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ABSTRACT Energy efficiency and consumption control remain a significant topic in the area of Heating,
Ventilation, and Air Conditioning (HVAC) systems. Deep reinforcement learning (DRL) is an emerging
technique to optimize energy consumption. Its advantage lies in the ability to tackle the time-series nature
of energy data and complexity brought by environmental factors. However, most DRL algorithms have
not considered both time-of-use electricity pricing and thermal comfort. This paper proposed a hybrid
approach based on twin delayed deep deterministic policy gradient algorithm and model predictive control
(TD3-MPC) for HVAC systems, to mitigate function approximation errors and save cost by pre-adjusting
building temperatures at off-peak times. This proposed method is compared with deep deterministic policy
gradient (DDPG) algorithm under simulations of five building zones. Experiment results demonstrate that
TD3-MPC outperforms DDPG algorithm and potentially saves 16% of total energy consumption cost, with
better stability and robustness.

INDEX TERMS Deep reinforcement learning, energy consumption efficiency, HVAC, MPC, TD3.

I. INTRODUCTION
Global climate change is a concerning issue and people are
actively exploring opportunities to reduce carbon emission
and mitigate energy consumption. In China, for example,
building energy consumption accounts for 21.7% of the
total national energy consumption [1]. The development of
low-energy buildings is one opportunity with great potential
that draws a lot of attention. The convertibility of various
energy sources in buildings as well as buildings’ energy
storage capacity make it an ideal choice for energy optimiza-
tion [2]. HVAC systems are key contributors to the energy
consumption within buildings. Thus, it is crucial to man-
age such systems with effective maintenance and operation
strategies.

Researchers around the world have proposed various meth-
ods and architectures to help reduce the energy consump-
tion of HVAC systems. Traditional feedback control such
as on-off control or proportional-integral-derivative (PID)
control cannot reflect external interference in time, which
may result in suboptimal performance. MPC, an optimal
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control strategy for stochastic systems with random con-
straints, solves this problem by designing offline uncer-
tainty distributions and has been proved successful in recent
years [3]–[6]. For instance, Zeng and Barooah presented
an autonomous adaptive MPC architecture for HVAC with
periodical relearning building dynamics to maintain indoor
temperatures while reducing energy usage [7]. Asvadi and
Momenibuilt MPC models for each air handling unit in
HVAC systems. With this approach, the mean of energy
consumption reduction is about 36.94% [8]. Additionally,
James et al introduced a two-layer method to decompose the
economic MPC in large commercial HVAC systems hierar-
chically to reduce the operational costs of HVAC and improve
energy efficiency [9]. The performance and reliability of
above methods are highly dependent on the accuracy of mod-
els and robustness of online optimization, so mathematical
tools are needed to effectively solve runtime control problems
in practical applications [10]. Online optimizations would
also add additional complexity to existing problems if the
MPC model is nonlinear.

Recently, the rapidly evolving DRL technique starts to
benefit many industries. It is often used to solve sequen-
tial decision-making and continuous control problems by

