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ABSTRACT The control of a nonlinear system such as an underground coal gasification (UCG) process is a
challenging task. Several nonlinear design approaches are implemented to improve the tracking performance
of the UCG process, however, the nonlinear techniques make implementation complex and computationally
inefficient. In this work, a constrained linear model predictive control (MPC) is designed for the UCG
process to track the desired trajectory of the heating value, while satisfying actuator constraints pertaining
to UCG. The unknown states required for MPC design are reconstructed by using linear adaptive Kalman
filter (AKF) and unscented Kalman filter (UKF). The design of MPC and AKF is based on the quasi-linear
model of the UCG process. A fair comparison between different control strategies is conducted which
include MPC–AKF, MPC–UKF, MPC–gain scheduled modified Utkin observer (GSMUO) and dynamic
integral sliding mode control (DISMC)–GSMUO. The quantitative analysis and simulation results show that
MPC-AKF outperforms its counterparts by yielding the least tracking error and average control energy. This
conclusion holds, even in the presence of an external disturbance, parametric variations, and measurement
and process noises. Moreover, MPC-AKF yields 51%, 44% and 46% improvement in absolute relative
root-mean-squared error with reference to MPC–UKF, MPC–GSMUO and DISMC–GSMUO, respectively.
A quantitative analysis has also been carried for AKF and UKF, which shows that the performance of AKF
is more robust against changes in the initial values of measurement and process covariances.

INDEX TERMS Model predictive control (MPC), underground coal gasification (UCG), adaptive Kalman
filter (AKF), unscented Kalman filter (UKF), energy conversion systems.

I. INTRODUCTION
The major share of the world’s energy demand is fulfilled
by fossil fuels (coal, oil and gas) [1]. Amongst fossil fuels,
coal has become the leading energy source for electricity
generation [2], [3]. The main reason for its extensive usage
is the advent of clean coal technologies such as integrated
gasification combined cycle (IGCC) which allows for the
extraction of toxic contents at different stages of the process,
as discussed in [4]–[6]. In IGCC, coal gasification is inte-
grated with a combined cycle power plant to provide low
to medium heating value of syngas (250 to 400 Btu/ft3),
which acts as a fuel for the gas turbine topping cycle. The
gasification of coal can be conducted in specially designed
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chambers known as surface gasifiers or in-situ, also known
as underground coal gasification (UCG) [7], [8]. In UCG,
the gasification process starts by drilling two wells from the
surface to the coal seam. After the link is established between
the wells, the already ignited coal seam is gasified by a gas
mixture (air and/or steam) injected from the inlet well. The
product of UCG is a syngas (a mixture of CO, H2, CH4,
steam and higher hydrocarbons), which is recovered from
the production well [9], [10]. As compared with conventional
mining and surface gasification, UCG promises lower capital
operating cost and decarbonised product gas [11].

The efficiency of a UCG process can be improved by
keeping the heating value of the syngas at the desired level by
manipulating the flow rate or molar flux of the inlet gas [12].
This can be achieved by employing an efficient control design
of UCG which is an emerging area of research [11].
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A. RELATED WORK
The recent developments and current position of UCG has
tended to focus on the control of UCG process [11]. In [13],
different control methods pertaining to academic research
and experimental research are discussed. Both model-free
and model-based control methodologies have been consid-
ered for UCG process. In [14] and [15], a conventional Pro-
portional Integral (PI) controller is implemented to regulate
the heating value, concentration and temperature of the syn-
gas at the desired levels. The designed controller does not
depend on model information explicitly, rather it takes the
decision based on available measurements. It is expounded
that the measurements of the process variables are consid-
ered under the conditions of uncertainties [16]. Therefore,
designed control system should be robust enough to han-
dle these uncertainties and continuously adapt the changes
taking place in the process [17]. Internet-of-Things (IoT)
based wireless sensing system has been introduced for in-situ
monitoring and an optimal control is implemented based on
deep learning techniques [18]. In [17], an experimental study
is demonstrated to show the applicability of optimal control
problem with lignite coal based UCG process. The control
inputs are generated by solving a real-time optimization prob-
lem, which maximize the content of CO in syngas and also
ensure the steady state form of syngas. In [19], an experi-
mental and simulation study is conducted by employing an
adaptive model predictive control (MPC) for maintaining
the calorific value of the syngas at the desired level. The
effect of future control inputs on the syngas calorific value to
support a predictive control is also analyzed using data-driven
design approaches, such as multivariate adaptive regression
splines (MARS) [16]. In [20], a model-free optimal control
of UCG has been established for continuous optimization of
operating variables which results in increased production of
syngas. In the aforementioned literature, the designed con-
trollers are either model-free or employ data-driven models.
However, the most accurate control and monitoring strate-
gies are model-based, which employ first principle based

models of a process [21]. The academic research has pro-
duced a set of mathematical models of underground coal
gasification, and the European Union-supported program
has addressed the production of a decarbonised product
gas [11].

