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ABSTRACT Cloud/snow recognition is one application of satellite remote sensing imagery in natural
disaster monitoring. Deep learning technology has contributed to the improvement of the performance of
cloud/snow recognition. However, deep learning-based methods cannot well balance the performance and
efficiency of cloud/snow recognition. In this paper, an augmented multi-dimensional and multi-grained
Cascade Forest is proposed for cloud/snow recognition. The multi-dimensional deep forest structure with the
representation learning ability allows it to capture the spatial and spectral information of cloud/snow satellite
imagery accordingly equipped with good recognition efficiency. Besides, a simple augmentation Random
Erasing method is introduced for enhancing the robustness of cloud/snow recognition. The experimental
results on the HJ-1A/1B dataset show that the proposed method improves the performance of cloud/snow
recognition by extracting spectral information from multi-spectral satellite imagery. In addition, based on
the tree-based structure, the proposed method well balances the performance and efficiency of cloud/snow
recognition, which can be considered as an alternative to the Neural Network for cloud/snow recognition.

INDEX TERMS Cloud/snow recognition, multi-dimensional and multi-grained, random erasing, represen-
tation learning.

I. INTRODUCTION
The plateau areas are covered with snow all year round,
and snow disasters happen irregularly. The lack of snow
disaster monitoring will seriously affect the development of
agriculture in the plateau areas and will cause irretrievable
and disastrous effects on the production and life of people
and social order. Therefore, it is particularly important to per-
form a good job of forecasting heavy snow in plateau areas.
The development of remote sensing technology provides an
effective observation means for snow disaster monitoring.
However, there are still some factors affecting the monitoring
of snow disasters, among which cloud interference is the
most important factor causing difficulties in the monitoring
of snow disasters. The imagery captured by remote sensing
satellites has the characteristics of a wide range and high
spatial resolution. Using image techniques can identify the
distribution of snow and clouds. For satellite remote sensing
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imagery containing clouds and snow, the pixels of cloud and
snow in the satellite remote sensing images are very close,
the local textures are similar, and the spectral features of the
panchromatic band of clouds and snow are similar. Therefore,
accurate recognition of clouds and snow have become one
difficulty in the monitoring of snow disasters. The main
existing challenges in cloud/snow recognition are follows.
1) Cloud hinder the propagation of light signals, resulting in
low measurement accuracy of remote sensing data. 2) The
local texture of cloud and snow has a high degree of similarity,
and there is also a certain similarity between the spectra, so it
is difficult to extract the spectral features and texture features
of cloud and snow in satellite imagery. 3) Other factors on
the ground (mountains, shadows, etc.) have a serious impact
on cloud/snow recognition; 4) The distribution of snow and
cloud is mainly in plateau areas, but there are few samples of
cloud maps in plateau areas.

The research methods of cloud/snow recognition mainly
start with the spectral information [1] and texture informa-
tion [2], [3] of cloud and snow. Bai et al. [4] compared and
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analyzed the spectrum, texture, and other features between
the cloud and the background in remote sensing imagery,
then they proposed a cloud recognitionmethod usingmachine
learning and multi-feature fusion, which combines spec-
tral information with texture features. The results are far
more accurate than spectral-based or texture-based methods.
Traditional machine learning algorithms based on feature
engineering [5], [6] are easy to understand, and the model
design is simple, but they have the following shortcomings.
1) Traditional machine learning models are time-consuming
and labor-intensive to extract the spectral and texture features
of satellite imagery. 2) Traditional machine learning methods
have few parameters and cannot extract complex semantic
features, resulting in poor model generalization performance.
3) Machine learning algorithms based on feature engineer-
ing usually require complex feature extraction and analysis,
which makes it impossible to effectively capture the spatial
features of the image.

Thanks to the application of large-scale graphics
computing equipment and technology, Neural Networks
have developed rapidly. The Deep Neural Network (DNN)
can effectively capture feature information by transmitting
the labeled data to the multi-layer Neural Network for
training [7], [8]. It is an end-to-end network model that can
alleviate the arduous and complicated process of cloud/snow
recognition. The process of feature extraction and feature
analysis can extract the relevant information of the origi-
nal image to the greatest extent, so the accuracy has been
greatly improved. Hughes and Hayes [9] used DNN for
cloud/snow recognition, and its research results have been
able to train a Deep Neural Network to distinguish between
cloud and snow. Pilipović and Risojević [10] proposed a
cloud/snow recognition algorithm that had used an improved
pre-trained convolutional Neural Network for end-to-end
training. The application of the pre-training model greatly
improved the accuracy and speed of cloud/snow recognition
in remote sensing imagery. Xie et al. [11] conducted a
multi-level cloud recognition method based on deep learn-
ing, which uses convolutional layers to extract multi-scale
features, then exploited improved simple linear iterative
clustering (SLIC) to accurately obtain cloud boundary infor-
mation. This method effectively distinguished the cloud and
other backgrounds, and improve the efficiency of cloud/snow
recognition. Liu et al. [12] combined the super-pixel level
detection method with the convolutional Neural Network and
made full use of the texture information of the imagery, which
greatly improved the accuracy of recognition. However, this
method took a lot of time to annotate remote sensing imagery.
Although the accuracy was improved, the recognition speed
was reduced. Le Goff’s [13] and Zhu and Helmer [14]
researches utilized the texture and spatial features of satellite
remote sensing imagery to analyze clouds and snow, made
full use of the advantages of Neural Networks in feature
extraction, and combined the texture features of clouds and
snow with spectral features, which had seen an increase both
in recognition accuracy and recognition speed. Xia et al. [15]

