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ABSTRACT The bioconversion of 1,3-propanediol from glycerol by Klebsiella pneumoniae can be
described by a nonlinear dynamic system. Some work has been done on the identification and optimization
of the system, in which the dilution rate of glycerol is considered as a constant. However, the demand of
glycerol may vary at different fermentation stages, it is reasonable to view the glycerol metabolic system
with dilution rate varying with time. In this paper, we model the glycerol metabolic process as a fourteen-
dimensional nonlinear dynamical system, where the dilution rate is considered varying with time. Then an
optimal discrete-valued control problem for maximizing the average concentration of 1,3-propanediol in
the fermentation process is established. To solve the optimization problem, auxiliary control and an exact
penalty function are used to convert this problem into a large-scale parameter optimization problem. For
better balancing local and global search ability, a competitive particle swarm algorithm with time-varying
control factors is proposed which is proved to be faster and more stable than the traditional competitive
particle swarm algorithm. Numerical experiments are conducted to show the rationality, effectiveness and
applicability of the method proposed.

INDEX TERMS Continuous culture, competitive particle swarm optimization, exact penalty function,
large-scale optimization, microbial fermentation.

I. INTRODUCTION
1,3-Propanediol (1,3-PD) is an important chemical material,
in particular as a monomer for polyesters, polyethers and
polyurethanes [1]. The production of 1,3-PD by chemical
method has high production cost and easy to cause envi-
ronmental pollution, so the microbial production is recently
paid more attention for its low cost, high production and no
pollution [2]. Glycerol, a by-product of the soap and detergent
industry, can be converted to 1,3-PD by Klebsiella pneumo-
niae (K. pneumoniae) under anaerobic conditions [3]. This
microbial production of 1,3-PD has been widely investigated
in recent years because of its high productivity [4].

There are three fermentation methods for the production
of 1,3-PD by microbial fermentation with glycerol as sub-
strate, i.e., continuous fermentation, batch fermentation and
fed-batch fermentation. In this paper, we consider a contin-
uous fermentation process, in which glycerol is fed into the
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fermentor continuously, the broth in fermentor pours out at
some rates and the volume of the fermentation broth remains
unchanged.

Glycerol dismutation by K . pneumoniae is a complex bio-
process, covering both extracellular and intracellular envi-
ronments. In the intracellular environments, two parallel
pathways which including oxidative pathway and reductive
pathway are coupled. The goal product 1,3-PD is produced
in the reductive pathway. In the coupled oxidative pathway,
byproducts acetate and ethanol are generated. The micro-
bial growth is subjected to multiple inhibitions of substrate
and products. Sun et al. [5] presented a fourteen-dimensional
nonlinear dynamic system to describe the continuous fermen-
tation and multiplicity analysis, considering two regulated
negative-feedback mechanisms of repression and enzyme
inhibition. Ye et al. [6] studied the concentration robustness
of this fourteen-dimensional glycerol metabolism system and
proposed a robustness index to measure the concentration
robustness of the considered system. By defining the time-
varying metabolic network structure as an integer-valued
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function, Wang et al. [7] modeled glycerol metabolism in
continuous fermentation as a fourteen-dimensional nonlinear
mixed-integer dynamic system and identified the dynamic
network structure and kinetic parameters. In above works
[5]–[7], dilution rate of the glycerol was both considered as
a constant. However, the demand of glycerol may vary at
different fermentation stages [8]–[10]. In this paper, based
on the fourteen-dimensional nonlinear dynamical system,
we will consider dilution rate varying with time and construct
an optimal discrete-valued control problem for maximizing
the average concentration of 1,3-PD in the fermentation
process.

Classical optimal control methods are not applicable to the
optimal discrete-valued control problem for its control being
a discrete variable. In previous works [11], [12], methods
including outer convexification, relaxation, rounding strat-
egy and time transformation were used to solve the mixed-
integer optimal control problem. In [13], Yu et al. transformed
the optimal discrete-valued control problem into an equiv-
alent continuous problem by introducing auxiliary controls
and applying a time-scaling transformation, and the trans-
formed problem was then solved by an exact penalty func-
tion approach. In this paper, we will use the methods which
described in [13] to transform our problem into a large-scale
parameter optimization problem. At present, it is popular to
use algorithms under competition mechanism to solve large-
scale parameter optimization problems [14]–[16]. This work
focuses on proposing a competitive particle swarm algorithm
with time-varying control factors to solve the large-scale
parameter optimization problem. Numerical results show that
the method proposed is effective and applicable.