In [12], a 1D control-oriented model of the Thar coal UCG
process has been proposed. The model has been employed
to design a super twisting-based sliding mode control (SMC)
and a dynamic SMC for the UCG process in [22] and [23],
respectively. The objective of both the controllers is to main-
tain a desired (constant) heating value of the syngas. Due to
the complexity of the model proposed in [12], the controller
designs in [22] and [23] bear a lot of assumptions and approx-
imations. The controller design given in [23] is improved
by estimating the controller parameters using the artificial
neural network (ANN) [24]. Considering the complexity of a
partial differential equations (PDEs) basedmodel, a relatively
simple model of a UCG process has been proposed in [25],
which consists of time-based nonlinear ODEs for mass and
energy balances of the UCG process. Moreover, a conven-
tional SMC is also designed for maintaining a desired heating
value. In [25], it has been assumed that all the states of the
system are measurable, which is not the case practically. This
discrepancy has been removed in [26] and [27]. In [26], a gain
scheduled modified Utkin observer (GSMUO) along with
an integral SMC have been proposed to robustly track the
desired trajectory of the heating value. This work has been
further improved in [27] with more efficient dynamic integral
sliding mode control (DISMC). Apart from the nonlinear
techniques discussed above, several model-based linear con-
trol techniques have also been designed for the UCG process.
In [28], the authors linearized the nonlinear model of [25],
using Taylor series approximation around an operating point
of interest and designed a linear matrix inequality (LMI)
based optimal H2/H∞ controller to keep the heating value on
a desired level. In [29] and [30], the authors have identified
a linear model for the UCG process and then designed H∞
and dynamic sliding mode controllers based on the identified
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linear model, respectively. Furthermore, both the controllers
are implemented on the cavity simulation model (CAVSIM)
of [31]. As in [28]–[30], the control design is based on linear
models, so the controllers are only effective in a limited
operating range.

B. GAP ANALYSIS
The nonlinear design frameworks as discussed above make
the implementation complex and require more computational
resources and cost as discussed in [28]. Due to the ease in
the design and implementation of the linear control and esti-
mation techniques, they are extensively used in the process
control industry [28]. However, the accuracy of the linear
approaches is limited by the degree of nonlinearity and range
of the operation of the system. This means that for enjoying
the ease of the linear control techniques one has to compro-
mise on the accuracy of the control system. However, in [32]
the authors propose a quasi-linear approach which transforms
a nonlinear representation of a system into a state space form,
comprising of state dependent matrices. Therefore, the quasi-
linear approach yields a linear representation of the model,
however, the dynamics is still nonlinear. The advantage of
such approach is that the linear control and estimation tech-
niques can be designed for nonlinear systems which yield
similar performance demonstrated by the conventional non-
linear approaches.

C. MAJOR CONTRIBUTIONS
In this work, the quasi-linear technique of [32] is employed
to obtain the exact decomposition of the mass and energy
balances of the UCG process. The model is then used to
design a model-based constrained linear MPC. The design
problem pertaining to the UCG process such as tracking of
the desired heating value and minimization of the control
input energy is casted in the MPC framework. For the UCG
system, the designed MPC successfully solves the optimiza-
tion problem for robust tracking even in the presence of
uncertainties and disturbances. MPC is an effective design
approach as it inherently handles the design constraints
related to the system. This constraint handling property of
MPC is very important and gives it an edge over conventional
linear/nonlinear control approaches. As the constraints on
states, inputs and outputs are handled inherently, situations
like saturation of the actuators can be avoided. In the case
of other control techniques, anti-wind-up approaches need to
be integrated with the control system to avoid saturation of
the actuators. Moreover, the MPC framework includes online
optimization at every sampling instant and the current closed-
loop input is determined based on the current state of the
system. This naturally inculcates robustness in the control
framework [33]–[35].

The unknown states of the UCG process, which are
required for MPC design are estimated using unscented
Kalman filter (UKF) and adaptive Kalman filter (AKF).
The designed of linear AKF is also based on the quasi-
linear model of UCG. Consequently, a fair comparison

has been made between MPC-AKF and its peers, which
include combinations of MPC and unscented Kalman fil-
ter (MPC-UKF), MPC and gain scheduled modified Utkin
observer (MPC-GSMUO), and dynamic integral sliding
mode control and GSMUO (DISMC-GSMUO) [27].

The main contribution of this work are as follows:
• A linear MPC, based on the quasi-linear decomposition
of the UCG process is designed to track the desired
trajectory of the heating value. The designed controller
respects the constraints on the input.

• To make the model-based control possible, the unknown
states of the system are estimated using AKF and UKF.
The design of AKF is also based on a quasi-linear model.

• The designed MPC-AKF methodology is implemented
on the nonlinear model of the UCG process. To eval-
uate the robustness of the designed technique, exter-
nal disturbance, parametric variations, and process and
measurement noises are introduced in the process.
A rigorous quantitative comparative analysis is made
between the proposed MPC-AKF technique and other
linear/nonlinear techniques from the literature, which
demonstrates the effectiveness of the designed control
scheme.

