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ABSTRACT The proposed work focuses on improving the performance of the traditional nonlinear
saturation controller (NSC) algorithm. In this work, a tuning mechanism can be implemented by providing
the NSC control unit with the measured speed� of the rotor from a shaft encoder device in order to introduce
a tuned NSC (TNSC). In other words, we are going to tune the NSC’s natural frequency ωc at one half of
� such that � = 2ωc. This TNSC is adopted to reduce the vibratory amplitudes of a 16-pole constant-
stiffness rotor-Active magnetic bearings AMBs) system for a wide range of speeds and eccentricities. The
whole controlled system is studied mathematically to seek its approximate solutions via the multiple scales
technique. Different relations between the rotor’s amplitudes and its parameters are plotted so as to verify
the proposed tuning mechanism and its crucial role in improving the NSC’s performance.

INDEX TERMS Tuned nonlinear saturation controller, proportional derivative controller, active magnetic
bearings, shaft encoder, multiple scales technique.

I. INTRODUCTION
Active vibration control is an aim for many researchers
around the world. Several mechanical structures and frames
may be harmed or even destroyed if they are subjected to
mechanical resonance leading to high amplitude vibrations.
In this way, the vibrations are actively controlled (rely-
ing on feedback signals) such that the unwanted vibrations
are suppressed efficiently. Saturation control is one of the
approached schemes by scientists to transfer the primary sys-
tem’s unwanted energy to the secondary controller. This is to
avoid harming or destroying the expensive mechanical mod-
els. Ashour andNayfeh [1] examined the efficiency of the sat-
uration phenomenon to suppress the vibrations of 2D flexible
structures. They developed an adaptive control strategy via
a frequency-tuning mechanism where the 2 : 1 internal res-
onance was fulfilled. Felix et al. [2] proposed analytical and
numerical results of the saturation control of a simple flexible
shear-building portal plane frame foundation excited by an
unbalanced rotating machine (non-ideal system). Hegazy [3]
studied the nonlinear oscillations and saturation phenomena
in a hinged-hinged flexible beam. The equation of motion
was derived to describe a single-degree-of-freedom system
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having quadratic damping, cubic and quintic nonlineari-
ties, parametric and external excitations. Jun et al. [4]
explored the energy transfer mechanism from the excited
system to the controller. They examined reducing the large
-amplitude vibration of a self-excited system via a nonlinear
saturation-based control strategy.Warminski et al. [5] studied
the effectiveness of several control algorithms in order to
suppress the large vibrations of a flexible composite beam.
Macro fiber composite (MFC) actuators were involved for
implementing the control strategies so as to achieve the
required vibration level. They concluded that the best control
algorithm usedwas the nonlinear saturation controller (NSC).
Kamel et al. [6] applied the NSC to mitigate the unwanted
vibrations of a magnetically-levitated body. They derived the
frequency response equations via the multiple scales method
in order to describe the steady-state behavior of the controlled
system. Hamed and Amer [7] studied various types of control
algorithms for reducing the large-amplitude vibrations of a
flexible composite beam. The effects of different parame-
ters were investigated on the overall behavior of the studied
system. Eissa et al. [8] considered the time delay effects on
the NSC applied to a modified magnetic-levitation model.
This time-delayedNSCwas quadratically coupled to themain
system, then the time delays effects on the system behav-
ior and stability were studied. Kandil and El-Gohary [9],
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FIGURE 1. Vertical suspension of a rotor between 16 electromagnetic
poles.

Hamed and Kandil [10] applied the NSC to the first mode
only of a thin-walled rotating beam due to the strong coupling
between the first and second modes. They adopted the mul-
tiple scales method for extracting the steady-state equations
so as to describe the system behavior under the action of
NSC. They also considered the effects of time delay on the
equilibrium response of the applied NSC.

