounding box’s precision quality, the algorithm creates

four offset values. The main problem with this classifier is
time.

3) FAST RCNN
The algorithm previously proposed to create a quick object
recognition classification updated some of the errors of
R-CNN and renamed as Fast R-CNN [76]. This method is
almost the same as the R-CNN classification. Since it uses
CNN once, there is a significant gain over time. The training
time is about 8.75 hours, and the estimated time is about
2.3 seconds.

4) FASTER RCNN
Both of the above algorithms (R-CNN and Fast R-CNN) use
SS to determine region proposals. SS [253] is a slow and time-
consuming process that over-segmenting the image affects
network performance. Therefore, Shaoqing Ren et al. [203]
proposed an object identification algorithm that removes
the SS algorithm and allows the network to learn region
recommendations. After the predicted regions are resized
using the ROI(Region of Interest) pooling layer, which is
then used to classify the image in the proposed region
and predict the IoU (Intersection-over-Union) ratio of the
bounding boxes.

5) SINGLE SHOT MultiBox DETECTOR (SSD)
Liu et al. [153] proposed SSD (Single Shot Multibox Detec-
tor), a single shot detector for multiple segments, applies an
additional small conventional filter to maps that are faster
and significantly more accurate than previous single shot
detectors like YOLO.

6) MASK RCNN
He et al. [86] presents the concept of flexible structures
called Mask R-CNN for object instance segmentation.
This method effectively recognizes objects from an image
while creates a high-quality segmentation mask for each
instance at the same time. Mask R-CNN is a practical
extension of Faster R-CNN, where an additional branch
is added to predict an object mask parallel to an existing
branch. Moreover, this method is a slightly improved version
of R-CNN that runs at 5fps and can adapt quickly to
predict human posture. Also, Mask R-CNN has won the
COC 2016 Challenge by overcoming three key issues:
Instant Segmentation, Bounding-Box Object Identification,
and Individual Keypoint Identification.

7) YOLO
Redmon et al. [202] Proposed a novel object detection tech-
nique called YOLO (You Only Look Once), where the clas-
sifier does not process the whole image; Instead, it focuses
partly on the image with a high probability of having the
object in that part. This single convolutional network is faster
than existing object detection algorithms. However, above all
advantages, the YOLO algorithm struggles to detect small
objects within the image. For example, the spatial limitations
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of algorithms can make it difficult to identify flocks of
birds. Some other notable DL structures are: RefineDet [287],
Retina-Net [147], Deformable convolutional networks [44],
Cascade R-CNN [21], 3D-RCNN [128], Libra R-CNN [186].

8) MESH R-CNN
Facebook introduced a novel RCNN method in artificial
intelligence called Mesh R-CNN that can convert 2D objects
to 3D shapes and mesh [267]. Facebook has highlighted
its latest advances that can identify complex issues. This
study has applied in-deep learning to understand the 3D
shapes of complex objects and novel architectures such as
Bounding Box, 3D Voxel Pattern, Point Cloud and Message
for prediction and localization. Mesh R-CNN can effectively
detect and classify objects in 3D form from chaotic 2D
images and occluded objects and ultimately estimate their full
3D shape.

III. AUTONOMOUS VEHICLE (AV)
An autonomous vehicle (AV) is a combination of some
actuators, sensors, complex analytical algorithms, machine
learning methods, and high-speed processors that are needed
to implement complex software. Self-driving vehicles create
and maintain a map called Simultaneous Localization and
Mapping (SLAM) of their surroundings by multiple sensors
placed in different parts. Such as LiDAR or radar measures
distances of other vehicles or obstacles, detect road edges.
In addition, one or more cameras mounted on autonomous
vehicles can detect traffic lights, road signs, lane signs,
vehicles, obstacles and pedestrians [52].

During parking, ultrasonic sensors placed on wheels to
detect obstructions and other vehicles. Advanced complex
software [131] then processes all these sensory inputs,

generates outputs and sends commands to the vehicle actuator
responsible for steering, braking and control acceleration.
AV can be identified as a complete package of hard-
coded rules, a complex algorithm and efficient predictive
models, helping sophisticated software to run on the road
smoothly [73], [192], [245].

To date, autonomous vehicles are equipped with two types
of sensor such as active sensor: LiDAR [138], [139], [279],
radar [277] and passive sensors: Single/Stereo cameras [32],
[172], and their fused systems [33], [107], short-range sensor
(Ultrasonic sensors) [122]. Veli et al. [104] made lots of
progress in sensor technology and GNSS (Global Navigation
Satellite Systems).

A research team from the Massachusetts Institute of
Technology (MIT) [84] announced in May 2018 that they
had successfully built a driverless car that could successfully
navigate unmapped roads with a novel system known as
MapLite [40]. This application enables the driverless car to
drive on a completely new road without using pre-loaded 3D
maps. The basic idea is to combine the vehicle’s position
with sensors that monitor the surrounding conditions, and
OpenStreetMap (OSM) is used to detect the GPS of a
vehicle [40].

Also, an AV has been divided into 5 levels such as
level 1 - requires driver support, level 2 - partial automation
phase, level 3 - limited driver support, level 4 - higher
automation and level 5 - fully automated [225], [84] [190].
At present, level 3 autopilot is available on the road, as Level
4 and Level 5 autonomy require large-scale neural network
training and visual recognition, including accurate pose
estimations. Multiple companies produce intelligent vehicles
and test them to drive autonomously in certain situations,
such as Tesla Autopilot,Waymo, Uber, Volvo, Google, BMW,
Mercedes Benz, Nissan and General Motors. However, they
are still in the testing phase and unable to operate without
assistance.