The rest of the paper is arranged in the following man-
ner. In section II, the nonlinear control-oriented model of
the UCG plant is presented. The MPC design is elaborated
in section III, whereas, the designs of UKF and AKF are
discussed in section IV. The implementation of the proposed
methodologies is discussed in section V and this research
work is concluded in section VI.

II. MATHEMATICAL MODEL OF UNDERGROUND COAL
GASIFICATION PROCESS
In this work, a nonlinear control-oriented model of the UCG
process given in [25] is considered. The model is comprised
of two solids (coal and char), and eight gases (CO, CO2, H2,
CH4, tar, H2O, O2 and N2). The model can be written in
nonlinear control-affine form as

ẋ = f (x)+ g1u+ g2δ, (1)
where x ∈ R11×1 is defined as

x = [ρcoal ρchar Ts CCO CCO2
CH2

CCH4
Ctar CH2O CO2

CN2
]T . (2)

The vector fields given in Eq. (1) are f , g1, g2 ∈ R11×1

and given as

f (x) =



−M1R1
M2(pR1charR1 − R2 − R3)1

Cs

(
ht (T − Ts)−1q2 R2 −1q3 R3

)
pR1COR1 + R3 − βCCO
pR1CO2R1 + R2 − βCCO2
pR1H2R1 + R3 − βCH2
pR1CH4R1 − βCCH4
pR1tarR1 − βCtar

pR1H2OR1 + pR2H2OR2 − pR3H2OR3 − βCH2O

−pR2O2R2 − βCO2
−βCN2


,
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g1 =
[
0 0 0 0 0 0 0 0

5

L
4

L
9

L

]T
,

g2 =
[
0 0 0 0 0 0 0 0

1
L

0 0

]T
. (3)

The control input is represented by u, and δ represents
the external disturbance in terms of water influx from the
surrounding aquifers [27], [29]. The chemical kinetics is
mainly dependent on three chemical reactions which take
place in-situ and are stated in Table (1).

TABLE 1. Chemical reactions considered in the UCG. process [27].

The compounds such as CH0.912O0.194, CH0.15O0.02 and
(CH2.782)9 represent molecular formulas of coal, char and tar,
respectively. The mathematical expressions for the reaction
rates of the selected chemical reactions are given as

R1 = 5
ρcoal

M1
exp

(
−6039
Ts

)
,Rm2 =

1
10
htmO2

,

Rc2 =
1
M2

[
9.55× 108ρcharmO2

Pg exp
(
−22142
Ts

)
T−0.5s

]
,

R2 =
1

1
Rc2
+

1
Rm2

, Rm3 =
1
10
htmH2O

,

Rc3 =
ρcharm2

H2O
P2g exp

(
5.052−

12908
Ts

)
M2

[
mH2O

Pg + exp
(
−22.216+

24880
Ts

)]2 ,
R3 =

1
1
Rc3
+

1
Rm3

, (4)

where mO2
and mH2O

are the internal molar fractions of O2
and H2O, respectively. Mathematically, the molar fractions
are given by

mO2
=

CO2

CT + CH2O

, mH2O
=

CH2O

CT + CH2O

,

CT = CCO + CCO2
+ CH2

+ CCH4
+ Ctar + CO2

+ CN2
.

The stoichiometric coefficients and the nominal parameter
values which are used in the nonlinear model of UCG (1) are
given in Table (2) and Table (3), respectively.

The product gases are recovered at the production well.
After the removal of steam from the gas mixture, the gas

TABLE 2. Stoichiometric coefficients used in the chemical reactions of
the UCG process [27].

TABLE 3. Nominal parameter values [27].

analyzer measures the concentration of the following gases

ym =
[
CCO CCO2

CH2
CCH4

Ctar CO2
CN2

]T
. (5)

The heating value of the product gases is computed as

Hv(x) = HCOχCO + HH2
χH2
+ HCH4

χCH4
, (6)

where Hv(x) is the heating value of the product gases in
kJ/mol. Hi, i ∈ {CO,H2,CH4} is the combustion heat
(kJ/mol) of gas i and χi represents the molar fraction of the
gases, given by the ratio

χi =
Ci
CT

.

In order to track the desired trajectory of Hv, the design of
MPC is presented in the subsequent section.

III. MPC DESIGN FOR THE UCG PROCESS
In this section, a constrained linear MPC is designed for the
UCG process represented in the control-affine form (1).

