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ABSTRACT Emergency braking intention detection has a vital practical value for improving driving
safety. This paper proposed an electromyography (EMG)-based method to detect emergency braking
intention from soft braking and normal driving intentions. Temporal and spectral signatures of EMG signals
of emergency braking, soft braking, and normal driving intentions were investigated. Common spatial
pattern (CSP) was used to generate virtual channels. The power spectrum density and linear envelope
amplitude of EMG signals were used as features, respectively. Chi-square test (Chi) was used to select
features. Regularized linear discrimination analysis was developed to detect emergency braking intention
from the other two driving intentions. Experiment results showed significant differences in temporal and
spectral domains between three kinds of driving. Furthermore, on average, the proposed method based
on spectral features can detect emergency braking intention 155.70 ms before behavior under emergency
situations with a system accuracy of 95.72%. The proposed method based on EMG signals for predicting
emergency braking intention can be applied to develop active driving assistance systems and improve driving
safety.

INDEX TERMS Detection, emergency braking, electromyography (EMG).

I. INTRODUCTION
Road traffic accidents caused a large number of casualties
and economic losses, which becomes a hot topic in today’s
society. According to the global road safety status report
in 2018, road traffic accidents cause an annual death toll of
about 1.35 million, accounting for 3% of global GDP [1].
Moreover, traffic accidents are becoming a more important
factor leading to death. It is estimated that traffic accidents
will become the fifth leading cause of death by 2030 [2]. It is
worth noting that the rising death toll is closely related to the
number of cars. Under the background of the increasing num-
ber of cars, we should pay more attention to the development
of assistive driving systems to reduce traffic accidents.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaojie Su .

As a kind of active safety equipment, an advanced driver
assistance system (ADAS) can alarm the driver or control the
vehicle before accidents [3]–[6]. Driver intention detection,
as an important application of ADAS, has become a research
hotspot [7], [8]. The signal sources used to detect drivers’
intentions can be divided into vehicle information, environ-
mental information, driver action information, and biologi-
cal signals. The vehicle information includes vehicle speed,
tire deflection angle, accelerator, and brake pedal deflection
position [9]–[11]. The environmental information includes
pedestrian information, road traffic information, and road
information [12], [13]. Drivers’ action information includes
head position, arm position, and foot position [14], [15].
The biological information includes electroencephalogram
(EEG), functional magnetic resonance imaging (FMRI),
electrocardiogram (ECG), electrooculogram (EOG), and
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FIGURE 1. System architecture of the proposed method.

electromyography (EMG) [16]–[20]. By comparing the var-
ious signal types, biological signals can be used for early
intention detection [21]–[23]. In addition, compared with
other biological signals, EMG signals have high reliabil-
ity and directly correspond to driving related motor action
[24], [25]. In this paper, we used the EMG signals to detect
driving intention.

Several studies have applied EMG signals to detect brake
intentions. For example, Haufe et al. [26] set up a car fol-
lowing task in the simulation environment. The front vehi-
cle decelerated from 100 km/h to 60-80 km/h at random
during the simulated driving. The driver took emergency
braking with the acquisition of EMG signals when the brake-
light flashed. Then, they tested their detection model in
a real environment [27]. Kim et al. [28] further consid-
ered soft braking, and the three driving behaviors were
decoded in pairs based on EMG signals, which indicated
the feasibility of detecting braking intention based on EMG
signals.

However, existing studies do not detect emergency braking
intention from soft braking and normal driving and do not
analyze temporal and spectral signatures of EMG signals
of three driving behaviors. Furthermore, it is worth noting
that the braking intention detection performance is low in
the existing research. The development prospect of wearable
devices based on EMG signals indicates that the detection of
braking intention based on EMG signals has great potential
application values. For example, it can promote the develop-
ment of ADAS [29], [30].