A. TECHNICAL AND SOCIAL CHALLENGES OF
AUTONOMOUS VEHICLES
Although the concept of autonomous or self-propelled
vehicles has come a long way in recent years and numerous
studies have been done in this sector, this technology is still
not flawless. Lawmakers and consumers still feel confused
and anxious about implementing self-driving cars and feel
insecure and uncertain about the autonomous vehicle’s
ability to move freely. So self-propelled cars are still in
the experimental stage, and more research is needed to
perform them properly. One of the significant challenges
of autonomous vehicles is accurately estimating the exact
position and orientation of nearby vehicles. The five core
reasons are classified as why the AV still are not on the roads
are listed in below:

Sensors: An autonomous vehicle faces various challenges
for smooth automation systems such as proper vehicle
navigation system, GPS, environmental perception, LiDAR
and radar, visual perception, speed and direct perception and
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a vehicle control system [192], [293]. Furthermore, to be
qualified as perfect autonomous vehicles, these sensors need
to work in all weather conditions anywhere on the earth.
Undoubtedly, the critical issue for driverless vehicles is that
there should be a control system capable of automatically
analyzing sensor data and making accurate estimates of
vehicle postures, obstacles, pedestrians and road signs [306].

Machine learning Algorithm: At the moment, there
is no widely approved and authorised ML algorithm to
ensure that they are 100 % error-free, safe and secure for
use in any driverless vehicle. The most popular algorithm
applied to current driverless vehicles is SLAM, which
integrates data from various sensing components and uses
offline maps [266]. WAYMO has improved the performance
of the algorithm SLAM and named DATMO (Detection
and Tracking of Moving Objects), which can handle any
curbs, including vehicles and pedestrians. Zhang et al. [291],
proposed a concept that collaborated with the existing Visual
odometry (VO) system such as SLAM and ORB-SLAM2 (
an updated version of the SLAM) [174].

The open road: When the AV drives on new roads,
it should identify things that did not come before in the
training process and may be subject to software updates. As a
result, it would be not easy to ensure that the system is as
secure as its former version.

RegulationTo date, adequate standards and regulations for
autonomous systems do not exist. There have been numerous
high-profile accidents involving Tesla’s current automobiles,
as well as other automotive and autonomous vehicles [9].

Social acceptability: Applying an automatic car on the
road is not only a problem for those who want to buy and use
a driver-less vehicle, but also for others who share the road
with them [9].

IV. LITERATURE REVIEWS
An essential part of computer vision is the identification of
objects from images or videos. Object detection helps in
pose estimation, vehicle detection, pedestrian and other curb
detection. Previously, the image was processed and classified
using traditional machine learning (ML) algorithms such as
colour histogram [220], SVM (Support VectorMachine) [41],
logistic regression [202]. However, there are some differences
between the recent object detection algorithms (CNN, R-
CNN, YOLO) and traditional ML classification algorithms
(SVM, logistic regression).

The definition of object identification problem determines
where objects are located in a given image is called object
localization, and what class each object belongs to is called
object classification. Thus, the traditional thematic object
detection model’s pipeline is divided into three stages
such as:

1) Informative region selection: Different objects can
appear in any position of the image and have different
aspect ratios or sizes, so scanning the entire image with
a multi-scale sliding window is a natural choice.

2) Feature extraction: To identify different objects,
we need to figure out visual features that can represent
a semantic and robust.

3) Classification: A classifier needs to differentiate a
target object from all other categories and further
classify the presentation.

A. 3D OBJECT RECOGNITION
Object recognition is one of the primary pillars of a
computer’s vision and is sometimes confused with the
problem of object classification/shape retrieval. 3D object
recognition methods can be divided into two main categories
such as voting methods, Hough transform [6], and geometric
hashing [130] and the correspondence based method, spin
images [112], local feature histograms [90], 3D shape and
harmonic shape context [69].

David et al. [156] developed an object recognition system
using local image features in cluttered real-world scenarios.
Cordelia et al. Schmid et al. [214], has shown that recogni-
tion of successful objects can often be achieved by applying a
sample local image descriptor to a large number of repetitive
locations. Papazov et al. [187] proposed the recognition of a
3D object, especially for noisy and scattered data in cluttered
and occluded environments. This proposed concept applies
a combination of strong geometric descriptors, a hashing
technique and a sampling technique - RANSAC [65].

B. 3D OBJECT DETECTION FROM RGB AND RGB-D IMAGE
3D object detection is a significant key part of the visual
perception system of robotic and autonomous technologies.
It has many applications with different category some of them
described in FIGURE 1.

FIGURE 1. The application domain of object detection.

In generic object detection, object instances are identified
by applying predefined sections/categories. It has some chal-
lenges such as the immense range of inner-class variations
and the large-scale object categories [150]. Salient object
detection detects the most significant and notable object
in an image, and then it segments the whole area of that
object [12].
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1) FEATURE EXTRACTION, SEGMENTATION AND MATCHING
Rapid and accurate image segmentation with feature extrac-
tion is the primary task of the computer vision field.
Lowe et al. [156] proposed SIFT (Scale Invariant Feature
Transform), an object recognition system for image scaling,
translation, matching and rotation, and a partial constant for
illumination changes, including 3D projection. The images
here have been converted to a wide collection of local feature
vectors and can generate approximately 1000 SIFT keys
in 1k ms during each image count by applying classification.
Although occlusion may be present in the image, SIFT can
provide a high level of accuracy.