A. QUASI-LINEAR DECOMPOSITION OF DISCRETE TIME
MODEL OF THE UCG PROCESS
To employ MPC, the nonlinear UCG system in (1) is dis-
cretized using the forward Euler method [37], with a step-size
of 1t = 2.5 s to have following nonlinear-discrete form

x(k + 1) = x(k)+ f (x(k))+ Bu(k)+ Dδ(k),

y(k) = Hv(x(k)), (7)

where f (x(k)) = 1tf (x(t)), B = 1tg1, D = 1tg2 and
y(k) represent the discrete-time formulation of vectors used
in (1), (6). The discrete nonlinear form of UCG (7) is decom-
posed using a quasi-linear approach given in [32] to yield the
following discrete-time state-space representation

x(k + 1) = A(x(k)) x(k)+ Bu(k)+ Dδ(k), (8)

y(k) = C(x(k)) x(k), (9)

where x(k) ∈ R11×1, A(x(k)) ∈ R11×11, B ∈ R11×1

and C(x(k)) ∈ R1×11. The matrices A(x(k)) and C(x(k))
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corresponding to the quasi-linear form of f (·) and Hv(·)
respectively, are given [27]

A(x(k)) =

 | | |

a1 a2 . . . a11
| | |

 ,
C(x(k)) =

[
c1 c2 . . . c11

]
, (10)

where elements of A(x(k)) and C(x(k)) are given as

ai = ∇fi(x)+
fi(x)− xT∇fi(x)

||x||2
x , x 6= 0,

ci = ∇hi(x)+
hi(x)− xT∇hi(x)

||x||2
x , x 6= 0. (11)

The difference of state and control variables is defined as

1x(k + 1) = x(k + 1)− x(k); 1x(k) = x(k)− x(k − 1),

1u(k) = u(k)− u(k − 1).

The system can be re-written as

1x(k + 1) = A1x(k)+ B1u(k), (12)

In the next step, the output y(k) is written in the form
of 1x(k). A new state variable which combines the 1x(k)
and y(k) [38], is given as

x(k) = [1x(k) y(k)]T,

Note that

y(k + 1)− y(k) = C(x(k + 1)− x(k)) = C1x(k + 1)

y(k + 1) = CA1x(k)+ CB1u(k), (13)

Equations (12) and (13) lead to the following augmented
state-space model

x(k+1)︷ ︸︸ ︷[
1x(k + 1)
y(k + 1)

]
=

A︷ ︸︸ ︷[
A OT

CA 1

] x(k)︷ ︸︸ ︷[
1x(k)
y(k)

]
+

B︷ ︸︸ ︷[
B
CB

]
1u(k)

y(k) =

C︷ ︸︸ ︷[
O 1

] [1x(k)
y(k)

]
, (14)

where O∈ R1×11 is the vector containing all zeros to formu-
late augmented form for the UCG system.

B. MPC PROBLEM FORMULATION FOR UCG
The control objective associated with UCG is to track Hv to
its predefined set-points (ri) depending upon the operating
conditions of the UCG reactor. The control problem also
has constraints on the control input u(k) which reflect the
characteristics of installed compressors’ at the UCG project
Thar (UPT). There are two types of constraints associated
with the control input. The first constraint comes from the fact
that the molar flux cannot be negative and the compressors
can only provide a finite value of the maximum molar flux.

The second constraint is imposed on the rate of change,1u(k)
of the control input. These constraints are given as

umin ≤ u ≤ umax,

1umin ≤ 1u ≤ 1umax, (15)

where umin = 0, umax = 5 × 10−4, 1umin = −1.05 × 10−7

and1umax = 1.05×10−7. Given an initial state x(ki) at time
index ki is required to calculate the change in input sequence
1U={1u(ki), 1u(ki + 1), , . . . .,1u(ki + Nc − 1)}, where
Nc is the size of future control trajectories that minimize
the cost function of the following form over a finite time
horizon Np

J = (Rs − Y )T(Rs − Y )+1UR̄1U, (16)

where Rs =

Np×1︷ ︸︸ ︷
[1 1 . . . 1] r(ki) is the column vector that

contains the information about the set-points for Hv. Here
Np denotes the length of the prediction horizon. Further-
more, r(ki) will remain constant within the defined opti-
mization window Np. R̄ is the diagonal matrix of the form
R̄= rwINc×Nc (rw > 0) and rw is a tuning parameter to bound
the rate of change of the control input 1U . The predicted
output Y over a defined horizon Np can be computed as

Y = Fx(ki)+ φ1U, (17)

where F and φ are the matrices calculated by using the
augmented form given in Eq. (14) over a defined horizons
(Np and Nc). In this work, the length of both the prediction
and control horizon is kept the same, i.e., Np = Nc. The
augmented matrices F and φ are characterized as

F=
[
CA CA2 CA3 . . . CANp

]T
,

φ=



CB 0 0 . . . 0
CAB CB 0 . . . 0
CA2B CAB CB . . . 0
.

.

.

CANp−1B CANp−2B CANp−3B . . . CANp−NcB


. (18)

Now, by substituting Y in (16), the cost function can be
re-written as

J = (Rs − (Fx(ki)+ φ1U))T (Rs − (Fx(ki)

+φ1U))+1UR̄1U . (19)

Moreover, 1U in the given cost function (19) also has
the process design constraints pertaining to the UCG pro-
cess, which are of the form (15) as discussed earlier. Thus,
the optimization problem of the MPC can be transformed
as to find the optimal control parameter vector (1U) that
satisfies the constraints of the form (15) while minimizing
the cost function given in (16).