The rest of this paper is organized as follows. In Section II,
a nonlinear hybrid dynamical system of glycerol continu-
ous fermentation is established. Section III is devoted to
proposing an optimal discrete-valued control problem with
the objective function of maximizing the average concen-
tration of 1,3-PD in the reaction process, and a large-scale
parameter optimization problem is obtained. In Section IV,
a competitive particle swarm optimization algorithm with
time-varying control factors is constructed to solve the prob-
lem which we obtained. Numerical example and results are
presented in Section V. Conclusion is made at the end of this
paper.

II. NONLINEAR HYBRID DYNAMICAL SYSTEM
According to the factual experiments, we assume that

(H1) Glycerol is the only substrate that added to the reactor
during the process of continuous culture, and no medium is
pumped inside or outside the reactor in the whole process.

(H2) The concentrations of reactants are uniform in the
reactor, time delay and nonuniform space distribution are
ignored.

Let x(t) = (x1(t), x2(t), · · · , x14(t))T , the components
of which represent the concentrations of biomass, extracel-
lular glycerol, extracellular 1,3-PD, acetate, ethanol, intra-
cellular glycerol, 3-HPA, intracellular 1,3-PD, mR (mRNA
coding repressor), R (free repressor), mGDHt, GDHt, mPDOR,

and PDOR at time t , respectively. According to the results
of [6], [17], we assume that glycerol passes the membrane
by passive diffusion and 1,3-PD by passive diffusion coupled
with active transport, and the inhibition of 3-HPA on cell
growth (GDHt activity, PDOR activity) exists at any con-
centration of 3-HPA. Under these assumptions, the velocity
field of concentration changes during the process of glycerol
continuous fermentation is formulated as follows according
to the previous work [6]:

ẋ1(t) = (µ(t)− d(t))x1(t), (1)

ẋ2(t) = d(t)(Cs0 − x2(t))− r2(t)x1(t), (2)

ẋ3(t) = r3(t)x1(t)− d(t)x3(t), (3)

ẋ4(t) = r4(t)x1(t)− d(t)x4(t), (4)

ẋ5(t) = r5(t)x1(t)− d(t)x5(t), (5)

ẋ6(t) =
1
p1

((x2(t)− x6(t))−
p2x6(t)

x6(t)+ p3
− µ(t)x6(t), (6)

ẋ7(t) = p4x13(t)
x6(t)

p5(1+
x7(t)
p6

)+ x6(t)
− µ(t)x7(t)

− p7x14(t)
x7(t)

p8 + x7(t)(1+
x7(t)
p9

)

− p10p11
p12x7(t)

x7(t)+ p13
, (7)

ẋ8(t) = p7x14(t)
x7(t)

p8 + x7(t)(1+
x7(t)
p9

)
− p14

x8(t)
x8(t)+ p15

− p16(x8(t)− x3(t))− µ(t)x8(t), (8)

ẋ9(t) =
x7(t)+ p13

(x7(t)+ p13)+ p17x7(t)
− (p18 + µ(t))x9(t), (9)

ẋ10(t) = p19x9(t)-(p20 + µ(t))x10(t)− p11
p12x7(t)

x7(t)+ p13
,

(10)

ẋ11(t) =
x7(t)+ p13

(x7(t)+ p13)+ p17x7(t)
− (p21 + µ(t))x11(t),

(11)

ẋ12(t) = p22x11(t)-(p23 + µ(t))x12(t), (12)

ẋ13(t) =
x7(t)+ p13

(x7(t)+ p13)+ p17x7(t)
− (p24 + µ(t))x13(t),

(13)

ẋ14(t) = p25x13(t)-(p26 + µ(t))x14(t). (14)

Here, Cs0 is the initial concentration of glycerol. pi(i =
1, 2, · · · , 26) are intracellular kinetic parameters, and the
values of them are listed in Table 1 according to [5], [7].
According to [6], the specific cell growth rate µ(t),
specific consumption rate of extracellular glycerol r2(t)
and specific product formation rates ri(t)(i = 3, 4, 5)
are expressed as follows:

µ(t) = µm
x2(t)

x2(t)+ P1
(1−

x2(t)
x∗2

)(1−
x3(t)
x∗3

)

× (1−
x4(t)
x∗4

)(1−
x5(t)
x∗5

), (15)
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r2(t) = P2 +
µ(t)
P3
+ P4

x2(t)
x2(t)+ P5

, (16)

r3(t) = P6 + P7µ(t)+ P8
x2(t)

x2(t)+ P9
, (17)

r4(t) = P10 + P11µ(t)+ P12
x2(t)

x2(t)+ P13
, (18)

r5(t) = P14 + P15µ(t), (19)

where µm is the maximum specific growth rate, Pi(i =
1, 2, · · · , 15) are extracellular kinetic parameters, and x∗i (i =
2, 3, 4, 5) are critical concentrations. Their values are given
in Table 2 according to the literature [4].

TABLE 1. Values of intracellular kinetic parameters.

TABLE 2. Values of extracellular kinetic parameters and critical
concentrations.

Let f (x(t), d(t)) = (f1(x(t), d(t)), f2(x(t), d(t)), · · · ,
f14(x(t), d(t)))T , where fi(x(t), d(t)) := ẋi(t), i = 1, · · · , 14,
the right-hand side of the ith equation of (1) – (14). The non-
linear dynamical system of glycerol continuous fermentation
can be described by{

ẋ(t) = f (x(t), d(t)), t ∈ [0, tf ],
x(0) = x0.

(20)

Here, d(t) is dilution rate of glycerol in the fermentation
process and the value of it will vary with time. But in exper-
iments, d(t) is difficult to be continuously modified, so it is
considered taking m different values d1, d2, · · · , dm in our
model. Let D =

{
d1, d2, · · · , dm

}
, d(t) ∈ D is a discrete

variable. x0 is the given initial state and [0, tf ] is the total fer-
mentation time interval. The admissible set of x(·) is denoted

by X := 514
i=1 [0, x∗i ], the values of x∗i (i = 1, · · · , 14) are

listed in Table 2 according to [4].
Based on the results given in [18], the following properties

for system (20) can be easily proved.
Property 1: For a fixed x0 ∈ X and a given d(·) ∈ D,

the function f (x(·), d(·)) defined in (1) – (14) is Lipschitz
continuous in x(·) on X , and there exist positive constants a,
b such that the linear growth condition holds, i.e.,

‖f (x(·), d(·)‖ ≤ a ‖x(·)‖ + b.

Property 2: For a fixed x0 ∈ X and a given d(·) ∈ D, there
exists a unique solution to system (20), denoted by x(·, d(·)).

III. OPTIMAL CONTROL PROBLEM AND
REFORMULATION
A. OPTIMAL CONTROL PROBLEM
In this paper, for dynamic system (20), we consider maxi-
mization of the average concentration of 1,3-PD in fermenta-
tion process as the optimization objective and give the optimal
control problem as follows:

(P1) max
d

J (d) :=
1
tf

∫ tf

0
d(t)x3(t)dt

s.t.

{
ẋ(t) = f (x(t), d(t)), t ∈ [0, tf ],
x(0) = x0,

d(t) ∈ D =
{
d1, d2, · · · , dm

}
, t ∈ [0, tf ],

x(t) ∈ X , t ∈ [0, tf ].

Here, d(t) is a discrete-valued control variable, so problem
(P1) is an optimal discrete-valued control problem. Next,
according to [13], we will transform problem (P1) to an
equivalent continuous optimal control problem by introduc-
ing auxiliary controls.

B. PROBLEM REFORMULATION
Let v(t) = (v1(t), · · · , vm(t))T , where vj(t) ∈ [0, 1], j =
1, · · · ,m, are auxiliary control functions, and satisfy the
following constraints:∑m

j=1
vj(t) = 1, t ∈ [0, tf ],

vj(t)(1− vj(t)) ≤ 0, t ∈ [0, tf ], j = 1, · · · ,m,

0 ≤ vj(t) ≤ 1, t ∈ [0, tf ], j = 1, · · · ,m.