Kang et al., [114] Created a structure called DaSNet-
V2 that matches identification, category, localization, and
object instances. A method capable of achieving real-time
performance by adopting PWP 3D (count per pixel) and
applying the region-based simultaneous strategy of 2D
partitioning using the NVIDIA CUDA framework is largely
developing parallel algorithms [194]. Fu et al. [70] introduced
DORN (Deep Ordinary Regression Network), a multi-
scale network framework that achieves a spacing-increasing
discretion (SID) strategy to rebuild depth and depth networks
to reduce the complexity of existing feature maps.

2) SHAPE VARIATION
Xiang and Dollar offered 3DVP (3D Voxel pattern), which
uses ACF (Aggregate Channel Features) detectors to find out
the basic features of each object such as shape, appearance,
aspect and curbs [54], [271]. In addition, the 3D pose of a
vehicle can be accurately localized from the context of this
method and can detect other vehicles and guess the pose [74].

Novotny et al., [181] have created the C3DPO (Canonical
3D Pose) Network for non-rigid structure motion where no
training images and messes are available. It has partially
reconstructed a 3D object from amonochromatic RGB image
to change perspectives and distort the object. It has also
emphasized the mandatory presence of certain canonical-
ization functions of reconstituted size and shape. The input
depth proposes objects pose according to the classification of
convex hulls that align the clusters of convex sections drawn
from the images. This is an example of a highly efficient
size identification pipeline that uses the CHAL (convex hull
alignment) algorithm for hypothesis generation and is used to
identify objects in complex scenes with multiple objects [42].

Qian et al., [196] presented a method for evaluating
individual 3D sizes, where there was a balance and robustness
between the accuracy and efficiency of the conventional stage
recovery method, significant measurement limits and high-
frequency fringe patterns. Chabot [28] made a framework
called Deep MANTA for 3D object detection based on a
single-dimensional image in an end-to-end fashion network,
determining the object class, 2D region proposal generation,
2D location, orientation, dimension and 3D position. This
model has implemented a 3D vehicle dataset featuring 3D
meshwith real size tomatch vehicle parts (wheels, headlights,

mirrors) and defines a 3D shape for each 3D model.
Zhou et al., [304] has built the CenterNet framework, which
is simpler, faster, and more accurate than traditional BB
detectors and poses estimators.

3) 3D PROJECTIONS OF THE 3D BOUNDING BOX VERTICES
Chen et al., [34] proposed 3DOP (3D Object Proposal)
for accurate object class identification in the context of
autonomous driving. 3DOP produced several sets of 3D
candidate boxes to identify almost every object in 3D space.
This method has featured object size, ground plane, different
depths, spaces, the density of points inside the box, visibility
and soil distance.

Mono 3D (Monocular 3D Object Detection) [32] uses
ground planes and some segmentation features to generate
3D proposals from monocular images in the context of
autonomous driving. In addition, both 3DOP and Mono3D
methods applied some common hand-crafted features. This
technique applies several intuitive potentials to each candi-
date box expected in the image plane encoding synthetic
segmentation, relevant information, size and location pre-
requisites, and ideal object sizes. Also, the S-SVM [111],
structured SVM [252], parallel cutting plane [228] and IoU
has been implemented with a comprehensive search model.

The proposed DSS (Deep Sliding Shapes) [236] is a 3D
convergent formulation that takes 3D volumetric views as
input from an RGB-D image and then outputs a 3D object
bounding boxes. In addition, this method proposes the first
3D Region Proposal Network (RPN) to learn objects from
geometric shapes and the first Joint Object Recognition
Network (ORN) to extract geometric features in colour
properties in 2D.

Ding et al., [49] proposed a fancy wire-frame model called
the CPO (Cross Projection Optimization Method) that can
detect both 3D pose and shape estimation of a vehicle for
an autonomous vehicle. The CPO method applies a simple
wire-frame model combined with the Hierarchical Wire-
frame Constant (HWC) method instead of bounding box
annotation to shape detection for 3D pose and accurate 3D
localization [33].

The solution provided is primarily based on local prop-
erties, especially for matching objects in a 2D image of a
rigid 3D object [79]. This method creates an accurate 3D
model of the object with the locations of its features and
then places it in an image to identify new features. Finally,
the position, orientation, and shape of the virtual object are
defined concerning the object’s coordinates.

Rad [198] has created a framework where a total of 8
corners of the bounding box are applied to the multiple-input
image called BB8. This method is trained to predict their
poses in the form of 2D projections of the corners of their
3D bounding boxes and calculates 3D poses from this 2D-3D
correspondence with a PNP algorithm [136].

Another strategy called Mono3OD [227] where a single
RGB image uniquely transformed to reduce object detection
and increase the credit count for 3D BBs. Li [142]
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suggested RTM3D (Real-time Monocular 3D Detection),
the first real-time 3D identification method for autonomous
driving, predicting the nine point-of-view of the 3D BB
in place of the image and using 3D and 2D perspective
geometry to restore orientation, location and dimensions in
3D space.