In this paper, we aim to explore the temporal and spectral
differences in EMG signals of drivers between the three driv-
ing behaviors (i.e., normal driving, soft braking, and emer-
gency braking) and proposes a detection method for detecting
emergency braking intention from soft braking and normal
driving intentions using EMG signals. The contribution of the
paper includes two aspects: 1) it explores the signatures in
EMG signals of human’s lower limb under the three driving
behaviors in temporal and spectral domains for the first time;
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2) it proposes an EMG-based method for detecting emer-
gency braking intention from soft braking and normal driving
intentions, which lays a foundation for developing an active
driver assistant system based on driving intention.

The remainder of the paper is organized as follows:
Section II describes the methodology. The experiment is
described in Section III. Results are presented in Section IV.
Discussion and conclusion are in Section V.

II. METHODOLOGY
A. SYSTEM ARCHITECTURE
The system architecture consists of data acquisition, pre-
processing, feature extraction, classification, pseudo-online
testing, and performance evaluation shown in Fig. 1. The
system first preprocessed the raw EMG signal. Secondly,
it analyzed the distinguishability of EMG signals under dif-
ferent braking intentions in temporal and spectral. Thirdly, it
calculated temporal and spectral features of the EMG data
under different driving intentions. Then, different features
of EMG data under different driving intentions were input
to a classification system for classification. Finally, pseudo-
online testing was used to verify the effectiveness of the
proposed system.

B. DATA ACQUISITION AND PREPROCESSING
In the data acquiring part, an amplifier (UEA-32B, SYMTOP,
China) was used to collect the EMG data from 8 motion-
related muscles (Rectus femoris, medial femoral muscle, lat-
eral femoral muscle, tibialis anterior muscle, biceps brachii
muscle, internal gastrocnemius muscle, external gastrocne-
mius muscle, and soleus muscle), which are closely related to
braking operation [31]. As shown in Fig. 2, the location of the
eight muscle channels drawn by the LaunchMuscle Premium
is illustrated. In the collection system setting, the sampling
rate was 1000 Hz, a band-pass filter (0.53-120 Hz) was used
to obtain the target frequency band, and a notch filter (50 Hz)
was used to deal with the interference caused by the power
system [32].

FIGURE 2. The location of 8 EMG channels.

In the processing part of EMG signals, we downsampled
the EMG signals to 200 Hz, which was used to reduce the
amount of data in order to save the computational time of

processing data. Then, baseline correction (BC) and common
average reference (CAR) were used to eliminate the base-
line drift and the common noises, respectively [33]. Finally,
we used a fourth order Butterworth band pass filter to get the
frequency range from 15 Hz to 90 Hz [26].

The BC is described as

bi(t) = ai(t)−
M∑
j=1

(ai(j)/M) (1)

where ai(t) is the ith channel and the tth point of the EMG
signals before BC, bi(t) is the ith channel and the tth point
of the EMG signals after BC, M is the number of points to
calculate the baseline, and here we set it to 20.

The CAR is described as

ci(t) = bi(t)−
N∑
i=1

(bi(t)/N ) (2)

where ci(t) is the EMG signals after CAR, N is the total
number of EMG channels, and here N is 8.

C. TEMPORAL AND SPECTRAL ANALYSIS
In the temporal analysis of EMG signals, we computed
grand-average of the envelop amplitude of braking-related
EMG signals segment by linear envelop [32], which recti-
fied and filtered EMG signals with second-order low-pass
Butterworth filter with a cut-off frequency of 2Hz. In the
spectral analysis of EMG signals, Short Time Fourier Trans-
form (STFT) with 1 s hamming window was used to obtain
the power spectrum density (PSD) of braking-related EMG
signals segment. Finally, the processed EMG signals segment
were superimposed and averaged.