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 130845

https://orcid.org/0000-0003-4551-9642
https://orcid.org/0000-0002-8598-9983


C. Fu, Y. Zhang: Research and Application of Predictive Control Method

controlling the interactions between individuals and envi-
ronment. The current mainstream DRL algorithms include:
Q-learning, deep Q-network and DDPG. The extensive appli-
cations of these DRL algorithms in various areas such as
unmanned driving and future sales forecasting incentivize
the exploration of utilizing DRL in energy consumption
reduction. Compared with MPC, DRL avoids the establish-
ment of complex models and allows the optimal controller
to learn directly from real-time data. It could as a result
obtain real-time dynamic systems with fewer environmental
parameters and more effective controls. The core idea in
utilizing DRL to predict and reduce building energy con-
sumption is to regard HVAC systems as Markov decision
processes, in which the reward function includes energy
costs, impact from environmental temperatures and behav-
ioral violations [11], [12]. For example, Jiang et al developed
a deep Q-network with an action processor and reward shap-
ing technique to overcome the issue of reward sparsity caused
by the demand charge under time-varying electricity price
profiles [13]. Likewise, Wei et al put forward a method based
on deep Q-network to control the air conditioning systems
by human expressions, while meeting the requirements of
thermal comfort [14]. Du et al applied a data-driven DDPG
method to minimize HVAC systems’ energy consumption
costs while maintaining comfort [15]. Although above meth-
ods avoided establishing complex models and took into
consideration energy consumption and thermal comfort sep-
arately, the limitation was reflected in overestimation bias
caused by noise when using function approximation errors to
calculate the Q value in value function. The overestimation
would eventually lead to sub-optimal policies.

In recent years, researchers have focused their studies on
energy storage strategies, which if well applied, could have
high potential in the reduction of energy consumption. In the
area of energy storage, peak shaving has been proved to be
able to reduce electricity cost by 10-30%, achieved through
load shedding and energy storage [16], [17]. Peak shaving
can reduce a consumer’s power consumption quickly and in a
short period of time so that it could avoid consumption spikes.
Hong et al proposed a novel performance evaluation frame-
work for deep peak shaving [18]. In this framework, operation
data and reference status labels were fed into deep belief
networks for dimension reduction and feature extraction in a
semi-supervisedway. Similarly,Mawson andHughes utilized
an analysis of thermal energy with machine learning adopted
to predict spikes in energy consumption and in turn optimize
HVAC systems [19]. These studies provided a new idea of
combining DRLmethods with peak shaving to further reduce
building energy consumption.

Nevertheless, most of existing articles either provided no
insight or showed limited focus on energy consumption,
thermal comfort, and electricity prices at the same time.
To address this problem and avoid overestimation, an energy
consumption prediction and storage control algorithm based
on TD3-MPC is proposed. The main contributions of this
paper are as follows:

1) Established a thermal dynamics model to predict the
future trend of HVAC systems by MPC algorithm, consider-
ing the influence of outdoor environmental factors in reality.

2) Proposed a control framework of HVAC systems based
on TD3-MPC along with energy storage strategy, applicable
in continuous constraint action space.

3) Compared the proposed approach with other DRL
methods, given the same outdoor environment. The

experiment result shows that the proposed algorithm can
significantly reduce energy consumption while meeting the
requirements of room temperature.

II. METHODOLOGY
A. MPC
MPC is a multivariable control strategy that can be applied to
both linear and nonlinear systems with the aim to minimize
the cost function [20]. It involves a dynamic model of the pro-
cess loop, historical values of the control input variable, and
an optimization equation in prediction horizon. The optimal
control can be obtained by the above three elements. Since the
MPC policy can also produce next-state predictions, the pre-
diction result fromMPC can be used as the initialization input
for DRL algorithms. The control policy can be defined as a
function of network parameter θ , as shown in Equation 1:

L (θ) =
∑

t
λ
∥∥xt+1 − x ′t+1∥∥22 + ‖ut − ut+1‖22 (1)

where xt+1 and x ′t+1 are the actual next state and the next state
predicted by the agent, ut and ut+1 are the actions taken in the
current step and the next step. The hyperparameter λ balances
the relative importance of actions and next-state predictions.

After obtaining a policy, actions taken by the agent are
executed under the policy. Above steps will be repeated con-
tinuously until an optimal control strategy is obtained.

B. DRL METHODS
1) DDPG
Policy gradient is an algorithm used to obtain the optimal
policy whichmaximizes the reward expectation in continuous
action space [21]. It is iteratively calculated to find an optimal
Q-value. If a policy is determined, which means it can take
only one action in state space, the expected Q-value is then
only related to the environment and policy [22]. Gradient
update can then be regarded as policy update to the Q-value
gradient, described as:

θk+1 = θk + αGt∇θ lnπ
(
at | st ; θk

)
(2)

whereGt refers to the reward by each time step; π
(
at | st ; θk

)
represents the policy as a function of action a, state s and
parameter θk ; ∇θ is the score function of θ which makes
the gradient of log-likelihood function equal to 0; and α is
a hyperparameter to balance the impact from previous steps
on the current step.