These constraints can be re-written as

1 Umin ≤ 1U(ki) ≤ 1 Umax, (20)
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and in a matrix form as[
−I
+I

]
1U ≤

[
−1 Umin
+1 Umax

]
. (21)

In case of constraint on amplitude [umin, umax], control
variable u(ki) is manipulated in terms of a parameterized
variable as

u(ki)
u(ki + 1)
u(ki + 2)

.

.

.

u(ki + Nc − 1)


=



1
1
1
.

.

.

1


u(ki − 1)

+



1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0

.

.

.

1 1 1 . . 1 1





1u(ki)
1u(ki + 1)
1u(ki + 2)

.

.

.

1u(ki+Nc−1)


.

Let C1 and C2 be the matrices of an appropriate dimension
and with the manipulated variable u(ki) = u(ki−1)+1U(ki)
yields the following form of the inequality in (20)

−Umin ≤ (C1 u(ki − 1)+ C21U) ≤ Umax, (22)

where Umin and Umax ∈ RNc×1 are column vectors of umin
and umax, respectively. Similarly, in case of control varia-
tion or rate of change of the control input, the constraints
given in (21) can be considered. Where 1Umin and 1Umax
are column vectors with Nc elements of 1umin and 1umax,
respectively. Furthermore, both constraints are coupled in the
following form [

M1
M2

]
1U ≤

[
N1
N2

]
, (23)

where the matricesM1, M2, N1 and N2 are given as

M1 =

[
−C1
+C2

]
, N1 =

[
−Umin + C1 u(ki − 1)
+Umax + C1 u(ki − 1)

]
,

M2 =

[
−I
+I

]
, N2 =

[
−1Umin
+1Umax

]
. (24)

In order to estimate the unknown states required for the
MPC design, two types of KFs are discussed in the following
section.

IV. KALMAN FILTER-BASED STATE ESTIMATION OF THE
UCG PROCESS
As discussed in section II, 7 out of 11 states of the UCG
process are measured using the gas analyzer. These states
are given in the measurement vector ym (5). The remaining
four states, which include ρcoal , ρchar , Ts and CH2O are not
measurable. Therefore, in order to estimate these unknown
states, we designed KF-based estimators. It is pertinent to
mention that for the UCG system, the exact noise covariances

are not known.Whereas, uncertain and biased values of initial
covariances may result in divergence or degradation of the
estimator [39], [40]. Thus, the designed estimator should
be robust enough to handle the true values of these covari-
ances which may arise at the commissioning stage of the
plant. In view of this, two different KF-based estimators are
designed, one from a nonlinear design approach known as
UKF and another from on extended linear KF-based approach
known as AKF [41]. For both designs, the discrete-time
nonlinear system of UCG (7) as discussed in section III-A
is considered and given as

xk+1 = f (xk, uk)+ B(uk)+ D(δk)+ wk,

ymk = Hxk + νk,

H =



0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1


,

wk ∼ N (0,Qk),

νk ∼ N (0,Rk),

E[(νkνTj )] = Rkδk−j,

E[(wkwTj )] = Qkδk−j,

E[(wkνTj )] = 0, (25)

where the kronecker delta function δk−j = 1 if k = j and
δk−j = 0 if k 6= j. wk and νk represent process and mea-
surement noises. Both noises are white, zero mean, uncorre-
lated and with known covariance matrices Qk ∈ R11×11 and
Rk ∈ R7×7, respectively.

A. UNSCENTED KALMAN FILTER DESIGN
The UKF is implemented for UCG states reconstruction in
three steps which are usually followed in any KF-based
design [40]
Step I: Initialization
The initial values of posteriori state estimate (x̂+0 ), posteri-

ori state estimation error covariancematrix (P +0 ), and process
(Q0) and measurement (R0) noise covariance matrices are
given as

x̂+0 = E(x̂0) ,

P +0 = E[(x0 − x̂
+

0 )(x0 − x̂
+

0 )
T],

Q0 = diag
(
q1,1, q2,2, · · · q11,11

)
,

R0 = diag
(
v1,1, v2,2, · · · v7,7

)
, (26)

where qi,i and vi,i are the diagonal values of covariance
matrices Q0 and R0 respectively.
Step II: Time Update
After initialization, the next step is to propagate the state

estimates and covariance to the next time step. To achieve
this the sigma points are computed as

x(i) = x̄+ x̃(i), i = 1, . . . , 2n
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x̃(i) = (
√
nP)Ti , i = 1, . . . , n

x̃(n+i) = −(
√
nP)Ti . i = 1, . . . , n, (27)

For the time update step of UKF, the mean and covariance
of a vector x will be transformed through sigma points given
in Eq. (27) as

x(i) = x(+)k−1 + x̃
(i), i = 1, . . . , 2n

x̃(i) =
(√

nP(+)
k−1

)T

i
, i = 1, . . . , n

x̃(n+i) = −
(√

nP(+)
k−1

)T

i
. i = 1, . . . , n, (28)

by using the known nonlinear form of UCG f (·), the sigma
points will be transformed as

x̂(i)k = f (x̂(i)k−1,uk ), (29)

x̂(i)k can be combined with the following form

x̂−k = W
2n∑
i=1

x̂(i)k , (30)

where W = 1
2n for i = 1, 2, . . . , 2n is the weight coefficient

to match the priori estimate (x̂−k ) as given in (29) with trans-
formed sigma points at time k . Similarly, the priori estimate
of state estimation error covariance matrix (P−k ) can also be
computed as