D. FEATURE EXTRACTION AND CLASSIFICATION
The feature extraction and classification part included com-
mon spatial pattern (CSP), calculation feature, z-score,
chi-squared test, and classifier. First, the CSP was used to
generate virtual channels [34]. In this process, we first cal-
culated the covariance matrix of each EMG signals. The
covariance matrix is expressed as follows

C =
X (w)X (w)T

trace
(
X (w)X (w)T

) (3)

where X (w) is the wth EMG signals (signal points ∗
channels), trace() is trace of matrix, and C is the covariance
of X (w).
From (3), we obtained the covariance matrix of target

samples and non-target samples, and got the mean covariance
matrix of target samples and non-target samples. the mixed
covariance matrix can be described as

Cm = C t + Cn (4)

where C t is the mean covariance matrix of target samples,
Cn is the mean covariance matrix of non-target samples, and
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Cm is the mixed covariance matrix. The mixed covariance
matrix can be decomposed as follows

Cm = FmλmFTm (5)

where Fm is the eigenvalue matrix, λm is the eigenvalue
matrix, and the eigenvalues are in descending order. The
construction matrix transforms the eigenvalues of the mixed
covariance matrix into one, it can be described as

P =
√
λ−1m FTm (6)

Cw = PCmPT (7)

where P is the construction matrix, Cw is the whiten mixed
covariance matrix.

From (6) and (7), the matrix transformation can be realized
as follows

St = PC tPT (8)

Sn = PCnPT (9)

where St and Sn have common eigenvectors, and they can be
decomposed as follows

St = MλtMT (10)

Sn = MλnMT (11)

λt + λn = I (12)

where M is the common eigenvectors, and I is the identity
matrix. When λt is larger, λn is smaller. This property is
conducive for classification.

The projection matrix of CSP can be described as

W =
(
MTP

)T
(13)

The EMG samples can be projected into virtual space
by W . It can be written as

Y (w) = W ∗ X (w) (14)

where Y (w) = [y1(t), y2(t) . . . ym(t)], yi(t) is the ith channel
and the tth point of the EMG signals after projection,m is the
number of virtual channels.

Then, we calculated temporal and spectral features of EMG
signals. In the temporal feature of EMG signals, the envelope
amplitude of EMG signals was calculated by linear envelope.
The temporal features were calculated as follows

T (W ) = LE (Y (w)) (15)

where T (w) is temporal features matrix, LE() is linear enve-
lope including rectification and second-order Butterworth
low-pass filtering with a cut-off frequency of 2Hz.

In the spectral feature of EMG signals, we chose the fre-
quency band ranging from 15 to 90 Hz as our target frequency
band in our research. STFT was used to calculate power
spectrum density as spectral features of EMG signals. The
spectral features were calculated as follows

F(w) =
|STFT (Y (w))|2

U
(16)

where F(w) is the spectral features matrix, U is the number
of points of STFT , and here we set to 200.

In order to avoid overfitting, we used z-score to make the
data normalization, chi-square test (Chi) was used to select
features. The data normalization can be written as

Zi(j) =
fi(j)− µ
σ

(17)

where fi(j) is the ith feature of the jth EMG sample, µ is the
mean value of the ith feature of all EMG samples, Zi(j) is the
ith feature of the jth EMG sample after normalization, and σ
was set to one.

The chi-square test can be described as

χ2
j =

∑ (
Z j − T j

)2
T j

(18)

where Z j = [Zti(1), . . . ,Zti(k),Zni(1), . . . ,Zni(q)], Zti(k)
represents the ith normalization feature of the kth target
EMG sample, Zni(q) represents the ith normalization fea-
ture of the qth non-target EMG sample. T j = [1(1), . . . ,
1(k),−1(1), . . . ,−1(v)], 1(k) and −1(q) represent the
expected value of Zti(k) and Zni(q), respectively. χ2 is the
test value, the smaller value means the more consistent with
the expected value.

Finally, Regularized Linear Discriminant Analysis (RLDA)
was used as classifier. It can be written as

y = wT0 ∗ x (19)

where x is the selected features vector, w0 is the projection
vector, and y is the output value. w0 =

∑
(w/µ1 − µ2), µ1

and µ2 are the mean value of target and non-target selected
features of EMG sample.

∑
′

w can be obtained by∑′

w
= (1− λ)

∑
w
+λvI (20)

where
∑

w is the with-in class scatter matrix, λ is the classi-
fication parameter.