In this work, our case study model to be controlled is
the rotor-active magnetic bearings (AMBs) model which
is of a great attention for many physicists and mathemati-
cians. This model may suffer from unwanted vibrations
due to the high spinning speed and/or the eccentricity of
the rotor. Ji and Hansen [11] concluded that the nonlinear-
ities existence in an AMB model was due to the force-
displacement-current characteristics of the electromagnets.
Ji [12] investigated the time delays influence on the stability
of equilibrium behavior of the rotor-AMBs system. The time
delay critical length was determined as a border between
stable and unstable motions of the rotor. Zhang and Zhan [13]
studied the nonlinear oscillations and chaotic motions in a
rotor-AMBs system whose stiffness was time-varying in a
periodic form. They considered the rotor’s weight which
led to that the initial control current was not zero anymore.
Inoue et al. [14] considered the rigid rotor system supported
vertically AMBs, and investigated the time delay effects of
both the electric and the magnetic parts of the AMBs on
the dynamical characteristics. Yang et al. [15] proved that
the in-unison and elliptic modal motions were located, and
considered the free vibrations of the rotor suspending in the
AMBs. Wu et al. [16] showed a great consistency between
the solutions of the rotor-AMBs original equations and the
approximate equations presented by the method of multiple
scales. They investigated the complicated nonlinear dynamics

FIGURE 2. The relations between the rotor’s oscillation amplitudes
a1 & a2 and the parameters: (a) p, (b) d, at σ = 0 and λ = 0.

near resonances of a rotor-AMB system with 16-pole legs
and a time varying stiffness. Jha and Dasgupta [17] pro-
posed an active control scheme through a linearized AMB
in order to inhibit the Sommerfeld effect of an internally
damped flexible shaft with an eccentric disk mounted at
the mid-span. Sun et al. [18] discussed a case of an actual
AMB system where a typical linear system model and clas-
sical linear control theory were utilized in the controller
design procedure. Fang et al. [19] explored the nonlinear
response of the oil-lubricated journal bearing with worn
regions analyzed by a wear model. Saeed and Kandil [20],
Kandil et al. [21], Kandil [22], Saeed and Kandil [23], and
Kandil and Hamed [24] investigated the vibrations control
of several rotor-AMBs models with different control strate-
gies. The effects of the physical parameters on the solutions
stability and multiplicity have been studied and clarified.
They presented some recommendations about the rotor’s safe
behavior in terms of its spinning speed and eccentricity.
Ma et al. [25] extended the global perturbation technique in
order to study the stability and the Shilnikov type multi-pulse
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FIGURE 3. The relations between the rotor’s oscillation amplitudes a1&a2 and the rotor’s speed � or eccentricity f at λ = 0 and:
(a, b) p = 1.04, (c,d) p = 1.22, (e, f) p = 1.8, (g,h) p = 2.8.
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FIGURE 3. (Continued.) The relations between the rotor’s oscillation amplitudes a1&a2 and the rotor’s speed � or eccentricity f at λ = 0 and:
(a, b) p = 1.04, (c,d) p = 1.22, (e, f) p = 1.8, (g,h) p = 2.8.

jumping chaotic vibrations in a rotor-AMBs model with a
time varying stiffness and 16-pole legs under mechanical
and electric-electromagnetic excitations. The contribution of
this work is to improve the performance of the conventional
NSC control scheme. A tuningmechanism is implemented by
providing the NSC control unit with the measured speed� of
the rotor from a shaft encoder device in order to introduce
a TNSC control scheme. This TNSC is adopted to reduce
the vibratory amplitudes of a 16-pole constant-stiffness rotor-
AMBs model for several values of the rotor’s speeds and
eccentricities. The multiple scales technique has been uti-
lized to extract the whole controlled system’s approximate
solutions. Different relations between the rotor’s amplitudes
and its parameters are plotted so as to verify the proposed
tuningmechanism and its crucial role in improving the NSC’s
performance.