Liu [150] has claimed a deep fitting degree scoring network
for mono 3DOD, which focuses on the active fitting degree
among proposals and objects. It is discrete from other
existing monocular frameworks by attaining localization
by computing the visible degree of calculation among the
3D project proposals and the object. A concept named
FQNet, [150], can assume the 3D IoU (Intersection over
Union) among the 3D proposals and the object.

Zhang et al., [291] proposed a framework for 3D
object detection by determining object class, 2D region
proposition production, 2D position, position, dimension
and 3D positioning based on a single image in an end-to-
end fashion network. Furthermore, Bao et al. [8], recently
introduced Mono-Fenet, a compelling feature enhancement
method for the 3D object detection, which includes the
ROI Mean Pooling layer, the PointFE network, and feature
enhancement networks using 3D-NMS and exclusive RGB
imagery.

The full 3D poses and dimensions of an object from
a 2D BB by applying some restrictions to calculate the
orientation and volume of the object using DCNN, where
the novel DCNN method known as MultiBin regression is
used to estimate the orientation of the object [172]. SS3D,
a single-phase monocular 3D object detector where the
3D representation is returned by a representative and uses
for the geometric shapes of the 3D box with autonomous
driving [113].

Hu et al., [102], introduced a complete 3D vehicle
bounding box tracking information method from exclusive
videos and a method for dealing with 3D vehicle detection
guesswork. A new pipeline based on LSTM [254] is designed
to collect large-sized 3D trajectories from real-world driving
environments and track 3D vehicles within 30 meters.
The method called M3D-RPN implemented exclusive 3D
identification and 3D zone proposal networks and lifting the
geometric relationship of 2D and 3D perspectives, including
3D boxes [15].

4) 3D OBJECT DETECTION IN POINT CLOUD
Scientists proposed a method for identifying free-form
3-dimensional objects in point clouds with global represen-
tations [56]. The basic idea of the model is to create a
universal approach statement based on the point pair factor.
Free-form objects in 3D datasets can be achieved by a
number of sensors, such as a laser scan, a TOF (Time of
Flight) camera, which has been widely disseminated from a
computer perspective [25], [160].

Chen et al., [33] introduced accurate 3D object detection
for individual behaviour, known as Multi-View 3D Network
(MV3D), which works with multimodal datasets. MV3D

framework creates efficient 3D candidate boxes from a 3D
point cloud BEV (Bird’s Eye View) [154] image, and the
main goal of this method is to identify 3D objects using
both LiDAR and image data. Current LiDAR-based methods
set 3D windows in 3D Voxel Grid [58], [260] or apply
convolutional networks [139] to front viewpoint maps.

On the other hand, a hybrid method has introduced that
combined both LiDAR and camera data for 2D detection
to get accurate results [59], [78]. Qi et al., [195] offered a
fancy concept called ‘‘Frastum PointNets’’ based on RGB-D
data in a point cloud and expects a semantic class for
each point in that point cloud. A method named PV-RCNN
provides accurate 3D object detection from point clouds
that deeply integrates 3D visualization with point-to-point
set-based abstraction with a 3D visual convoluted neural
network and multiple receiving fields [221]. Finally, a novel
method called SAANet (Special AdaptiveAlignment) uses an
‘‘SAA’’ module that addresses fusion-based deep structures
that combine clouds and images for 3D object detection with
complements cloud properties and image properties [31].

5) SPEED / ACCURACY TRADE-OFF
Huang et al., [103] introduced a process that helps deter-
mine the speed and accuracy of the calculation and also
recommend which method is better suited for a specific
application. Shrivastava et al., [224] proposed a TDM (top-
down modulation) approach to include image quality for a
ConvNet architecture such as VGGNet [228], ResNet [87],
and Inception-Resnet [242]. Song [236] proposed Deep
Sliding Shapes (DSS) that convert an RGB-D image into
a point cloud and then slides a 3D detection window into
3D space. Luo [158] made a concept that identifies 3D
objects and accurately predicts the position, size, orientation
and division of objects in 3D space at very fast speeds.
Li [140] has come up with an idea called GS3D, a 3DOD
method based on an RGB (single) image in autonomous
driving.

6) OBJECT DETECTION BY KEY POINT ESTIMATION.
The most famous classifier that detected an object using key-
point inference (identifies the object as a point to the key)
is Cornernet [133], ExtremeNet [305], and CenterNet [304].
In CornerNet, the corners of 2D BB are used as semantic
key points. ExtremeNet, on the other hand, highlights all
points, including the top, left, bottom, right, and centre of the
bounding box. Compared to these classifiers, the Centernet is
much faster, which only chooses the object’s centre.

V. LITERATURE REVIEW OF 6D/6DoF (DEGREE OF
FREEDOM) POSE ESTIMATION
In the computer vision sector, guessing a 6D pose of an
object is a significant problem that needs to detect both 3D
orientation and 3D position of an object in the case of the
camera centred coordinates [116]. In short, the three factors
for the 6D pose estimation are the critical role of rotating left
and right on the X-axis (roll) side as well as on the Y-axis
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TABLE 1. Data-sets used for multiple 3D object detection and pose estimation method.

(pitch) and tilting backwards on the Z-axis (Yaw). Thus,
these features encourage concentration on the recovery of
vehicle posture and size estimates to enhance the intelligence
of the intelligent transport system and the robotic sector.
Therefore, the conventional states of industrial techniques
of 6D pose estimation are discussed here in the context of
the autonomous car.