E. PSEUDO-ONLINE TESTING
Offline analysis was the first step in detecting emergency
braking, which can’t be applied to real driving directly. The
sample was inputted to the detection model from single trial
based on a time sequence in real driving situation. Therefore,
further in-depth research was needed.

To solve the above problem, pseudo-online can be used.
It testing the collected data imitated theway of on-line testing,
which set the window width, step size, and input the data
of different windows based on time sequence to detection
system to obtain the detection results. As shown in Fig.3.

F. PERFORMANCE EVALUATION
In this study, the Area Under Receiver Operating Character-
istic (ROC) Curve (AUC) value was used as offline perfor-
mance metrics [35]. In the pseudo-online testing, the system
accuracy rate and advance time were used as performance
evaluation metrics.
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FIGURE 3. Illustration of pseudo-online testing.

The accuracy rate was the average value of the hit rate
and the value of one subtracts false alarm rate, as shown in
function (21).

Acc =
(Hit + (1− Fal))

2
(21)

where the Acc is the system accuracy, Hit is the hit rate, and
Fal is the false alarm rate.

The false alarm rate was the proportion of non-emergency
samples judged to be emergency braking. The hit rate was
the probability of whether an emergency sample of each trial
was judged as emergency braking. The advance time was the
emergency braking detection time before pedal deflection.
The system accuracy rate was used to indicate the overall
performance of the system, and the advance time was used
to indicate the effectiveness of the system.

III. EXPERIMENT
A. SUBJECTS
Twelve subjects with rich driving experience in the driving
simulator participated in this experiment. Theywere all males
aging from 24 to 30 years old. The subjects were asked to
get enough sleep to keep a clear head and were not allowed
to take vigorous physical exercise before the experiment.
Meanwhile, the subjects were required to sign the experiment
agreement materials, read and sign the experiment synopsis,
etc. More importantly, video and transcripts were recorded
throughout the experiment. Finally, sixty trials experiments
were arranged equally into two different days, and half of
the experiments containing emergency braking were ran-
domly distributed as the target trial experiments. The exper-
iment was conducted in accordance with the Declaration of
Helsinki.

B. EXPERIMENT PROCEDURE
Fig. 4 shows the experiment protocol and virtual, and the
experiment was carried out on a simulation platform. The
location of the scene was chosen as a reference to urban
traffic, and the runway in the scene was set as a straight track
with a length of 2600 m. There were three driving behaviors
in this experimental paradigm, named ¬ normal driving,
 soft braking, and ® emergency braking. The specific
description of the experiment was as follows: At the begin-
ning of the experiment, the driver was driving in normal
driving. The driver looked straight in front of the screen

without any unrelated driving behaviors. The driver was
kept in the normal driving stage. The speed of the vehicle
automatically increased to 120 km/h slowly when the driver
drove the vehicle to 1000 m away from the starting point.
The driving behavior was switched from ¬ to , the driver
was required to slow down the speed to about 80 km/h when
the speed increased to about 120km/h. After finished driving
behavior , the driver released the brake pedal and continued
the behavior ¬. When the vehicle traveled to the road section
between 1700 and 2000 m, three pedestrians appeared on the
side of the road randomly. One of the pedestrians crossed the
road randomly when the vehicle traveled to the position 30 m
away from the pedestrians. Once the pedestrian crossed the
road, driving behavior was switched from ¬ to ®. The driver
stepped on the brake pedal urgently to avoid a traffic accident.
Then, the driver released the brake pedal and continued to
perform driving behavior ¬ until the end of the experiment.
Otherwise, the driver kept driving behavior ¬ until the end of
the experiment.

C. STRESS ASSESSMENT
After each experiment trial, we asked the subjects to
actively feedback on the degree of stress in the experi-
ment. The degree of stress is 1(normal), 2(slightly stressful),
3(stressful), 4(moderately stressful), and 5(very stressful).