II. MATHEMATICAL ANALYSIS OF THE ROTOR-AMBS
DYNAMICS
In this study, the rotor is considered as a rigid non-elastic
uniform body which is suspended vertically between the
16 electromagnetic poles separated by an angle 2α = π/8
as shown in Fig. 1. The rotor’s Cartesian oscillatory behavior
is governed by the following motion equations:

mr ẍ + ζr ẋ − Rx = mrer� 2 cos (� t) (1a)

mr ÿ+ ζr ẏ− Ry = mrer� 2 sin (� t) (1b)

where mr is the rotor’s mass, er is its eccentricity, � is its
angular speed, and ζr is a presumed small viscosity param-
eter. Rx and Ry are the Cartesian resultant electromagnetic
restoring forces. Each couple of opposite poles can generate
a magnetic force indexed by n(n = 1, · · · , 8) and can be
formulated as [26]:

Fn = D

[
(I0 − In)2

(C − zn)2
−
(I0 + In)2

(C + zn)2

]
(2)

where D is a physical constant related to the engineering
design of the electromagnets, I0 is a preliminary magneti-
zation current, In is an applied control current on every nth
couple of opposite poles,C is an air-gap between the rotor and
the poles, zn is the rotor’s radial position due to the nth orien-
tation. Furthermore, the magnetic forces can be controlled by
adjusting the current In according to the following relation:

In = kpzn + kd żn − k1Zn (3)

where kp and kd are known as the PD control gains, k1 is
an extra control gain, Zn is the additional radial NSC control
signal. The functions zn and Zn are assumed to be

zn = x cos ((2n− 1) α)+ y sin ((2n− 1) α)

⇒ żn = ẋ cos ((2n− 1) α)+ ẏ sin ((2n− 1) α) (4a)

Zn = u2 cos ((2n− 1) α)+ v2 sin ((2n− 1) α) (4b)

where u and v are known as the NSC control signals that are
generated from virtual NSC oscillators of the form

ü+ ζcu̇+ χ2
c u = k2xu (5a)

v̈+ ζcv̇+ χ2
c v = k2yv (5b)

where ζc is a damping parameter, χc is the NSC’s natural
frequency, k2 is the feedback gain.

Combining Eqs. (2) to (4) then calculating the resultant
Cartesian components magnetic forces to the fourth order as
follows
Rx = η1kd ẋ + η2x + η3

(
x3 + xy2

)
+η4kd

(
ẋy2 + 2xyẏ+ 3x2ẋ

)
+η5k2d

(
xẏ2 + 2ẋyẏ+ 3xẋ2

)
−η4k1

(
u2y2 + 2v2xy+ 3u2x2

)
−2η5k1kd

(
u2yẏ+ v2ẋy+ v2xẏ+ 3u2xẋ

)
− η1k1u2

(6a)
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FIGURE 4. The relations between the amplitudes of (a) the rotor, and
(b) the controller with the parameter p at σ = 0 and λ = 2.

Ry = η1kd ẏ+ η2y+ η3
(
y3 + x2y

)
+η4kd

(
x2ẏ+ 2xẋy+ 3y2ẏ

)
+η5k2d

(
ẋ2y+ 2xẋẏ+ 3yẏ2

)
−η4k1

(
v2x2 + 2u2xy+ 3v2y2

)
−2η5k1kd

(
v2xẋ + u2xẏ+ u2ẋy+ 3v2yẏ

)
− η1k1v2

(6b)

where

η1 = −
16DI0
C2 η2 =

16D
C3

[
I20 − kpCI0

]
η3 =

12D
C5

[
2I20 − 3kpCI0 + k2pC

2
]

η4=
4D
C4

[
2kpC−3I0

]
η5 =

4D
C3

To generalize the rotor’s motion coordinates, we can pro-
pose that x = Cx∗, y = Cy∗, u = Cu∗, v = Cv∗,

FIGURE 5. The relations between the amplitudes of (a) the rotor, and
(b) the controller with the parameter d at σ = 0 and λ = 2.

t = t∗
√
mrC3D−1I−20 , � = �∗t∗t−1 in order to normalize

the coordinates and the time. Hence, inserting Eqs. (6) into (1)
with (5) then removing ∗ for simplicity gives us the following:

ẍ+µẋ+ω2x+α1
(
x3+xy2

)
+α2

(
ẋy2+2xyẏ+3x2ẋ

)
+α3

(
xẏ2+2ẋyẏ+3xẋ2

)
+β1

(
u2y2+2v2xy+3u2x2

)
+β2

(
u2yẏ+ v2ẋy+ v2xẏ+ 3u2xẋ

)
= f� 2 cos (� t)+ 16λu2 (7a)

ÿ+ µẏ+ ω2y+ α1
(
y3 + x2y

)
+α2

(
x2ẏ+ 2xẋy+ 3y2ẏ

)
+α3

(
ẋ2y+2xẋẏ+3yẏ2

)
+β1

(
v2x2+2u2xy+3v2y2

)
+β2

(
v2xẋ+u2xẏ+u2ẋy+3v2yẏ

)
= f� 2 sin (� t)+ 16λv2 (7b)

ü+ µcu̇+ ω2
cu = λxu (7c)

v̈+ µcv̇+ ω2
cv = λyv (7d)
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FIGURE 6. The relations between the amplitudes of (a, c,e,g) the rotor, and (b,d , f ,b) the controller, with the parameter σ at
distinct λ and: (a,b)p = 1.04, (c,d) p = 1.22, (e, f) p = 1.8, (g,h) p = 2.8.

where

p =
Ckp
I0

d =
kd
√
D

√
mrC

c =
ζrC
√
C

I0
√
mrD

f =
er
C

λ =
C2k1
I0
=
k2mrC4

DI20
µc =

ζcC
√
mrC

I0
√
D

ω2
c =

χ2
cmrC

3

DI20
µ = c+ 16d

ω2
= 16 (p− 1) α1 = −12 (p− 1) (p− 2)

α2 = −4d (2p− 3) α3 = −4d2

β1 = 4λ (2p− 3) β2 = 8λd

The system of Eqs. (7) has no exact solution leading us to
utilize the multiple scales perturbation technique [27]. In case
of � ≈ ω and 2ωc ≈ ω, we can extract approximate
solutions of the first order in the form ai cos (� t − φi). The
modulation on the amplitudes and phases (ai and φi) are for
the rotor (i = 1, 2) and the controller (i = 3, 4) vibrations
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FIGURE 6. (Continued.) The relations between the amplitudes of (a, c,e,g) the rotor, and (b,d , f ,b) the controller, with the parameter σ at distinct λ
and: (a,b)p = 1.04, (c,d) p = 1.22, (e, f) p = 1.8, (g,h) p = 2.8.

where they are governed by

ȧ1 = −
µ

2
a1 −

α1 + α3ω
2

8ω
a1a22 sin (2φ1 − 2φ2)

−
α2

8
a1a22 cos (2φ1 − 2φ2)−

3β2
16

a21a
2
3 cos (φ1 − 2φ3)

+

[
−
3β1
16ω

a21 −
β1

8ω
a22 +

4λ
ω

]
a23 sin (φ1 − 2φ3)

−
β1

8ω
a1a2a24 sin (2φ1 − φ2 − 2φ4)

−
β1

16ω
a22a

2
3 sin (φ1 − 2φ2 + 2φ3)

−
β2

16
a22a

2
3 cos (φ1 − 2φ2 + 2φ3)

−
β2

8
a1a2a24 cos (φ2 − 2φ4)−

3α2
8
a31 −

α2

4
a1a22

+
f�2

2ω
sin (φ1) (8a)

φ̇1 = σ −
α1 + α3ω

2

8ω
a22 cos (2φ1 − 2φ2)

+
α2

8
a22 sin (2φ1 − 2φ2)−

3β2
16

a1a23 sin (φ1 − 2φ3)

+

[
−
9β1
16ω

a1 −
β1

8ω

a22
a1
+

4λ
ωa1

]
a23 cos (φ1 − 2φ3)