P−k = W
2n∑
i=1

(x̂(i)k − x̂
−

k )(x̂
(i)
k − x̂

−

k )
T. (31)

Step III: Measurement Update
In measurement update, H given in Eq. (25) is used to

transform the sigma points y(i)k into ŷ(i)k as

ŷ(i)k = Hx̂(i)k , (32)

where x̂(i)k are based on same sigma points as given in Eq. (29).
By combining ŷ(i)k vector yields the predicted measurement at
current time k

ŷk = W
2n∑
i=1

ŷ(i)k . (33)

In the same way, the measurement covariance error matrix
(Py) can be calculated as

Py = W
2n∑
i=1

(ŷ(i)k − ŷk )(ŷ
(i)
k − ŷk )

T
+ Rk . (34)

Rk is added to take the measurement noise into account.
For UKF-based design cross covariance between x̂−k and ŷk
is calculated as [40]

Pxy = W
2n∑
i=1

(x̂(i)k − x̂
−

k )(ŷ
(i)
k − ŷk )

T. (35)

In the end, the measurement update is performed

Kk = PxyP−1y , (36)

x̂+k = x̂−k + Kk (yk − ŷk ), (37)

P+k = P−k − KkPyKT
k . (38)

The results of UKF are discussed in section V. In the
proposed UKF algorithm, the process andmeasurement noise
covariances are not adapted. This motivates to design AKF to
adapt initial unknown biased values of process and measure-
ment noise covariances.

B. ADAPTIVE KALMAN FILTER DESIGN
The main advantage of AKF is the adaptation of unknown
biased initial process and measurement covariances in the
environment where the true values of these covariances are
not known [39], [42]. As discussed earlier, the true values
of process and measurement noise covariances are unknown.
The initial values of process noise covariance matrix Q0 and
measurement noise covariance matrix R0 affect x̂k. If Q0
and R0 are too small then x̂k may be biased with some
estimation error and if Q0 and R0 are too large then x̂k
can oscillate [39]. However, in order to counter the initial
unknown biased covariances (Q0 and R0), the AKF design
approach is implemented for the UCG system.

The working principle of AKF is based on the extended
KF [41], which employs a linear representation of the system
for estimation [42], [40]. However, any mismatch between
the actual model and the linear model may cause poor perfor-
mance of the designedKF [42] and [40]. For the UCG system,
the quasi-linear approach provides the exact decomposition
which is required by the AKF algorithm. The algorithm of
AKF is discussed in the next paragraphs.

The initial step for AKF is similar to UKFwhich is given in
Eq. (26). The rulesR1 andR2 are implemented by modifying
the time update and the measurement update steps of the
conventional KF, [39].

R1: Measurement covariance update rule
The adaptation of Rk is calculated with the measurement

error update in Eq. (41), which uses the conventional time
update step of KF equations given in Eqs. (39) and (40),
respectively.

x̂−k = A(x(k))x̂k−1 + Buk−1, (39)

P−k = A(x(k))Pk−1(A(x(k)))
T
+ Qk−1, (40)

ek = zk − Hx̂−k , (41)

α1 =
NR − 1
NR

, (42)

ēk = α1ēk−1 +
1
NR

ek , (43)

1Rk =
1

NR − 1
(ek − ēk )(ek − ēk )T −

1
NR

HP−k H
T, (44)

Rk = | diag(α1Rk−1 +1Rk ) | . (45)
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R2: Process covariance update rule
Similarly, for the adaptation ofQk , we need to calculate the

state estimation error in Eq. (49) by using the conventional KF
design step of measurement update Eqs. (46) to (48).

Kk = P−k H
T(HP−k H

T
+ Rk )−1, (46)

x̂k = x̂−k + Kkek , (47)

Pk = (I − KkH)P−k , (48)

ŵk = x̂k − x̂
−

k , (49)

α2 =
NQ − 1
NQ

, (50)

w̄k = α2w̄k−1 +
1
NQ

ŵk , (51)

1Qk =
1
NQ

(Pk − A(x(k))P−k (A(x(k)))
T)

+
1

NQ − 1
(ŵk − w̄k )(ŵk − w̄k )T, (52)

Qk = | diag(α2Qk−1 +1Qk ) | . (53)

The implementation of AKF is shown in Fig. (1). The
performance of both AKF and UKF against different biased
covariances is analyzed in the following section.

V. SIMULATION RESULTS AND DISCUSSIONS
In order to evaluate the robust performance of the designed
AKF and UKF with the proposed MPC scheme, the simula-
tions are conducted by using a closed-loop configuration of
UCG as shown in Fig. (2).Moreover, the performance ofAKF
and UKF is also compared with GSMUO designed in [27].