Obviously, vj(t) is a continuous map from [0, tf ] to [0, 1],
but it only takes the value from {0, 1}.

Next, by letting d(t) =
∑m

j=1 vj(t)d
j, problem (P1) then be

transformed into the following problem (P2):

(P2) max
v
J̄ (v) :=

1
tf

∑m

j=1
d j
∫ tf

0
vj(t)x3(t)dt

s.t.

{
ẋ(t) =

∑m

j=1
vj(t)f (x(t), d j), t ∈ [0, tf ],

x(0) = x0,
x(t) ∈ X , t ∈ [0, tf ],∑m

j=1
vj(t) = 1, t ∈ [0, tf ],
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vj(t)(1− vj(t))v ≤ 0, t ∈ [0, tf ], j = 1, · · · ,m,

0 ≤ vj(t) ≤ 1, t ∈ [0, tf ], j = 1, · · · ,m.

Problem (P1) and (P2) are equivalent and the following
theorem can be easily proved by the result of [13].
Theorem 1: Let v∗(t) = (v∗1(t), v

∗

2(t), · · · , v
∗
m(t))

T and
d∗(t) =

∑m
j=1 v

∗
j (t)d

j, then v∗(t) is an optimal control for
problem (P2) if and only if d∗(t) is an optimal control for
problem (P1).

C. DISCRETIZATION
Suppose that system (20) has at most N −1 switches, and the
time is divided into N equidistance segments. Let τk denote
the kth switching time. Then

0 = τ0 < τ1 < τ2 < · · · < τN−1 < τN = tf .

We can get

vj(t) =
∑N

k=1
ξjkχ[τk−1,τk )(t),

where ξjk is the value of vj(t) on [τk−1, τk ), and χI is the
indicator function of I defined by

χI (t) =

{
1, if t ∈ I ,
0, otherwise.

The constraint condition of vj(t) become:∑m

j=1
ξjk = 1, k = 1, · · · ,N ,

ξjk (1− ξjk ) ≤ 0, j = 1, · · · ,m, k = 1, · · · ,N ,

0 ≤ ξjk ≤ 1, j = 1, · · · ,m, k = 1, · · · ,N .

Let

ξj = (ξj1, ξj2, · · · , ξjN )T ∈ RN ,

and

ξ = [ξ1, ξ2, · · · , ξm]T ∈ Rm×N .

Problem (P2) can be written equivalently to problem (P3)
as follows:

(P3) max
ξ

J̃ (ξ ) :=
1
tf

∑m

j=1

∑N

k=1
d jξjk

∫ tf

0
x3(t)dt,

s.t.

 ẋ(t) =
∑m

j=1

∑N

k=1
ξjk f (x(t), d j),

x(0) = x0,

x(t) ∈ X , t ∈ [0, tf ],∑m

j=1
ξjk = 1, k = 1, · · · ,N ,

ξjk (1− ξjk ) ≤ 0, j = 1, · · · ,m, k = 1, · · · ,N ,

0 ≤ ξjk ≤ 1, j = 1, · · · ,m, k = 1, · · · ,N .

Problem (P3) is a large-scale parameter optimization prob-
lemwithm·N decision variables. For the quadratic inequality
constraints in problem (P3) being difficult to be satisfied,
problem (P3) is not easy to be solved directly. According
to [13], we will use an exact penalty function to transform
problem (P3) into an unconstrained optimization problem
which is easy to be solved.

D. AN EXACT PENALTY FUNCTION
For problem (P3), according to [13], we construct the follow-
ing exact penalty function:

Fσ (ξ, ε)

=


J̃ (ξ ), if ε = 0, and ξ is feasible

for problem (P3),
J̃ (ξ )−ε−α1(ξ, ε)−σεβ , if ε > 0,
−∞, otherwise.