IV. RESULTS
A. STRESS ANALYSIS
Table 1 shows the assessment of stress level for each subject.
Emergency means the experiment trial with emergency brak-
ing, and normal means the experiment without emergency
braking. It can be seen that the stress of different subjects
in emergency experiment trials is mostly 4 and 5. However,
the stress in normal experiment trials is mostly 1 and 2.
It effectively shows that all subjects felt stress in the experi-
ment with emergency braking.

B. TEMPORAL AND SPECTRAL SIGNATURE
In the temporal and spectral signatures, the [−4, 4] s interval
data of emergency braking and soft braking was selected.
However, the [−4,8] s interval was selected in the spectral
signatures of soft braking. Note that time 0 s refers to the
brake pedal deflection.

Fig. 5 shows the temporal signatures of each Channel of
emergency braking and soft braking. The amplitude of each
Channel changed near the emergency braking and soft brak-
ing onset, which indicated that it was possible to distinguish
the braking behaviors and normal driving in temporal.

Besides, therewere several differences between emergency
braking and soft braking. 1. The amplitude fluctuates under
emergency braking changed more sharply than soft braking
on the whole. 2. Compared with soft braking, the fluctuates
time different from the situation under emergency braking.

To sum up, the three driving behaviors can be distinguished
in temporal features.
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FIGURE 4. Experiment protocol and virtual scenario.

TABLE 1. Stress assessment for each subject.

Fig. 6 shows the spectral signatures of each Channel of
emergency braking and soft braking. The black line was
the onset of braking. The redder color meant the larger

FIGURE 5. Temporal signatures of EMG signals of emergency braking
(blue line) and soft braking (red line).

PSD value. The power spectrum amplitude around 50 Hz in
the figures was invalid, because of the notch filtering men-
tioned above. Comparing Fig. 6a with Fig. 6b, the amplitude
of the PSD increased near the emergency braking and soft
braking onset in the full frequency band, which indicated that
it was possible to classify the braking behaviors and normal
driving in spectral.

Besides, therewere several differences between emergency
braking and soft braking. 1. The power spectrum amplitude
rose earlier under the emergency braking than soft braking.
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FIGURE 6. Spectral signatures of EMG signals of emergency and soft braking. Note that the black line is the onset of brake pedal deflection, and
the redder color means the larger PSD value.

2. The power spectrum amplitude under emergency braking
changedmore dramatic than that of soft braking. 3. The power
spectrum amplitude changed under soft braking lasted longer
time than that of emergency braking. It should be noted that
there were still some differences between the two braking
intentions before brake pedal deflection.

To sum up, the three driving behaviors can be classified in
spectral features.

C. OFFLINE ANALYSIS OF DETECTING MODEL
In the offline decoding process, a six-fold cross validation
method was used to decode emergency braking. We divided
30 emergency braking and 30 non-emergency braking sam-
ples into six groups at the same window, and each group
included five emergency braking and five non-emergency
braking samples, respectively. In each fold, five of six groups
were used to train the decoding model, and the rest one was
used to test the decoding model.

For the detection of emergency braking from soft braking
and normal driving, the decoding emergency braking versus
soft braking was adopted to meet the purpose of selecting an
appropriate window for soft braking. After the soft braking
window was selected, the classification of emergency brak-
ing and non-emergency braking (soft braking and normal
driving) was carried out. First, the normal driving samples
was chosen from 11 s to 4 s before the emergency braking

onset randomly, and we selected emergency braking samples
and soft braking samples from 2.2 s to −0.2 s before emer-
gency braking and soft braking onset, respectively. Then,
[−2.2, 0.2] s was divided into eight windows according to the
one-second window size and 0.2 s step size, and the right time
point was used to represent the window. Finally, spectral and
temporal features were used to decode emergency braking
driving, respectively.

In Fig. 7 and Fig. 8, we can see that the CSP and Chi
improved the decoding performance effectively in temporal
and spectral features. Therefore, CSP and Chi were both used
in the following description of different features.