A. 6D POSE ESTIMATION DIRECTLY FROM RGB IMAGES
Wu et al., [269] proposed an algorithm named 6D-VNet,
and won the first place in the ‘‘Apolloscape Challenge 3D
Car Instance’’ competition. It is an abstract structure for
autonomous vehicles assuming 6 DOF object poses that can
detect all aspects of traffic in a single RGB image while
rotating vectors and 3D translation. The basic technique of
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TABLE 2. Evaluation metrics: Different types of evaluation metrics to identify and measure the performance of proposed classifiers.

this method is to control the 6D position of the vehicle using
the outputs from the RPN (Region Proposal Network) [77]
and 2D object detection network (Mask R-CNN) [86] that can
learn both rotation and translation by outlining a loss function
model.

Brachmann et al., [13] created a template-based model
for calculating 6D pose for a specific object from a single
RGB image. The algorithm optimizes the power following
the RANSAC concept for a large and uninterrupted 6D pose
space. The technical feasibility of classification is using a new
composite dense 3D object coordinate form, including object
class labelling. Kehl et al., [116] developed SSD-6D, a CNN
method to detect the 3D object and accurately guess the 6D
pose from an RGB image. It is a unique detector method
for relevant training on synthetic model information, which

applies to the collection of small objects and objects with
many conceptual and practical advantages.

Inspired by BB8 [198] method Zhang et al., [289] re-
imposed the coordinates of the image and applied the
Perspective-n-Point (PNP) [136] algorithm without any post-
refinement. Similar to recent work, the method uses 2D BB to
calculate the coordinate regression of images based on their
centres, focusing on the gap between image classification
and pose estimates [248]. Deep-6DPose is an end-to-end
deep learning solution, which finds objects and compresses
them and retrieves instances of 6D objects from single RGB
images [50]. It consists of twomain components, such as RPN
and a mask R-CNN, including Lie algebra.

Billings et al., [11] has developed a new proposal to
predict 6D object poses from monocular RGB images
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TABLE 3. Advantages and disadvantages of some state-of-the-art 3D object detection techniques.

TABLE 4. 3D object detection paper collection.

by applying the CNN pipeline with the ROI proposal.
It predicts the presence of intermediate outlines for 3D
objects, 3D orientation and 3D translation vectors. For the

6-D category level pose estimation, two-level BB-based
alternative methods have been developed that directly output
the 6D pose without the use of any PNP but consist of
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ResNet (Residual Neural Network), RPN, and FCN (Fully
Convolutional Network) [149].

B. POSE FROM DEPTH / POINT CLOUD METHOD
Mitash et al., [168] advocated a concept for efficient object
6D pose estimation in cluttered scenes, where the Cartesian
product of the candidate’s post for interactive objects is used
to identify the best view and create an efficient search, and the
candidate post clusters for each object. The MCTS (Monte
Carlo Tree Search) technique is applied to conduct tradeoffs
in fine-tuning and explore new instances.

Xiang et al., [276] has created a generic structure called
POSNN that calculates the 3D translation of an object in the
image and predicts its distance from the camera. Furthermore,
this method reduces the ShapeMatch-Loss function and
enables POSNN to handle symmetrical objects where the
VGG16 backbone is used to extract features.

The PointPoseNet classifier for 6DoF objects gives the
idea of inference of rigid objects using deep learning in
point clouds. A point-to-point correspondence assignment
is performed with a joint classification and segmentation
within a point cloud system [83]. Capellen [27] suggested that
ConvPoseCNN has evolved from the concept of PoseCNN
but can avoid cutting individual objects. Instead, it offers
accurate predictions for pixel-based translation of object
poses and orientation modules and has been replaced with
a complete CNN prediction network. Also, [191] recently
removed the ROI pooled orientation layer and introduced
PVNet (Pixelwise Voting Network) to deny pixel-based
vectors and use them for key-point positions.

C. 6D POSE ESTIMATION DIRECTLY FROM RGB-D IMAGES
A scene coordinate regression (SCoRe) forest is used, trained
in a specific scene, employs only RGB-D image pixel
comparison features and has fast calculation accuracy. The
proposed method is an RNSAC-based pose optimization
algorithm where SCoRe Forest is evaluated by the RNSAC
algorithm and makes accurate posture estimates [223]. Since
the additional depth channel of the RGB-D image helps
extracts the entire 6D pose (3D rotation and 3D translation) of
rigid object instances present in the scene. The core objective
of the approach is the intermediate representation of the form
of a dense 3D object coordinate labelled and paired with a
dense class.

On the other hand, Taylor [246] did not predict 6 DoF
directly from an RGB image but instead followed the object’s
coordinates in that image. Each pixel in this image points to
a coordinate of the canonical body in a canonical position
called VM (Vitruvian Manifold). The popular RF (Random
Forest) [3] classifier is used to vote here, and geometric
validity is used.

Brachmann et al., [14] provided an idea that is both an
extension and combination of [223] and [246]. This hybrid
concept estimates the 6D pose of a specific object from a sin-
gle RGB-D image. Wang et al., [258] initiated a compelling
method in cluttered scenes, which can successfully predict

the object’s posture. It has mixed colour and depth data from
the RGB-D image and then integrates repetitive refinement
methods into neural network architectures.