Here, ε is a new decision variable,1(ξ, ε) is the constraint
violation and be defined as follows:

1(ξ, ε) =
∑m

j=1

∑N

k=1
max{0,ξjk (1− ξjk )− εγ }2

+

∑m

j=1

∑N

k=1
max{0,ξjk − 1− εγ }2

+

∑m

j=1

∑N

k=1
max{0,− ξjk − εγ }2

+

∑N

k=1
{

∑m

j=1
ξjk − 1− εγ }2,

where α, β, γ are positive real numbers, and σ is a penalty
parameter. To continue, we define

Sε = {(ξ, ε) ∈ Rm×N × [0,+∞] :∑m

j=1
ξjk − 1 =εγ , k = 1, · · · ,N ,

ξjk (1− ξjk ) ≤ εγ , j = 1, · · · ,m, k = 1, · · · ,N ,

ξjk − 1 ≤ εγ , j = 1, · · · ,m, k = 1, · · · ,N ,

− ξjk ≤ ε
γ , j = 1, · · · ,m, k = 1, · · · ,N }. (21)

It is clear that S0 is the feasible solution set of problem (P3)
for ε = 0.
Now, we can consider the following optimization problem:

(P4) max
ξ,ε

Fσ (ξ, ε),

s.t.

 ẋ(t) =
∑m

j=1

∑N

k=1
ξjk f (x(t), d j),

x(0) = x0,

x(t) ∈ X , t ∈ [0, tf ].

Here,

Fσ (ξ, ε)

=


J̃ (ξ ), if ε = 0, and ξ is feasible

for problem (P3),
J̃ (ξ )−ε−α1(ξ, ε)−σεβ , if ε > 0,
−∞, otherwise,

and J̃ (ξ ) = 1
tf

∑m
j=1

∑N
k=1 d

jξjk
∫ tf
0 x3(t)dt .

According to [13], it is easy to get that under some appro-
priate assumptions, for a sufficiently small penalty parameter,
a local optimal solution of problem (P4) is a local optimal
solution of problem (P3). This solution can be used as a
corresponding local solution of problem (P1).
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IV. A COMPETITIVE PARTICLE SWARM ALGORITHM
WITH TIME-VARYING CONTROL FACTORS
Considering that problem (P4) is a large-scale optimization
problem in which the objective function is not differentiable,
and the gradient-based methods cannot be used, we will use
intelligent algorithms to solve it.

Competitive swarm optimizer (CSO), introduced by
Cheng et al., is one of themost popular algorithms for solving
large-scale optimization problems which uses the compet-
itive mechanism between particles within a single swarm
and updates half of the particles each time [14], [19], [20].
Mohapatra et al. [15] proposed an improved version of CSO
(called MCSO), in which 2/3rd of the particles are updated
each time. For increasing the convergence speed in early
iterations, Wang et al. [7] proposed a new formula for inertia
weight in the competitive particle swarm optimization algo-
rithm. For balancing local search capability and global search
capability, based on the research of Mohapatra et al. [15] and
Wang et al. [7], we propose a competitive particle swarm
algorithm with time-varying control factors.

Denote Nsize as the maximum iterations and Nsize as swarm
size, which is a multiple of 3 that favors the tri-break-up
mechanism. In each iteration, three particles are picked up
arbitrarily from the swarm to undergo a tri-competition. The
particle that has the highest fitness is named as the winner,
and the rest are the losers (called loser 1 and loser 2). Let
ηwj (s),η

l1
j (s),η

l2
j (s) and v

w
j (s),v

l1
j (s),v

l2
j (s) be the position and

velocity of the winner, loser 1 (l1) and loser 2 (l2) in the
jth round of competition, here j ∈ INsize

3
and s is the generation

number. The winner passes directly to the next generation.
The update formulas of velocity and position of two losers in
the basic version of MCSO are described as follows [15]:

vaj (s+ 1) = Ra1,j(s)v
a
j (s)+ R

a
2,j(s)(η

w
j (s)− η

a
j (s))

+Ra3,j(s)φ1(η(s)− η
a
j (s)), (22)

ηaj (s+ 1) = ηaj (s)+ v
a
j (s+ 1), (a = l1, l2). (23)

Here Rl1i,j(s) and R
l2
i,j(s)(i = 1, 2, 3) take different random

values of (0,1) in the jth round of competition in iteration s.
η(s) is the mean position value of the relevant particles.
φ1 is the parameter that controls the influence of η(s). In [7],
Wang et al. changed the velocity update formula (22) to:

vaj (s+ 1) = w(s) · vaj (s)+ R
a
1,j(s)(η

w
j (s)− η

a
j (s))