Fig. 7 shows the decoding performance of emergency brak-
ing versus soft braking. The decoding performance based
on spectral features was better than that of temporal fea-
tures. In addition, the decoding performance based on spec-
tral features and temporal features were increased with time
and remained stable at zero position. Therefore, [−1, 0] s
was selected as a target window of soft braking for spectral
features and temporal features, which was used to decode
emergency braking versus non-emergency braking.

The decoding performance of emergency braking ver-
sus non-emergency braking is shown in Fig. 8. The decod-
ing performance based on spectral features was better than
that of using temporal features. Furthermore, the decoding
performance with different features was gradually increas-
ing over time. The decoding performance with spectral
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TABLE 2. The peak AUC values of different subjects under different parameter settings based on different domain features for decoding emergency
braking versus soft braking and normal driving.

FIGURE 7. Detecting performance of emergency braking versus soft
braking using EMG signals with temporal features and spectral features.

features (88.53%) was higher than that of temporal features
(86.18%) on the window of [−1, 0] s.

Table 2 shows the optimal decoding performance and cor-
responding windows of different subjects based on different
features. For the peak AUC value, there were some difference
between spectral and temporal features. The best decoding
performance was obtained by using spectral features, with the
peak AUC value of 92.82%± 6.64%.

D. PSEUDO-ONLINE ANALYSIS OF DETECTING MODEL
In the pseudo-online testing, 30 trials of experimental data
were collected, and six-fold cross validation was adopted.

FIGURE 8. Detection performance of emergency braking versus soft
braking and normal driving using EMG signals with temporal and spectral
features.

In each fold, 25 trials of experimental data were used to train
the detection model, and the rest was used to test the model.

In the pseudo-online detection process. Spectral features
were used to construct the detection model with the window
size of one second. The minimum step size was judged by the
calculation time of the detection systemwith spectral features
(52.80 ms). 60 ms was selected as the target step size of our
detection model. The system accuracy with spectral features
across all subjects was 95.72%, and the advance time was
155.70 ms shown in Fig. 9.

It should be noted that we can also obtain the time interval
between the intention recognition point and the actual behav-
ior according to the command output time point of the ADAS
and the time point of brake pedal deflection in real scenarios.
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FIGURE 9. The system accuracy (a) and advance time (b) of detecting emergency braking from soft braking and normal driving using EMG signals with
spectral features.

Then, we can calculate the braking distance reduced by the
ADAS according to the current speed of the vehicle and the
time interval, which can be used to evaluate the effect of
the time interval.

V. DISCUSSION AND CONCLUSION
In this study, we characterized the braking intentions of
EMG signals in temporal and spectral. By comparing the
emergency braking and soft braking in different domain sig-
natures, significant difference can be observed in the two
braking intentions. Moreover, there were significant differ-
ences between the braking onset and before or after the
moment in signatures. Therefore, it was feasible to distin-
guish the three driving intentions based on temporal and
spectral features.

On the basis of temporal and spectral signatures, we fur-
ther performed offline analysis and pseudo-online analysis
of the proposed detection method. Offline analysis initially
verified the effectiveness of the detection system based on
different features, and pseudo-online analysis further verified
the applicability of the detection system based on spectral
features.

In the offline analysis, the results showed that the decoding
performance gradually increased over time. The decoding
accuracies based on spectral and temporal features on the
window of [−1, 0] s were 88.53% and 86.18%, respectively,
which shows that the effectiveness of the decoding model
based on different features. Besides, we further analyzed the
decoding peak AUC value and corresponding window of
different subjects, the decoding peakAUCvalue of the decod-
ing model built by spectral features and temporal features
were 92.82%± 6.64% and 91.25%± 7.46%, respectively.
Spectral features showed better results in offline analysis.

Therefore, we used spectral features for the pseudo-online
testing.

In the pseudo-online analysis, the limitation of the mini-
mum step size was decided by calculating the running time
of the detection system based on spectral features, and 60 ms
was selected as the optimal step size. On this basis, the aver-
age system accuracy (95.72%) of all subjects was used to
verify the applicability of the detection system, and advance
time showed that the decoding system in detecting emer-
gency braking from soft braking and normal driving can save
155.70 ms compared with brake pedal deflection.