The formulated optimization problem of MPC in Eq. (16)
is solved for UCG while satisfying the constraints given
in Eq. (15) using the fmincon function in MATLAB.
In fmincon, the sequential quadratic programing (sqp)
algorithm is used. The system specifications to run the sim-
ulations are: (i) processor 2.6 GHz, 6-Core Intel Core i7 and
(ii) memory 16 GB. The options selected for fmincon
are: (i) maximum iterations = 30, (ii) functional toler-
ance = 10−6, (iii) constraint tolerance= 10−6 and (iv) step-
size tolerance = 10−6. The resultant operating sequence
{1u(0)∗, 1u(1)∗, . . . .,1u(ki + Nc − 1)∗} is calculated for
the defined prediction horizon (Np= 5). The initial conditions
and parameters are given in Table (4). From Fig. (2), it can be
observed that MPC needs full state information of the system
which is provided by UKF, AKF and GSMUO. As discussed
earlier, true values of noise covariances are unknown. There-
fore, the designed estimators are tested against uncertain
initial covariances in the closed-loop configuration in Fig. (2).

The performance of MPC is evaluated against parametric
variations, disturbance in terms of water influx flow rate
(δ) and sensor noise. In order to represent the plant-model
mismatch, the process noise w is also considered. Addi-
tionally, as discussed in section III-B, actuator constraints
which reflect the installed compressor limitations are also
incorporated in the design. Parametric uncertainties of 2%,
as given in Table (5) are also included in the nominal model

TABLE 4. Description of parameters.

parameters of the UCG plant namely, P, β, ht and Cs to
validate the robustness property of the designed control and
estimation strategies.

TABLE 5. Parameters subjected to perturbations.

It is worth mentioning that both the MPC and the esti-
mators use the nominal system parameters. The disturbance
profile which represents the flow rate δ of steam due to water
influx from the surrounding aquifers is given in Fig. (3), and
it acts as an input disturbance.

In the simulations, the UCG system operates in open-loop
for t < 5.5 hr. During this time the molar flux of injected gas
mixture is fixed at u = 2 ×10−4mol/cm2/s. This strategy is
adopted so that the Hv reaches the vicinity of its desired set-
point [25], [27]. At t = 5.5 hr, the MPC starts its operation
and tracks the reference trajectory of Hv as shown in Fig. (4).
It is pertinent to mention here that the estimators operate for
the full length of the simulation. The open-loop operation of
the estimators allows to overcome the initial state estimation
errors. The tracking errors for different state estimators have
been shown in Fig. (5). Similarly, the control effort with
different estimators is demonstrated in Fig. (6). It can be seen
in Fig. (6) that with the increase in δ, the controller increases
the injection of more oxidants which maintains the desired
temperature of the UCG reactor and ultimately the desired
concentrations of product gases as shown in Figs. (8–13).
Furthermore, the root-mean-squared (RMS) values of the
tracking error (erms) and average power of the control signal
(pavg) are given as

erms =

√√√√ 1
N

N∑
i=1

e(i)2, e(i) = Hv(i)− Rs(i), (54)
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FIGURE 1. AKF implementation for the robust estimation of the UCG system.

FIGURE 2. Overview of the overall control implementation scheme for the
UCG process.

pavg =
1
N

N∑
i=1

u(i)2, (55)

where Rs(i) represents the desired set-point of Hv. The
results in Table (6) show that MPC-AKF outperforms
MPC-GSMUO, MPC-UKF and DISMC-GSMUO [27] by
consuming the least control energy while yielding the
minimum erms.

FIGURE 3. Flow rate of water influx from surrounding aquifers.

Moreover, the absolute relative tracking error improve-
ment for MPC–AKF (E[MPC-AKF]) with reference to other
control techniques is computed as

E[MPC-AKF] =
erms[~] − erms[MPC-AKF]

erms[~]
[%], (56)
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FIGURE 4. Evolution of the heating value of the UCG process.

FIGURE 5. Tracking error for different control schemes.

FIGURE 6. Control input (molar flux of injected gases) for different
control schemes.

where erms[~] is the tracking error of MPC–UKF, MPC–UKF
and DISMC–GSMUO. By using the results of Table (6)
in Eq. (56), it can be seen that MPC-AKF yields 51%,

TABLE 6. The erms and pavg for different control schemes.

44% and 46% improvement in absolute relative root-mean-
squared error with reference to MPC–UKF, MPC–GSMUO
and DISMC–GSMUO, respectively.