Li et al., [141] applied CNN to process the depth image
as an additional image channel. However, the built-in 3D
structure in the depth channel was neglected. In contrast,
the geometric features of the dense fusion method convert
pixels into sectional depths into 3D point clouds by applying
built-in cameras. The proposed DPOD (Dense Pose Object
Detector) applies PNP and RANSAC to compute an input
image and a map of dense multi-class 2D / 3D correspon-
dence between available 3D models [282].

D. INSTANCE-LEVEL 6 DoF POSE ESTIMATION
Collet et al., [38] created 3D object metric models using local
descriptors of different images. Each model was optimized
to easily fit a sequential training image, resulting in the
best possible alignment between the 3D model and the
original object. It combines the well-known RANSAC [65]
and Mean Shift algorithm [36] to register multiple instances
of each object that can successfully guess the 6-DOF pose
for any complex and chaotic scene. In addition, it can handle
randomly complex non-planning objects, powerful to handle
outliers and occlusions, and able to control illumination, scale
and rotation change.

The vision-based system, which is actually an extension
of Gordon’s method [79], enables the accurate localization
initialization step called POSESEQ and enables full pose
inference in object recognition in a complete cluttered
environment. Thanh et al. presented LieNet [51], as a unique
template-based pose estimation method that uses the Lie
algebraic rotation matrix to estimate the rotation matrix of
an object. It estimates the translation vector by predicting the
distance of the object from the centre of the camera. This
method takes the input of an image and then outputs the
object’s identification with a 6D pose, including a bounding
box, label, and segmentation mask.

Vidal et al., [256] developed a method that followed
the basic structure of the point pair feature (PPF) method
introduced by Drost [56], which is a combination of two
levels, such as global modelling and local matching. The
main structure identifies the rotation points, model points and
angles of each scene. The expansion of Vidal’s work is the
concept of the posture of free-form objects, critical work in
favour of a highly confused autonomous system. A novel
pre-processing step has been added here, transforming the
classification into a better efficient feature matching method.

E. CATEGORY-LEVEL 6 DoF POSE ESTIMATION
Sahin et al., [208] covers various challenges for 6D pose
estimation such as inconsistency of viewpoint, objects (both
texture and texture-less), curbs, cluttered scene and identical
objects. Wang et al., [261] has created a method that assumes
both 6D poses of hidden object instances without an object
CAD model in an RGB-D image. Furthermore, a novel
concept called NOCS (Normalised Object Coordinate Space)
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FIGURE 2. Increasing amount of efforts in literature on monocular 3D
object detection in recent years.

has been introduced here, representing a partnership principle
for all possible instances of an object.

Schuster et al., [216] evaluates dense 3D data located in
multiple light situations and applies online graph SLAM
to generate a dense 3D composite map and estimates 6D
poses. This technique also creates a fancy graph topology for
incorporating the results of local reference filters and overall
high-bandwidth sensor data into sub-maps.

F. FEATURE MATCHING METHODS
To solve the 6D object pose hypothesis and ensure the
best possible accuracy, Krull [126] successfully applied
Reinforcement Learning to the pose agent classification
for the first time. Each decision here follows the potential
distribution of a stochastic policy gradient approach that takes
a direct gradient in terms of the expected loss of interest.

G. TEMPLATE-MATCHING TECHNIQUES
Hinterstoisser et al., [91] built a framework called LineMod
for automatic detection and tracking of 3D objects based on
the latest template-based approach that uses both depth and
colour images to capture the object’s presence and 3D shape
on a set of templates with different aspects of an object. Also,
the 3D model can be used for the accurate estimation of
the position of the object. Tejani et al., [247] developed a
novel patch-based framework where a Latent-Class Hough
Forests method for 3D object detection was introduced, and
estimations were made in a heavily cluttered and occluded
environment. This method absorbs the classification labels
during training, and as a by-product, it creates the right
image-ground mask.

H. CNN/ DEEP LEARNING - BASED APPROACHES
Krull [125] presented a model for 6D pose estimation, which
applied a CNN to map images and revealed that training
on a single object was sufficient and that CNN successfully
generalized all the different objects and backgrounds of an
image. Rangesh et al., [200] applied an exclusive idea for a
3D identification box suitable for the object on the ground

FIGURE 3. Increasing amount of efforts in literature on 6D pose
estimation in recent years.

to combine 2D visual context, 3D dimension and ground
plane. Eppner et al., [60] presented and evaluated the winning
system for the 2015 Amazon Picking Challenge, where they
created four key aspects of system building: integration,
manipulation, manipulation planning, and estimation.

Google has announced the release of MediaPipe, a 3D
object detection pipeline that identifies objects in 2D images
on everyday objects and estimates their poses and sizes.
MediaPipe is a cross-platform structure that builds ML
pipelines and creates 3D bounding boxes with augmented
reality (AR) [5] and identifies additional information such
as camera pose, 3D point cloud, lighting and planar
surfaces [85], [268]. Basically, MediaPipe performs object
detection, face detection, hand tracking, hair segmentation
with ML frameworks called Tensorflow and Tensorflow
Lite [1].

A novel model [101] designed to predict the pose and size
of an object from a monocular RGB image has applied a
multi-task-learning approach named MobileNetv2 [212] and
predicts object size. The Gaussian regression task applies
a pose estimation algorithm (EPnP) [136] to the final 3D
coordinates for the bounding box. A novel model [101]
designed to predict the pose and size of an object from
a monocular RGB image has applied a multi-task-learning
approach named MobileNetv2 [212] and predicts object
size. The Gaussian regression task applies a pose estimation
algorithm (EPnP) [136] to the final 3D coordinates for the
bounding box.