−
β1

8ω
a2a24 cos (2φ1 − φ2 − 2φ4)

−
β1

16ωa1
a22a

2
3 cos (φ1 − 2φ2 + 2φ3)

+
β2

16a1
a22a

2
3 sin (φ1 − 2φ2 + 2φ3)

−
β2

8
a2a24 sin (φ2 − 2φ4)−

β1

4ω
a2a24 cos (φ2 − 2φ4)

−
3α1 + 3α3ω2

8ω
a21 −

α1 + α3ω
2

4ω
a22 +

f�2

2ω
cos (φ1)
a1

(8b)

ȧ2 = −
µ

2
a2 +

α1 + α3ω
2

8ω
a21a2 sin (2φ1 − 2φ2)

−
α2

8
a21a2 cos (2φ1 − 2φ2)−

3β2
16

a22a
2
4 cos (φ2 − 2φ4)

+

[
−
3β1
16ω

a22 −
β1

8ω
a21 +

4λ
ω

]
a24 sin (φ2 − 2φ4)

+
β1

8ω
a1a2a23 sin (φ1 − 2φ2 + 2φ3)

+
β1

16ω
a21a

2
4 sin (2φ1 − φ2 − 2φ4)

−
β2

16
a21a

2
4 cos (2φ1 − φ2 − 2φ4)

−
β2

8
a1a2a23 cos (φ1 − 2φ3)−

3α2
8
a32 −

α2

4
a21a2

−
f�2

2ω
cos (φ2) (8c)

φ̇2 = σ −
α1 + α3ω

2

8ω
a21 cos (2φ1 − 2φ2)

−
α2

8
a21 sin (2φ1 − 2φ2)−

3β2
16

a2a24 sin (φ2 − 2φ4)

+

[
−
9β1
16ω

a2 −
β1

8ω

a21
a2
+

4λ
ωa2

]
a24 cos (φ2 − 2φ4)

−
β1

8ω
a1a23 cos (φ1 − 2φ2 + 2φ3)

−
β1

16ωa2
a21a

2
4 cos (2φ1 − φ2 − 2φ4)

−
β2

16a2
a21a

2
4 sin (2φ1 − φ2 − 2φ4)

−
β2

8
a1a23 sin (φ1 − 2φ3)−

β1

4ω
a1a23 cos (φ1 − 2φ3)

−
3α1 + 3α3ω2

8ω
a22 −

α1 + α3ω
2

4ω
a21 +

f�2

2ω
sin (φ2)
a2

(8d)

ȧ3 = −
µc

2
a3 −

λ

4ωc
a1a3 sin (φ1 − 2φ3) (8e)
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FIGURE 7. The vibratory behavior of (a, b, c) the rotor, and (d, e, f) the controller, represented via (a, d) time responses, (b, e) orbit and Poincare
maps, (c, f) frequency spectra at p = 1.22, σ = σc = 0, f = 0.02, and λ = 2.0.
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FIGURE 8. The relations between the amplitudes of (a, c, e, g) the rotor, and (b, d, f, h) the NSC controller, with the parameter f at σ = σc = 0, λ = 2.0,
and (a, b)p = 1.04, (c, d) p = 1.22, (e, f) p = 1.8, (g, h) p = 2.8.
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FIGURE 8. (Continued.) The relations between the amplitudes of (a, c, e, g) the rotor, and (b, d, f, h) the NSC controller, with the parameter f at
σ = σc = 0, λ = 2.0, and (a, b)p = 1.04, (c, d) p = 1.22, (e, f) p = 1.8, (g, h) p = 2.8.

FIGURE 9. Operation of the TNSC control process.

φ̇3 = σ − σc +
λ

4ωc
a1 cos (φ1 − 2φ3) (8f)

ȧ4 = −
µc

2
a4 −

λ

4ωc
a2a4 sin (φ2 − 2φ4) (8g)

φ̇4 = σ − σc +
λ

4ωc
a2 cos (φ2 − 2φ4) (8h)

where σ = � − ω and σc = 2ωc − ω. Equations (8) have
equilibrium points that are found by letting ȧi = φ̇i = 0, and
they are examined for stability so as to determine whether
the point is stable or not according to Hartman-Grobman
theorem [28].