+Ra2,j(s)φ1(η(s)− η
a
j (s))

+Ra3,j(s)φ2(ηbest − η
a
j (s)), (24)

where ηbest is the global best position value of the relevant
particles and the inertia weight w(s) = 0.9− 0.5× s

Nite
. φ2 is

the parameter that controls the influence of ηbest . Now we
expect that the local search ability is strong and the global
search ability is weak at the initial stage of the algorithm,
so that the particle search is more sophisticated. For another,
we expect the local search ability to be weakened and the
global search ability to be enhanced at the later stage of
the algorithm. Based on this idea, the new velocity update

formula (24) becomes:

vaj (s+ 1) = w(s) · vaj (s)+ R
a
1,j(s)φ1(η

w
j (s)− η

a
j (s))

+Ra2,j(s)φ2(η(s)− η
a
j (s))

+Ra3,j(s)φ2(ηbest − η
a
j (s)). (25)

Here, φ1 is constructed as a monotonically decreasing
function that controls the influence of ηwj (s), and φ2 is con-
structed as a monotonically increasing function that controls
the influence of η(s) as well as ηbest . The expressions of φ1
and φ2 are as follows:

φ1 = φ1start +
s× (φ1end − φ1start )

Nite
, (26)

φ2 = φ2start +
s× (φ2end − φ2start )

Nite
, (27)

where φ1start , φ1end , and φ2start , φ2end are initial and final
values of φ1 and φ2 respectively.
Let 3(s) represents the set of particles that have not yet

been picked up to compete in iteration s. The basic steps of
the competitive particle swarm optimization algorithm with
time-varying control factors (CPSOT) to solve problem (P4)
are given in Algorithm 1.

V. NUMERICAL EXAMPLE AND RESULTS
In Algorithm 1, given D = {0, 0.05, 0.1, 0.15, 0.2, 0.25},
x0 = (0.1, 400, 0, 0, 0, 0, 0, 0, 0.1, 0.5, 0.5, 0.5, 0.5, 0.5)T ,
Cs0 = 1000,N = 280, tf = 70 hr,m = 6 according to
real experiments. Set α = 1.5, β = 1, γ = 1.7, σ = 106

according to [13] that γ > α and 2γ > α+1. The initial value
of the decision variable ε is set to a random number between
10−5 to 0.01, and we regard ε = 0 when ε ≤ 10−5. The value
of Nsize is set according to the statistical analysis in [14] that
the swarm size should not be less than 200 for large-scale
optimization problem with dimension greater than 500.

For investigating the performance of CPSOT for prob-
lem (P4), we compare CPSOT with the algorithm MCSO
proposed in [15] and the algorithm CPSO proposed in [7] by
performing a set of numerical experiments. The experiments
are implemented with MATLAB R2019b.

Table 3 lists the mean time consumption (Time), mean
objective value (Mean) and variance (Var) obtained by
MCSO, CPSO and CPSOT through 10 independent runs
for different Nsize(Nsize = 420, 600). As can be seen from
Table 3, under the samemaximum number of Fitness, CPSOT
has the largest Fitness value, the least runtime and the smallest
variance. The largest Fitness value and the least runtimemean
that CPSOT has good solving accuracy and fast speed. The
smallest variance indicates that CPSOT has good stability.
Additionally, the result of Nsize = 600 is poorer than that
of Nsize = 420 and this implies that the performance of the
algorithms does not rely much on large swarm size [7], [14].
Fig. 1 shows the descending curves of the mean objective
values of MCSO, CPSO and CPSOT. From Fig. 1, we can
see that CPSOT converges faster than other two algorithms.
Hence, CPSOT is effective and preferred for our proposed
problem (P4).
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Algorithm 1 Pseudocode of the competitive particle swarm
optimization algorithm with time-varying control factors
(CPSOT).
Step 1. Set the number of discretization N , the maximum

number of iterations Nite and the swarm size Nsize.
Set the penalty parameter σ , the positive real num-
bers α, β, γ , the initial and final values of control
factors φ1start , φ1end , φ2start and φ2end .

Step 2. Generate randomly an initial population
{ηi (1), i = 1, 2, · · · ,Nsize}.
Set the initial velocity
vi (1) = 0.01 · ηi (1), i = 1, 2, · · · ,Nsize.