Tremblay et al., [251] introduced the first one-shot deep
neural network for robotic manipulation trained only on
synthetic data capable of achieving 6-DoF object pose
estimates of 3D objects. The system is called DOPE (Deep
Object Pose Estimation), which applies the Perspective-N-
Point (PNP) algorithm, which combines 3D bounding boxes
with 2D images. Li [141] has proposed a pose correction
algorithmwhere the solution is to correct the pose because the
object is being observed from the centre line of the camera.
It is a multi-philosophy fusion framework with a single
philosophical ambiguity and quick guess selection based on
a voting scheme.
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TABLE 5. Advantages and disadvantages of some state-of-the-art 6D pose estimation methods.

TABLE 6. 6D full object pose estimation paper collection.

On the other hand, a model called DeepIM [143] is
able to predict a relational pose transformation by applying
3D location and 3D orientation and a repetitive training
process. The network FlowNetSimple architecture uses the

backbone network project as DeepHMap++, which centres
a two-stage pipeline and integrates two learning concepts
to estimate 6D poses of invisible objects in challenging
scenes [71].

VOLUME 9, 2021 143761



S. Hoque et al.: Comprehensive Review on 3DOD and 6DPE With DL

I. TEMPLATE-CLUSTERING APPROACHES
Zhang et al., [288] has proposed City-LineMod (advanced
to Cognitive Template-Clustering Line mode) method. The
technique applies a 7D (4D geometry+ 3D texture) cognitive
feature vector to restore the standard 3D spacing points in the
patch-linemode clustering method. Moreover, the distance of
different 3D spatial points will also be affected by the 4D
additional information regarding the direction and width of
the features.

J. HYBRID POSE METHOD
Martinez et al., [162] presented a hybrid GPU / CPU
architecture that uses parallelism at all levels namedMOPED
(Multiple Object Position Estimation and Detection), a bright
and measurable perception concept for both object recog-
nition and fracture estimation. Furthermore, a mode based
on another object recognition algorithm known as POS-
ESEQ [38] showed a massive increase in scalability and
accuracy and optimizes the algorithm’s speed. Technically,
MOPED has employed a new feature-matching algorithm
that optimizes databases to handle complexity and a robust
pose merge algorithm capable of efficiently rejecting out-
siders with matching K-NN (K-Nearest Neighbour) method
where k > 2 [245]. The default classification algorithm and
SIFTGPU is the MOPED feature extraction algorithm.

VI. FUTURE RESEARCH DIRECTIONS
From the above discussion, it is clear that plenty of work
has been done on 3D object detection, which forms a solid
foundation for this field. Nevertheless, further research is
needed as 6D pose estimation systems have not yet performed
adequately. Therefore, this part of the article will give some
possible ideas of the future directions for both sectors, which
will help understand the status and involvement of 3DOD and
6 DPE.

A. FUTURE RESEARCH DIRECTIONS FOR 3D
OBJECT DETECTION
1) DETECTING A RIGID OBJECT
Several existing work [32], [33], [151], [271] showed the
efficacy of deep learning in detecting a rigid object. Even
though the classifiers are mainly focused on the ‘‘car’’
category, the concept of these methods can be contextual to
all other solid and inflexible types of objects. The accurate
detection of the 3D rigid object is a complex job and is
very significant in the domain of computer vision. Currently,
using some proposed deep learning techniques, we can detect
inflexible objects, but still, lots of works need to do to
make the process flawless. In developing an autonomous
car, accurately identifying rigid objects can be a significant
research idea.

2) HANDING ROTATIONALLY SYMMETRIC OBJECTS
Identifying half and full symmetry objects like a coffee mug
or glass is a confusing and complex matter that classifiers

usually fail to give accurate results. Do et al., [51] has
suggested an idea to overcome this complicated problem,
but not entirely successful. Although the work on symmetric
object detection is starting to get deeper, not much work has
been done to date. More attention and research needs to be
done on this case of symmetrical object identification.

3) TRACKING A OBJECT FROM VIDEO
One possible incoming direction is to simultaneously explore
its application as part of a system that uses repetitive
neural networks to detect and track objects in video [116].
In addition, the intense colour variation between the CAD
model and the visual avatar is a significant work. Another
potential research aspect in this context is online model
learning and relocalization [223]. A hypothesis can be
developed to represent both single and multiview with an
extended update of a new frame [141]. In addition, to avoid
the problem of proper loss, the term-balancing required for
upcoming potential research direction [116].

B. FUTURE RESEARCH DIRECTIONS FOR
6D POSE ESTIMATION
1) IMPROVING THE VO (VISUAL ODOMETRY)
Appropriate VO (Visual Odometry) is mandatory in the
context of autonomous driving; Thus, the future design of
both automated car and street scene construction needs to
be improved [291]. It is not possible to apply driverless cars
without the proper implementation of VO.

2) IMPROVING THE 6D POSE ESTIMATE ACCURACY
One can improve the version of the DeepIM method [143]
for autonomous applications to produce accurate 6D pose
estimates from high-resolution camera images (colour only)
at high frame rates with a large field view. The authors
also mentioned using stereotype camera images as input
to improve the quality of this method. Another work can
be done by combining the advanced two-step method to
transform it into a new pose tracking framework where the
pose parameters from the previous frame can be reused to
replace the pose detection step in DeepHMap [71]. Adding
a branch to the back for object segmentation in DeepHMap
may provide some additional regularization.