proposed to use the multi-dimensional deep residual network
(M-ResNet) to extract the image features and spectral infor-
mation of satellite images, which solved the problems of gra-
dient diffusion and model degradation, thereby improving the
recognition accuracy. The cloud/snow recognition algorithm
based on deep learning involves a Deep Neural Network.
As the number of layers increases, it will cause the problem
of gradient disappearance or gradient explosion. At the same
time, the Deep Neural Network model has the shortcomings
of a large number of parameters, slow training and testing
speed, and poor generalization performance.

Although the existing cloud/snow recognition algorithms
based on deep learning [16] can make good use of the spectral
and texture features of remote sensing images [17], [22],
almost all models need to have a pre-set structure. Some
models cannot accurately distinguish between clouds and
snow with similar spectra, which leads to large deviations
in the recognition results compared with the original remote
sensing imagery.Meanwhile, methods based on deep learning
require an enormous amount of labeled image data to train the
network and require high computing equipment [18], [19].
This requires a lot of computing time and resources, making
many high-level models impossible to apply to real life.

Ensemble learning [23] is a type of machine learning
algorithm, which improves the recognition accuracy of the
learner by integrating multiple weak learners, and can avoid
the problems of gradient disappearance [20] and model
degradation [21]. Brown de Colstoun et al. [24] devel-
oped an enhanced decision tree classifier for land cover
recognition on multi-temporal remote sensing imagery and
achieved an overall accuracy of 82% on ground truth data.
Cheng and Lin et al. [25] used supervised learning technology
with multi-resolution function to integrate Random Forest
and Support Vector Machine to the remote sensing imagery.
Xia et al. [26] applied multi-scale Cascade Forest to remote
sensing satellite imagery recognition. The results showed
that the ensemble learning algorithm had great advantages
in cloud/snow recognition. Ensemble learning can make full
use of the characteristics of the imagery and improve the
generalization ability and predictive ability of the model.
However, the current application of ensemble algorithms in
cloud/snow recognition still has the following shortcomings.
1) Most ensemble learning algorithms do not fully con-
sider the correlation between space, texture, and spectrum
of remote sensing images, and feature extraction is difficult.
2) Affected by fewer meteorological observation stations in
plateau areas, fewer satellite imagery datasets can be used.
However, the existing cloud/snow recognition algorithms do
not consider the advantage of image enhancement methods
to improve the reliability and diversity of the data. 3) Most
of the existing ensemble learning methods are based on the
decision tree, which requires higher device memory.

Based on the problems of traditional algorithms, deep
learning algorithms, and existing ensemble algorithms in
cloud/snow recognition, this paper develops a multi-grained
sampling Cascade Forest (RES-gcForest) algorithm based
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FIGURE 1. The structure diagram of RES-gcForest.

on the Random Erasing image enhancement method, which
can achieve high accuracy and fast cloud/snow recognition.
The RES-gcForest model exploits Random Erasing to per-
form image enhancement operations on image data, thereby
improving the diversity and reliability of the data, reducing
the risk of over-fitting due to unreliable or fewer data. The
most important thing is to make the model robust to remote
sensing imagery. Therefore, RES-gcForest can better learn
small datasets. At the same time, representation learning
converts the original data into a data form that can be rec-
ognized by the machine, avoiding the trouble of manually
extracting features, so that the computer learns how to extract
features while learning to use features. Scanning with mul-
tiple windows and different granularities in RES-gcForest
can extract more features than CNN, and better extract the
spatial information and spectral information of the image.
Therefore, it is possible to extract as much pixel information
and texture information from the original image as possible
while maintaining the internal spatial correlation information
of the image. Sub-sampling the instances after multi-grained
scanning can reduce the computational complexity of the
model. RES-gcForest does not need to determine the structure
in advance, because each layer adopts supervised learning,
so the number of layers of RES-gcForest is adaptive. Com-
pared with the time consumed by deep learning caused by
parameter adjustment, RES-gcForest reduces the number of
parameters in the same receiving field and improves the learn-
ing ability. Because the RF in RES-gcForest can be processed
in parallel, the training speed of the RES-gcForest model is
further improved to a certain extent. The main contributions
of the algorithm proposed in this paper are as follows:

1) Exploit Random Erasing to perform image enhance-
ment operations on the image dataset to improve
the robustness of the model and reduce the risk of
over-fitting.