III. VIBRATIONAL PERFORMANCE OF THE ROTOR-AMBS
IN RESPONSE TO NSC
Here, we are discussing (graphically) the vibrational per-
formance of the rotor-AMBs subjected to the conventional
PD controller only (at λ = 0), both PD and NSC (at
λ 6= 0), both PD and TNSC (at λ 6= 0). In each case,
the changes in different parameters are studied to show the

rotor’s vibrations dependence on such a change. The optimum
parameters’ normalized values are the proportional gain p =
1.04, the derivative gain d = 0.005, the viscosity damping
c = 0.001, the NSC gain λ = 2.0, the NSC damping
µc = 0.001, and the rotor’s eccentricity f = 0.02, unless
otherwise mentioned. It is worthy to remind the reader with
that a1 & a2 are the rotor’s horizontal and vertical oscillation
amplitudes, while a3 & a4 are the NSC’s oscillation ampli-
tudes. In Eqs. (8), the mathematical symmetry can be noticed
between a1 & a2 and a3 & a4 leading us to merge a1 & a2
in the same figure and so for a3 & a4. The reader should also
note that the solid branches refer to stable paths of solutions,
but the hatched branches refer to unstable paths of solutions.
The rotor’s oscillation amplitudes a1(amplitude of x∗ = x/C)
and a2(amplitude of y∗ = y/C) are normalized amplitudes
whose original values are always compared to C(the air-
gap between the stator and the rotor). Hence, the plotted
ranges for a1 and a2 should not exceed the value 1 in order
to avoid the impact between the stator and the rotor. The
adopted parameters above have been chosen based on the
same criterion with reasonable values. The relations between
the rotor’s oscillation amplitudes a1 & a2 and the parameters
p and d , at σ = 0 and λ = 0, are shown in Fig. 2.
As been proved in Sec. 2, the rotor’s natural frequency ω =
4
√
p− 1 guides us to choose the parameter p value to be

> 1 in Fig. 2a, otherwise the system is uncontrollable. In this
figure, the amplitudes are directly proportionate to p ∈ (1, 2).
At p = 2, the amplitudes become≥1 where the rotor impacts
the stator legs. In the range p > 2, the operation reverses
and the amplitudes are now inversely proportionate to p.
It is recommended that p should be chosen away from 2 to
avoid the rotor’s impact. Furthermore, it is better to approach
the lower amplitudes region where p → 1. After several
simulation trials, the recommended value of p is 1.04 for a
lower amplitude and a controllable rotor operation. Figure 2b
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FIGURE 10. The difference between the influences of applying NSC or TNSC on the rotor’s speed response curves at λ = 2.0 and: (a, b) p = 1.04,
(c, d) p = 1.22, (e, f) p = 1.8, (g, h) p = 2.8.
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FIGURE 10. (Contined.) The difference between the influences of applying NSC or TNSC on the rotor’s speed response curves at λ = 2.0 and:
(a, b) p = 1.04, (c, d) p = 1.22, (e, f) p = 1.8, (g, h) p = 2.8.

clarifies the parameter d improves the amplitudes damping
process at different values of p. It is also clear that the smaller
the value of p is, the faster the damping process is.

By varying the values of p, we are going to explore the
effect of this variation on the relations between the rotor’s
oscillation amplitudes a1&a2 depending on the speed� of the
rotor (σ = � −ω) and its eccentricity f as depicted in Fig. 3.
At p = 1.04 in Figs. 3a and 3b, the linear behavior is clear for
the rotor’s amplitudes with respect to � and f , respectively.
Furthermore at p = 1.22 in Figs. 3c and 3d, the curves begin
to bend creating jump phenomena between multiple stable
paths of solutions and this is due to the domination of the
nonlinearities. At p = 1.8 in Figs. 3e and 3f, the rotor’s vibra-
tions increase where it may impact with the stator (a1, 2≥1)
at some values of σ and/or f . At p = 2.8 in Figs. 3g and
3h, the curves bending changes its direction because α1 turns
negative causing a switch from a hardening case to a softening
case. We can see from Figs. 3a and b (at p = 1.04) that the
rotor has exhibited lower oscillatory amplitudes compared to
Figs. 3c to h before applying the NSC. This is a confirmation
of Fig. 2.