3) IMPROVING THE MAP OR VPS
It is an open challenge to efficiently and consistently
merge sub-maps into multi-robot systems to create a long-
term mapping system, aiming at improving the algorithm
that matches the map [216]. The globalization strategy
combines visual positioning services (VPS), street view,
and machine learning for more accurate location and
adaptation detection. Mutual technology is essential to
enhance the correct positioning and orientation of blue dots
on digital maps in our cars, smartphones, and up-to-date
interactions.

143762 VOLUME 9, 2021



S. Hoque et al.: Comprehensive Review on 3DOD and 6DPE With DL

4) IMPROVING THE POSE OF SYMMETRICAL OBJECTS
Since managing the poses of symmetrical or symmetrical
objects is a complex task, relevant classifiers should be
improved to accomplish the task efficiently [276]. In order
to properly manage symmetrical properties, methods need
to learn the symmetry of objects and update their capa-
bilities [27]. One of the notable tasks may be to manage
the symmetry property of objects and pose estimation
automatically.

5) IMPROVING THE FUNCTION OF MOBILE MANIPULATORS
The efficiency of the POSSEQ [38] classifier can be enriched
by enabling mobile manipulators to work more perfectly to
communicate with the crowd’s internal environment. Some
hypothetical 6DoF pose [269] reprocessing techniques will
be filtered using repetitive closet point-based algorithms
or repetitive retrieval networks. Also, classifiers need to
successfully model and recognize scenes of different sizes
and complexities in large environments [79] (campus,
laboratory, shopping centre or a museum).

6) IMPROVING THE 3D POINT CLOUD NETWORKS
Anumber of 3D point cloud networks can be replaced directly
by the PointNet network [83] for potential improvement
in accurate 3D object detection and 6DF pose estimation.
A computational budget can be created to know the
appropriate time for the softer version of the PoseAgent [126]
classification. For parallelism, multiple computational cores
can be applied by advanced PoseAgent. In addition, training
can be provided to replace the processing steps of an existing
CNN method and improve the results by observing and
predicting updated postures from the given images [125].

7) IMPROVING THE DATASET
To deal with the common challenges of objects, such as
reflective and texture-less objects, and the adverse conditions,
such as occlusion and changing lighting conditions, we can
integrate some multi-dimensional object models into the
dataset packages. To facilitate the reconstruction of indoor
and outdoor dynamic scenes, 4D or 5D models can be added
to the dataset, which can play an important role in any visual
applications such as navigational systems for moving objects
(for example: autonomous car) [281].

8) REMOVING THE VISIBLE GAP BETWEEN MACHINE
PERFORMANCE AND THAT OF HUMAN’s
In AppolloCar3D, researchers [238] mentioned four visible
surfaces and manually defines a correspondence between
critical points and surfaces. They suggested that a total
of 66 key points were assigned to every single car model (for
both SUVs and Sedans). According to [238], since people
cannot memorize the semantic meaning of 66 key points
correctly, there is a noticeable gap (∼ 10 %) in between
algorithms/machines with humans. Henceforth, correctly

resolving visible gaps between machines and humans can be
a future inspiration for research.

9) EXPLORE GEOMETRIC PROPERTIES
Estimating the 6DoF pose of an object from a single RGB
image is a significant and challenging task, especially under
heavy occlusion and for the Texture-Less object. In such
a case, the exploring of geometric features needs to be
improved to estimate the 6 DOF object more efficiently [81].

VII. CONCLUSION
This review paper studies the state-of-the-art deep learning
techniques for 3D object detection and 6D pose estimation.
Most current object detection methods identify images with
a 2D bounding box technique that can recognize both the
position and range of the objects in the image. However,
recognizing a vehicle as a 2D BB is not always sufficient
for perfect autonomous driving. Therefore, predicting the
position of the 3D object from the images is just as important
as determining the 2D position of the vehicle. For 3D
object detection, current works report sophisticated results
using RGB / RGB-D imagery, point cloud, and fusion-based
techniques.

Here, with the help of this review, we have addressed the
advantages and disadvantages of each of the basic techniques,
both 3D object detection and 6D pose estimation tech-
niques. We have also mentioned some traditional theoretical
evaluation metrics and summarised the popular Big Image
datasets applied by well-known object identification and
pose estimation methods. Since the deep learning method
of 3D object detection and 6D pose estimation are not as
mature as 2D object detection, research is needed for real-
time operation. From now on, a significant improvement
needs to be made to manage a fast and reliable 3 DOD
and 6 DPE system across a broad set of real-time practical
applications. Although RGB-D is much simpler than RGB,
it faces problems for some depth issues, such as not being
able to recognize small objects properly.

Several classifications have been proposed in the 6D Pose
estimation functions, such as the point addition method,
the template matching method, the Hough forest method,
and the deep learning method. However, the effectiveness of
the proposed classifiers is still far from the level of actual
application, which should be able to successfully predict
6D poses of multi-objects, including severe occurrence and
chaos scene situations. Therefore, this article presents an in-
depth review of the most significant work to date on in-depth
learning-based 3D object detection and 6D pose estimation
systems. Until then, we believe that this review article can be
cited and used as a sample source of reference and forms an
important endorsement to the research community.
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