DDPG establishes a Q-function and a policy-function
incorporated with experience replay dual-network structure
to enable a neural network in the probability algorithm to
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learn with maximum efficiency [23], [24]. Convergence dif-
ficulty caused by actor-critic algorithm can be handled by
random sampling from previous state transfer experience for
training.

In DDPG, actor and critic networks are split into two
parts, current network and target network, respectively for
action selection and evaluation [25]. Actor current network
is used to update network parameter θ1, select the optimal
action A according to the current state S, and interact with
the environment to transfer to the next state S ′ and reward
R. Actor target network selects an optimal next action A′

according to the next state S ′ sampled in the experience replay
buffer and periodically updates network parameter θ1 in the
current network. On the other hand, critic current network is
responsible for updating network parameter θ2 and calculat-
ing the current state-action value Q (S,A, θ2). Critic target
network then computes the target Q-value Q′

(
S ′,A′, θ ′2

)
,

where network parameter θ ′2 is copied from θ2 periodically.

2) TD3
The way on which DDPG updates introduces function
approximation errors to the max operator. Function approx-
imation errors are known to lead to overestimated value
estimates and suboptimal policies [26], [27]. To deal with
these shortcomings of DDPG, TD3 uses delayed policy
updates to reduce errors caused by each update step to further
improve the performance. It also proposes to utilize two
critic networks to calculate the Q-target value and Q-value to
accelerate convergence, and takes the smaller one as target
to update both critic networks at the same time in order
to reduce overestimation bias. Additionally, parameters in
actor networks are regularized to reduce noise and estimated
deviations [28]. As a result, TD3 can effectively avoid the
problem of overestimation.

C. ENERGY STORAGE STRATEGY
Typical energy storage technique of HVAC systems includes
ice storage and chilled water storage systems, which are
characterized by large energy storage capacity with high
initial investments [29]. Based on the building energy storage
and virtual energy storage technology initiated in advance,
building envelopes are used to store a certain amount of
cold energy when electricity price reaches its peak, thus
achieving the purpose of energy conservation and emission
reduction [30]. It is a passive coupling process with indoor
temperature setting and dynamically changing load. A build-
ing’s virtual storage/discharge energy can be expressed as:

QVES (1T in,1Tw) = ρair · cair · Vzone ·
1T in
dt

+ρw · cw · Vw ·
1Tw
dt

(3)

where ρair is air density, cair is air specific heat ratio, Vzone
is indoor air capacity, 1Tin is indoor temperature variation
value, ρw is building envelope density, cw is building envelope

heat ratio, Vw is volume of building envelope,1Tw is temper-
ature variation of building envelope.

The advance startup time of HVAC systems is the key
to building energy storage [30]. If started too early, there
would be no insulation between the building and outdoor
environment, and the energy consumption would be large.
Alternatively, if started too late, it cannot meet the goal of
energy storage. Back propagation method is used to predict
the advance startup time of HVAC systems according to the
outdoor hourly temperature. The learning process of this
approach is divided into forward propagation and back prop-
agation. The cooling load of a day is predicted by the hourly
outdoor temperature to obtain the relationship between the
cooling load and start time of HVAC, in order to determine the
advance startup time. In the simulation, the advanced startup
time is set at 5 am. That’s because time-of-use electricity
price is lower before 6 am. Electricity prices for energy cost
calculations are shown in Fig.1, based on local time-of-use
electricity prices.

FIGURE 1. Time-of-use electricity prices.