This research can promote the development of an ADAS.
The proposed method can be used to detect emergency brak-
ing from normal driving and soft braking in practical driv-
ing based on EMG signals. When an emergency braking
is detected, the ADAS can directly control the vehicle for
emergency braking. The application of the ADAS saves the
time to take emergency braking, reduces the occurrence of
traffic accidents, and improves driving safety.

Compared with the related studies [28] on detecting emer-
gency braking, we could achieve a better detecting perfor-
mance. In the offline decoding, these features were extracted
from the response-locked segment. At the moment of pedal
deflection, the decoding performance of emergency braking
versus soft braking by using EMG signals based on temporal
features was about 69% in [28], and reached 87.95% by using
EMG signals based on spectral features in our research. The
decoding performance of emergency braking versus normal
driving by using EMG signals based on temporal features was
83% in [28], and reached 90.2% by our method. In addition,
the result of decoding emergency braking from soft braking
and normal driving by using EMG signals based on spectral
features was 88.53% in our study. However, one should note
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that since the simulation environment, acquisition devices,
and subjects were different between the mentioned studies
and our research, the comparation in the detecting perfor-
mance is unfair.

There are some limitations in our study. The first limitation
is that the simulated driving situations were limited. For the
simulation of soft braking and emergency braking in this
study, they were induced by increasing the vehicle speed
and pedestrian suddenly crossing the road in a short distance
before the car, respectively. However, there are many other
situations in real life. Different driving situations may induce
different responses, which may affect the intensity of EMG
signals. Furthermore, in the real vehicle and real driving
condition, on the one hand, the vibration caused by vehicles
and road conditions may contaminate EMG signals and there-
fore impair the performance of the detection method. On the
other hand, realistic environments can make drivers generate
strongermuscle activity, whichmay improve the performance
of the proposed method. Thus, the proposed method should
further be evaluated in real driving conditions and artifacts,
and noise should be further reduced, and the current work
lays a foundation for future work along this direction.

The second limitation is that the performance of detect-
ing emergency braking was not good enough. The average
detection performance of the detection system based on spec-
tral features was 95.72% and save 155.70 ms, which was
much higher than the random level. However, in real life,
there was a high demand for the performance of detecting
emergency braking. Once there is an undetected emergency
situation, or the brake is delayed, it will increase the incidence
of traffic accidents. Therefore, we should pay more attention
to improving the performance of detecting driving intentions
and save more time. Based on our research, we can try to
find more effective features. In addition, we can explore the
fusion of other biological signals or artificial intelligence
technologies, such as EEG signals or a temporal-spatial deep
learning approach [36].

The third limitation is that we did not consider the effects
of sitting postures, subjects, and seat positions on the per-
formance. However, there are differences in drivers’ posture,
height, and sitting positions. To make our research more
applicable, the influences of these factors on detecting emer-
gency braking should be investigated. Not only that, the inclu-
sion of more participants in the experiment will enhance
the generalization of the results, we will also consider more
participants in our experiments to verify our method.

The fourth limitation is that the proposed method requires
drivers to wear a data collection device, which will likely
make them uncomfortable and unwilling to use it. The
recently developed wireless collecting device (e.g., MYO),
which does not need to use gel and skin cleaning, may partly
address the issue, although its current measurement precision
is not as good as traditional measurement systems. More
attempts must be made to make the measurement of EMG
signals more comfortable and easier to use. Moreover, from

the perspective of usability, the small number of channels is
preferred but may decrease the accuracy.

In the future, we will focus on solving these limitations,
increasing the authenticity of the scene, increasing the stim-
ulation diversity, considering different ways to improve the
performance of detecting driving intentions, and conducting
studies on the influence of drivers’ differences on detecting
emergency braking to pave the way for the application of our
research. The current and future research in this area will help
further improve driver safety.
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