Step 3. while s < Nite + 1 do
Step 4. Set 3(s) := {ηi(s)|i = 1, 2, · · · ,Nsize}.

Calculate φ1 = φ1start +
s×(φ1end−φ1start )

Nite
,

φ2 = φ2start +
s×(φ2end−φ2start )

Nite
.

Step 5. if s = 1 then
Step 6. Evaluate the index

Fσ (ηi(s)), i = 1, 2, · · · ,Nsize.
Step 7. else
Step 8. Evaluate the index

Fσ (ηi(s)), i = 1, 2, · · · , 2·Nsize3 .

Step 9. Calculate η := 1
Nsize

Nsize∑
i=1

ηi(s),

ηbest := argmax
1≤i≤Nsize

Fσ (ηi(s)).

Step 10. for j = 1 to Nsize
3 do

Step 11. Take out arbitrarily three particles from 3(s),
denoted as ηj1 , ηj2 , ηj3 , and let
3(s) := 3(s)− {ηj1 , ηj2 , ηj3}.

Step 12. If Fσ (ηj1 ) ≥ Fσ (ηj2 ) ≥ Fσ (ηj3 ), set

ηwj (s) := η
j1 , ηl1j (s) := η

j2 , ηl2j (s) := η
j3 .

Step 13. According to (25) and (23), update
ηaj (s) (a = l1, l2).

Step 14. Let ηj(s+ 1) := ηl1j (s), ηNsize
3 +j

(s+ 1) := ηl2j (s),

and η 2·Nsize
3 +j

(s+ 1) := ηwj (s).

Set Fσ (η 2·Nsize
3 +j

(s+ 1)) := Fσ (ηj1 ).

Step 15. s = s+ 1.
Step 16. return η∗ = ηbest .

TABLE 3. Results of different methods through 10 independent runs for
different Nsize.

According to the above experimental results, the CPSOT
algorithm underNsize = 420 is used to simulate the process of
microbial fermentation to produce 1,3-PD, and the changes of
concentrations of biomass, extracellular glycerol and 1,3-PD

FIGURE 1. Descending curves of the mean objective values obtained by
MCSO, CPSO, and CPSOT for different Nsize.

FIGURE 2. (a) The concentration of biomass and (b) the concentration of
extracellular glycerol and 1,3-PD in continuous culture.

TABLE 4. The glycerol dilution rate switching sequence.

with time are obtained (Fig. 2). The glycerol dilution rate
switching sequence, i.e., the order of d(t)’s values along the
time, is listed in Table 4. And the trajectories of d(t) are
drawn in Fig. 3. Fig. 2 shows that the nonlinear dynamic
system constructed by us can reasonably describe the real
continuous fermentation process of glycerol. Additionally,
the concentration curve shows periodic fluctuation. The con-
centration of 1,3-PD gradually increased to a peak as the
glycerol concentration gradually decreased to a trough due
to consumption. Such a periodic change process has a certain
reference significance for the related experimental operation
in the laboratory, and it has a reference value for improving
the volume productivity and the substrate conversion rate.
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FIGURE 3. (a) The trajectory of d (t) over the time horizon [0, 70] and,
(b) the partially enlarged view of d (t) over the time horizon [40], [50].

VI. CONCLUSION
In this paper, the metabolic process of 1,3-PD produced by
biological fermentation was studied, and an optimal discrete-
valued control problem was established and solved, in which
the dilution rate was considered varying with time. To solve
this problem, the method of using auxiliary control and an
exact penalty function converted it into a large-scale parame-
ter optimization problem, then we constructed a competitive
particle swarm algorithm with time-varying control factors to
solve the large-scale problem.

Numerical results show that it is feasible and effective to
use exact penalty function method to solve the large-scale
parameter optimization problems with quadratic inequal-
ity constraints, which provides a solution idea for optimal
discrete-valued control problems. In addition, the competitive
particle swarm algorithm with time-varying control factors
is faster and more stable than the traditional competitive
particle swarm algorithm in solving large-scale parameter
optimization problems. According to the results of this paper,
the proposed algorithm can be applied to other large-scale
parameter optimization problems, which has certain practical
significance.
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