III. FRAMEWORK OF ALGORITHM
This section introduces the whole framework and process of
TD3-MPC algorithm, and lays out the definitions of state
space, action space and value function in the algorithm. There
are three parts within the algorithm framework: energy con-
sumption prediction, action selection, and update. At last,
this TD3-MPC algorithm is further optimized to incorporate
energy storage strategy.

A. DEFINITIONS IN HVAC
Building HVAC systems’ operation is based on current tem-
peratures and outdoor environmental disturbances to ensure
each region reaches desired temperatures with minimized
energy costs while achieving temperature comfort [31]. The
regional temperature of the next time step is only determined
by the current system state, environmental interference, and
the air conditioning input of HVAC systems, independent of
previous state of the building. A building with five tempera-
ture zones equipped with a HVAC system to provide constant
temperature with air flow is simulated. Five zones are created
in order to verify the robustness of the proposed algorithm.
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FIGURE 2. Framework of TD3-MPC algorithm.

The simulated environment is then used to train a DRL agent
to evaluate performances in energy consumption and thermal
comfort. Finally, time-of-use electricity price is used to cal-
culate the energy cost of HVAC.

1) STATE SPACE
States are a DRL agent’s observation of each control
step, representing valuable information that the agent can
obtain before making decisions to help evaluate situations.
In order to equip the agent with a better understanding of
the changing environment, states are divided into current
environment state superposed upon history and predictive
state of environment. The state value can be expressed as
S = {st , st−1, . . . , st−n}.where t is measured time step,
n represents number of historical control time steps. Each
item s consists of the following factors: regional air temper-
ature T , outdoor air temperature Tout , outdoor air flow rate
V , desired temperature Tset , time-of-use electricity price pt ,
electrical power load l0, and regional cooling load lt . The total
energy consumption of HVAC can be calculated as follows,
where η is a constant coefficient:

Wt = ηlt + l0 (4)

The regional cooling load lt is directly controlled by the
agent. Electrical power load l0 is a fixed constant, which is
not affected by other factors in the region and is the basic
operational cost of building HVAC systems. The total energy
consumption is as follows, where δ is a constant coefficient,
and pt refers to the time-of-use electricity price:

E = δptWt (5)

2) ACTION SPACE
Actions are what agents take to control the environment
according to a specified strategy. In building HVAC systems,
actions are the temperature settings of regions which agents
adjust. The adjustments are based on observed external feed-
back conditions, and the values are discrete, such as: A =
{20, 21, . . . , 32}. The temperatures of a controller range from
20 to 32 degrees Centigrade.

3) REWARD FUNCTION
The formulation of reward function in DRL algorithm deter-
mines the objective of control optimization [32]. The goal of
the study is to minimize energy consumption while satisfying
thermal comfort requirements. Based on the total energy
consumption cost (captured by the output of the simulation
model) in Section 2 Part C, timely reward can be obtained as
follows:

r = −βE − (1− β)(T diff )
2 (6)

where Tdiff is the difference between indoor and outdoor
temperatures, and β is a constant weight introduced to avoid
biased results. In this simulation, β is 0.05. Within the above
equation, negative incentives are used to get a maximum
cumulative reward. During the operation of HVAC systems,
the cumulative reward can be defined as R =

∑n
i=1 γ

i−1rt+i,
where γ is attenuation factor.

B. ALGORITHM FRAMEWORK
The DRL control framework of HVAC systems is shown
in Fig.2, including three steps: energy consumption predic-
tion, action selection, and update. MPC is used to predict
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TABLE 1. Pseudocode of proposed TD3-MPC algorithm.

the energy consumption of building HVAC systems. After
the phase of constructing the prediction model, the goal of
reinforcement learning is to update control policy by getting
the optimal action. The balance and utilization of the relation-
ship between actions is related to the formulation of optimal
strategies and learning speed [33].