Both UKF and AKF filters discussed in section IV are
initialized using parameters given in Table (4). For small
values of NR and NQ, AKF performs poorly in terms of
estimation error. Thus, for UCG the large values ofNR andNQ
are selected as they give more weight to the recursive values
(Rk−1,Qk−1) as compared to the current noisy values of1Rk
and1Qk in adaptation of Rk and Qk as given in Eq. (45) and
Eq. (53), respectively. Moreover, the AKF gain is changed
based on the adaptation of Rk and Qk through measurement
error update (ek ) in Eq. (41) and state estimation error update
(ŵk ) in Eq. (49) respectively. Thus, if the tracking is not
satisfied then the gain will not converge to a small value.
The performance of AKF and UKF estimators is evaluated
in terms of the root-mean-squared error defined as

ẽrms =

√√√√ 1
N

N∑
i=1

ẽ(i)2, ẽ(i) = x(i)− x̂(i), (57)

The ẽrms is calculated for different initial biased values of
Q0 and R0 in Table (7). The initial values are changed using
Eq. (26) by selecting different values of qi,i and vi,i for Cases:
1, 2 and 3, respectively. It is pertinent to mention that the
process noise variance w = 10−4 and sensor noise variance
ν = 4×10−4 for the UCG plant remain the same for all cases
listed below:
• Case 1 (qi,i = 10−7 and vi,i = 4× 10−4): In Fig. (7-a),
the standard deviation (σ ) of q2,2 is shown to represent
the adaptation for ρchar . The initial small values of R0

and Q0 are adapted according to Eq. (45) and Eq. (53),
respectively. Consequently, the Kalman gain in Eq. (46)
converges to a smaller value. Thus, the ẽrms values of
AKF are close to UKF as calculated in Table (7).

• Case 2 (qi,i = 10−5 and vi,i = 2 × 10−2): In
Fig. (7-b), the adaption is shown for the Case 2. The
relatively larger values of R0 and Q0 result in increased
Kalman gain which improves the performance of AKF
as compared to UKF as calculated in Table (7).

• Case 3 (qi,i = 10−4 and vi,i = 2×10−2): As compared
to Case 2, the value of qi,i is further increased. It can
be observed in Table 7 that the performance of AKF is
slightly improved due to slight increase in Kalman gain,
however, the performance of UKF is deteriorated due to
increase in qi,i.

The performance of AKF, UKF and GSMUO has been
shown in Figs. (8–13). It is pertinent to mention here that
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FIGURE 7. Adaptation of process covariances q(2,2) of ρchar.

FIGURE 8. Measured concentrations and their estimates for AKF, UKF and GSMUO.

FIGURE 9. Measured concentrations and their estimates for AKF, UKF and GSMUO.

the initial values for Q0 and R0 for AKF and UKF are
selected as given in Case 1. Furthermore, the noise cancel-
lation due to adaptation of Qk and Rk in AKF is better as

compared to UKF and GSMUO. This can be seen in zoomed
view of Fig. (10-b). The concentration of gases are shown
in Figs. (8–11 and 13 b), in which O2, N2 and H2O are inlet
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FIGURE 10. Measured concentrations and their estimates for AKF, UKF and GSMUO.

FIGURE 11. Measured concentrations and their estimates for AKF, UKF and GSMUO.

FIGURE 12. Actual and estimated states of the UCG process for AKF, UKF and GSMUO.

gases which are manipulated by the controller to maintain
the desired Hv and smooth consumption of char. The product
gases CO, CO2, H2 and tar are formed in their respective

chemical reactions as given in Table (1). It can be seen from
Figs. (8–11 and 13 b) that AKF cancels out both process and
measurement noises effectively.
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FIGURE 13. Actual and estimated states of the UCG process for AKF, UKF and GSMUO.

TABLE 7. Performance comparison in terms of ẽrms for AKF and UKF
against different process and sensor noise covariances Q0, R0.

As discussed in section (IV) only product gases are avail-
able at the outlet of the well. Hence, the remaining four
unknown states of the UCGmodel are reconstructed by using
different estimators. It can be seen from Figs. (12–13), that
both designed KFs are better than the GSMUO. As discussed
earlier that these results are shown only for the Case-1 where
response of AKF is close to UKF. However, for worst cases
(Case 2, 3) when initial biased values of covariance matrices
Q0 andR0 are high, the performance of UKF is deteriorated as
depicted in terms of ẽrms in Table (7). Hence, the performance
of AKF is more robust than UKF.

VI. CONCLUSION
In this work, a model-based constrained linear MPC is
designed to track the desired heating value to its prede-
fined set-points such that maximum efficiency of a UCG
process can be achieved. The designed MPC also handles
constraints on the control input which are imposed due to
installed compressors’ limitations. The MPC requires the
states of the plant which are estimated through AKF, UKF
and GSMUO. It is worth mentioning that both control and
estimator design approaches (MPC and AKF) are linear and
developed by using quasi-linear decomposition of the nomi-
nal model of the UCG process. For assessing the robustness
of the control strategies, parametric variations, input distur-
bance, and process and measurement noises are included in
the UCG plant model. A comprehensive comparison has been
made between different control strategies, i.e., MPC-AKF,
MPC-UKF and MPC-GSMUO. The simulation results and
quantitative analysis demonstrate that MPC-AKF outper-
forms the other strategies in terms of erms and pavg. Moreover,
a quantitative analysis has been carried for AKF and UKF,
which shows that the performance of AKF is more robust
against the change in the initial values of measurement and
process covariances.

Some future extensions of this work may include the esti-
mation of disturbance and uncertain parameters, which is
expected to improve the performance of the control scheme.
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