Next, the application of NSC (λ6=0) is shown to clarify
its effect on the relations between the rotor’s amplitudes
a1, 2 and the parameters p, d , σ and f . Figure 4 shows the
difference when the NSC’s being OFF (λ = 0) and ON (λ6=0)
according to p− curves at σ = 0 and λ = 2. As we can
see, the rotor’s vibrational amplitudes are saturated at almost
zero value regardless of p even if at p = 2(where there was
a previous impact between the rotor and the stator legs). The
same behavior can be seen is in Fig. 5 (d−curves) where the
rotor’s vibrations are saturated at a low level regardless of d .
We should discuss the variation effect of λ on the

rotor’s vibrations with the application of the NSC controller.
Figure 6 illustrates how λ affects the rotor’s speed response
curves at the different values discussed in Fig. 3. The reader

can notice that the NSC has created a V-shape on the old
curve for forcing the rotor to follow the new stable path
instead of the old path as shown in the figure. The apex of
the V-shape is at σ = 0(� = ω) denoting the minimum
amplitude approached by the NSC algorithm. Also, one can
notice that the apex angle of the V-shape can be adjusted
by controlling λ as shown. The higher the parameter λ is,
the wider the V-shape is. Another advantage of the V-shape
is eliminating the jump phenomena resulted from a change
in the rotor’s high amplitudes to low amplitudes suddenly
and vice versa. A numerical simulation has been achieved on
the studied system through MATLAB before and after NSC
to confirm our discussion. Figure 7 pictures this simulation
as time responses, orbit and Poincare maps, and frequency
spectra for both the rotor and the controller at p = 1.22,
σ = σc = 0, f = 0.02, and λ = 2.0. The given plots show a
great influence of using NSC on the rotor’s vibrations.

We have discussed the rotor’s amplitudes-eccentricity rela-
tions when σ = 0 and λ = 0(NSC is OFF) at various p as
shown before in Fig. 3. On the other hand in Fig. 8, these
relations are plotted once more but when σ = σc = 0 and
λ = 2.0(NSC is ON) at various p. The influence of usingNSC
is clear such that the rotor’s amplitudes saturate at almost
zero value regardless of the change in p. This is due to the
saturation phenomenon such that the whole vibrations are
transferred from the primary system (the rotor in our case)
to the secondary system (the NSC).

To use the benefit of the minimum amplitudes if
σ = σc = 0, we can guarantee the equality σ = σc not only
at 0 but also at wide band of σ values. This mechanism is
called tuning mechanism discussed before in Refs. [6, 8-10,
24], or in other words if ωc is tuned at one half of the rotor
speed �(� = 2ωc). This can be implemented by providing
the NSC control unit with the measured rotor speed � from
a shaft encoder device shown in Fig. 9. After applying such
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FIGURE 11. The vibratory behavior of (a, b, c) the rotor, and (d, e, f) the controller, represented via (a, d) time responses, (b, e) orbit and Poincare maps,
(c, f) frequency spectra at p = 1.8, σ = −0.3, f = 0.02, and λ = 2.0.
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FIGURE 12. The vibratory behavior of (a, b, c) the rotor, and (d, e, f) the controller, represented via (a, d) time responses, (b, e) orbit and Poincare maps,
(c, f) frequency spectra at p = 1.8, σ = +0.3, f = 0.02, and λ = 2.0.