Table 1 presents the structure of TD3-MPC algorithm.
The interactions between the agent and environment begin
with the initialization of control policy θ and empty replay
buffer D. It takes current environmental state s and outdoor
environmental temperature as inputs. Then the algorithm
calculates an optimal action sequence AHt with H steps pre-
diction. The agent executes first action at from AHt and stores
to replay buffer, and later uses the replay bufferD to optimize
parameter θ . After getting the optimized parameters for con-
trol policy, the algorithm reaches the action selection stage,
which determines the accuracy of the prediction. TD3 takes
the current environmental state as input to initialize actor
network and critic network with weights θ1 and θ2, and target
network with weights θ ′1, θ

′

2. To avoid overfitting, a truncated
normally distributed noise ∈∼ clip (N (0, σ̃ ) ,−c, c) , c > 0
is added to each action.

Since the actor and critic networks have randomly initial-
ized parameters, the output Q-values from the networks must
be different, respectively denoted as Q1 and Q2. TD3-MPC
takes the clipped minimum as Q-target to offset the over-
estimation of Q-value and substitutes it into the Bellman
equation to calculate temporal difference (TD) error and the

expectation loss function, where γ and d are setting parame-
ters and r is the reward by taking specific action:

y
(
r, s′, d

)
= r + γ (1− d) min

i=1,2
Qθ i

(
s′, a′

(
s′
))

(7)

L (θi)i=1,2 = E(s,a,r,s′,d)
[(
Qθi (s, a)− y

(
r, s′, d

))2] (8)

Although this update rule for Q-value may induce underes-
timation bias over standard Q-learning method, the underes-
timated actions will not be explicitly propagated through the
policy update. In the end, θ ′1 and θ ′2 are respectively used to
update target actor and critic networks. The whole modeling
process takes into account influences of outdoor temperatures
and electricity prices on energy consumption cost, which is
considered as an improvement over traditional algorithms.

IV. EXPERIMENTS
A. SIMULATION
In order to verify the effectiveness of TD3-MPC algorithm,
a building with five regions was simulated and set with the
same expected indoor temperature in these regions (22◦C).
These regions also had the same outdoor temperature derived
from the actual local temperature. Controllable environment
was rapidly modeled based on MATLAB. MATLAB was
chosen as the modeling tool because it had been widely used
in many experiments and achieved effective results [34]. It
enabled the ability to present the complex building HVAC
systems in an abstract code structure, allowing agents to con-
trol the building regions directly. Table 2 describes the indoor
conditions set in 5 scenes. The only difference between
these scenes was the indoor air capacity, because it was one
important indicator of the indoor thermal environment [35].
All environment used 24 hours as a time step to simulate.

FIGURE 3. Reward and average reward of DDPG and TD3 models.

In the first step of the simulation, TD3-MPC algorithm
modeled the energy consumption prediction problem as a
MPC prediction model. After a series of processing, the final
energy consumption prediction vector and current environ-
mental state vector were input into the DRLmodel. Secondly,
the algorithm assumed that only the regional temperature
was observable and controlled other irrelevant factors such
as wind velocity and humidity. In the process of offline pre-
training, the imitation loss was minimized to directly evaluate
the performance by allowing the agent to control the environ-
ment. After 100 episodes of training, the reward and average
reward of DDPG and TD3 model were shown in Fig.3.
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TABLE 2. Comparison of indoor conditions in five scenes.

B. EXPERIMENT RESULTS
At the beginning of training, reward of DDPG is very small
because it frequently violates the temperature requirement.
In other words, it cannot reach the expected value which
results in great punishment [32]. In comparison, TD3 has
higher reward at the beginning but the policy network is
affected by valuation network as the training process goes
on, resulting in a significant decline in the reward shortly
after episode 0 and then volatility along the curve. This is
because the strategy function is not fixed during training and
it can be learned together with the valuation function. With
the deepening of the learning process, these two algorithms
show almost the same convergence, and the reward value
gradually increases. This illustrates the agent can organi-
cally adjust policies according to changes in environmen-
tal conditions. Finally, expectations gradually converge to a
fixed constant, which indicates that the agent can make the
right decision in all states to adjust the temperature in order
to minimize the energy consumption cost while satisfying
thermal comfort requirements. Due to changes in outdoor
temperatures and time-of-use electricity prices, the reward
curve fluctuates slightly. Overall, TD3-MPCmodel has better
performance than DDPG, which is reflected in the higher
reward of TD3-MPC.