VOLUME 9, 2021 133707



A. Kandil et al.: Rotor AMBs System Control via Tuned Nonlinear Saturation Oscillator

mechanism (� = 2ωc ⇒ σ = σc), Eqs. (8e) to (8h) will be
modified to

ȧ3 = −
µc

2
a3 −

λ

2�
a1a3 sin (φ1 − 2φ3) (9a)

φ̇3 =
λ

2�
a1 cos (φ1 − 2φ3) (9b)

ȧ4 = −
µc

2
a4 −

λ

2�
a2a4 sin (φ2 − 2φ4) (9c)

φ̇4 =
λ

2�
a2 cos (φ2 − 2φ4) (9d)

At steady state (ȧi = φ̇i = 0), simplifying Eqs. (9) with
considering a3 6=0 and a4 6=0 will give us

a1 = a2 =
µc�

λ
(10)

which are the minimum values for both a1 and a2. The pro-
posed tuning mechanism leads us to the tuned NSC (TNSC)
controller whose influence on the rotor’s amplitudes can be
observed in comparison with the traditional NSC in Fig. 10.
This figure shows the difference between the influences
of applying NSC or TNSC on the rotor’s speed response
curves at λ = 2.0 and different values of p. Previ-
ously in Figs. (6a, c, e, g), we have noticed that the rotor’s
amplitudes were minima if σ = σc = 0 only. Now
in Figs. (10a, c, e, g), we see that these amplitudes can be
minima for a wide range of σ in case of applying TNSC
(−0.3≤ (σ = σc)≤0.3) as discussed in Fig. 9. This can
also be numerically verified in Figs. 11 and 12 where time
responses, orbit and Poincare maps, and frequency spectra
are given at σ = −0.3 and σ = +0.3, respectively.
They assure the great importance of using TNSC rather
than NSC.

IV. CONCLUSION
This work was devoted to improve the performance of
the traditional NSC control algorithm. A tuning mecha-
nism was achieved by providing the control unit with the
rotor’s measured speed �. All of this was done to pro-
pose a modified TNSC control algorithm for reducing the
vibratory amplitudes of a 16-poles constant-stiffness rotor-
AMBs system. The whole controlled system was studied
mathematically to seek its approximate solutions via the
multiple scales technique. Different relations between the
rotor’s amplitudes and its parameters were plotted for dis-
cussing our opinion about the topic. Some notes could be
summarized as:
• In the absence of NSC (λ = 0), the rotor’s amplitudes
were directly proportionate to p ∈ (1, 2).

• At p = 2, the amplitudes became ≥1 where the
rotor impacted the stator legs. However, the operation
reversed and the amplitudes were inversely proportion-
ate to p in the range p > 2.

• It was recommended to approach the lower amplitudes
region where p→ 1, in other words at p = 1.04.

• The parameter d improved the damping process at differ-
ent values of p. This process was faster as pwas smaller.

• As p increased, the rotor’s speed response curves expe-
rienced a change from linear to nonlinear behavior
leading to the jump phenomena and unstable paths of
solutions.

• In the presence of NSC (λ6=0), the rotor’s amplitudes
were saturated at almost zero value in the studied ranges
of p and d even if at p = 2 without impacting the poles.

• AV-shape was imposed on the old curve where the rotor
followed the new stable path of solutions instead of the
old one as well as eliminating the jump phenomena.

• The apex angle of the V-shape could be adjusted by con-
trolling λ, e.g. the higher the parameter λ was, the wider
the V-shape was.

• The NSC made the rotor’s amplitudes saturate at almost
zero level regardless of the rotor’s eccentricity f due to
the saturation phenomenon.

• With the discussed tuning mechanism, the rotor’s ampli-
tudes became at the lowest levels for a wide range of σ
in case of applying the tuned NSC (TNSC).

• For the future work, time delays can be inserted in
acquiring the feedback signals and/or applying the con-
trol signals in order to approach the real-time procedure.

• Also, the rotor’s weight can be included for studying the
asymmetry between the rotor’s Cartesian oscillations.

• Another future work is stabilizing the whirling motion
caused by failure or huge disturbance.
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