The trained models are then put into set environment
for evaluation. DRL controller receives the state param-
eters transmitted from MATLAB by socket connection.
The accuracies of DDPG and TD3-MPC models in energy
consumption control strategy are measured through a com-
parative experiment. Fig.4 shows the prediction results ran-
domly sampled on a day in five regions. Three lines represent
predicted energy consumption results of DDPG, TD3-MPC,
and TD3-MPC with energy storage strategy respectively.
Three columns respectively represent the root mean square
error (RMSE) of DDPG, TD3-MPC, and TD3-MPC with
energy storage strategy at indoor temperature. This perfor-
mance metric reflects the difference between indoor and set
temperatures. The greater the RMSE value is, the greater error
between indoor and set temperatures.

The results suggest that there is certain similarity between
three models in various aspects. Curves of total energy con-
sumption cost rise over time during 12 to 18 pm and peak
at 17 to19 pm. This is due to the afterheat of high temper-
atures in the afternoon and the rise of electricity price in
the evening. When the outdoor temperature is the highest
in a day, the external interference is the strongest as well.

FIGURE 4. Experimental results.

After 19 pm, the fall of outdoor temperatures also directly
leads to lower energy costs. Since the proposed TD3-MPC
algorithm incorporates energy storage strategy, it is based
on time pre-start after 22 pm when the electricity prices get
down to avoid electricity peak. This also led to an increase
in energy consumption from 22 pm to 9 am in the following
morning. However, the cold air stored in the previous period
can be effectively saved, to achieve the purpose of reducing
energy consumption. The total energy consumption is still a
lot lower than other models. Although electricity prices are at
peak during 6 to 10 am, in order to store a certain amount
of cold air before the high temperatures in the afternoon,
some energy consumption during this period is needed to sat-
isfy the thermal comfort requirements. In general, TD3-MPC
algorithm can significantly reduce the energy. Comparedwith
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DDPG, TD3- MPC is able to reduce energy consumption by
about 16% at the peak of energy consumption. Moreover,
the distribution diagrams of RMSE suggest that TD3-MPC
algorithm is able to further reduce RMSE by 0.4 compared
with the other two methods. This additional reduction in
RMSE implies that this algorithm can maintain a lower tem-
perature violation rate with better robustness.

V. CONCLUSION
This paper proposes an energy consumption prediction con-
trol algorithm combined with relevant strategies of energy
storage for HVAC systems. The algorithm is named as
TD3-MPC. This approach greatly reduces the uncertainty
brought by the outdoor environment and it is suitable under
different indoor air capacity settings. The experiment results
demonstrate that

TD3-MPC algorithm has the following advantages:
1) TD3-MPC algorithm can effectively improve the accu-

racy of energy consumption prediction and control of
building HVAC systems. It has better performance than
the traditional control strategy DDPG.

2) It is applicable to different scenarios. Five scenes are
enumerated in the experiment and TD3-MPC algorithm
is the most efficient method in all five scenarios. This
illustrates the robustness of the algorithm.

3) TD3-MPC is able to store energy in building area
at off-peak periods to further reduce the energy
consumption cost.

Compared with DDPG, TD3-MPC is more suitable to
solve the continuous state space problem of action control,
which minimizes the influence of overestimated Q-value on
the control process. Results show that TD3-MPC reduces
energy consumption cost by 16% and thermal comfort RMSE
by 0.4 respectively.
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