2) Multi-grained andmulti-window scanning can improve
the diversity of extracted features. Taking advantage
of two different Random Forests further increases the
diversity of features.

3) The sub-sampling of transformation instances in the
model reduces the computational parameters and the
computational complexity of the model. The parallel
processing of Random Forest in the model can further
reduce the memory requirement and time cost, which
can improve the training speed of the model.

4) Each layer of RES-gcForest adopts supervised
learning, so the number of layers of RES-gcForest is

adaptive, and there is no need to manually set the num-
ber of cascading layers. The entire training process of
RES-gcForest only has forward propagation, which is
very different from the deep learning of gradient update
through error backpropagation. Forward propagation
avoids fluctuations caused by various factors when
errors are propagated back.

The rest of this article is organized as follows. The sec-
ond part describes the RES-gcForest model. The third
section introduces the dataset and experimental settings. The
fourth section analyzes the experimental results. Finally,
the fifth section gives a conclusion. In the experimental
part, the effects of various algorithms in single-spectrum
and multi-spectral remote sensing imagery cloud/snow
recognition were compared. The comparison methods
are gcForest, Cascade Forest, Support Vector Machine,
Random Forest, Neural Network, and Convolutional Neu-
ral Network. The experimental results show that the accu-
racy of the RES-gcForest method on single-spectrum or
multi-spectral images is the best among all methods, and it
has good prediction results and performance.

II. METHODOLOGY
Fig. 1 shows the RES-gcForest model. This paper applies
the idea of image enhancement and random sampling to the
process of satellite image processing and feature extraction,
using multiple sliding windows of different granularities to
extract features from satellite images, then randomly sam-
ple the extracted features, and finally input to the cascade
forest to get the predicted result. The RES-gcForest model
divides the training process into three stages. 1) Use Random
Erasing to perform image enhancement operations on satel-
lite cloud and snow images. 2) Input the processed images
into three sliding windows with different granularities to
extract features, Then the extracted features are randomly
sampled. Then input the randomly sampled features into
the Random Forest to obtain the class probability vector.
3) The class probability vectors obtained from the three
windows are spliced, and the new feature vector obtained
by splicing is used as the input of the Cascade Forest.
The image enhancement method used by RES-gcForest can
not only reduce the risk of over-fitting, make the model
robust to satellite cloud images, but also enrich the dataset
of satellite cloud images in plateau areas that are already
scarce. Introducing the idea of sub-sampling can reduce the
redundancy of features and speed up the training of the
model.
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The RES-gcForest is a tree-based structure that simulates
the representation learning pattern of NN-based cloud/snow
recognition. Multi-grained scanning is borrowed from the
mechanism of the convolutional layer of a convolutional
neural network [27] while cascade forest is a hierarchical
framework that realizes end-to-end representation learning
for cloud/snow recognition, making the variant of the deep
forest a spatial-aware model for cloud/snow recognition.

RES-gcForest is a variant of the deep forest.
In RES-gcForest, Random Erasing is performed to aug-
ment the cloud/snow dataset due to the insufficient train-
ing cloud/snow training samples and the high cost of the
cloud/snow labeling process. Cascade forest is a hierarchical
framework that realizes layer-by-layer representation learn-
ing by ensemble parallel forest-based layers in a cascading
fashion. Multi-grained scanning simulates the feature extrac-
tion pattern and extracts features with multi-grained sliding
windows, which borrows the conception of multiple instance
learning, re-representing the original cloud/snow satellite
images into a probabilistic space.More scale sliding windows
imply more adequate feature extraction.

A. RANDOM ERASING
Because there are few cloud and snow samples in plateau
areas, and most of the cloud/snow recognition algorithms do
not perform image enhancement operations on the original
satellite images, the model is not robust to the image, and
the recognition accuracy is low. In order to improve the gen-
eralization ability of the model and enhance the robustness
of the model to image data, this paper introduces a data
enhancement method, namely Random Erasing [28]. It can
be easily implemented in most existing machine learning
models.

Random Erasing is a lightweight method that does not
require any additional parameter learning or memory con-
sumption. It also can be integrated with any image processing
method that uses machine learning models, and does not need
to change the learning strategy of machine learning; Random
Erasing can expand small-scale image data, and it is also a
supplement to the regularization method. The robustness of
the model will increase when the Random Erasing is applied.

Fig. 2 shows the result of the Random Erasing of part of
the data used in this article. The picture is a single-channel
picture, the upper side represents the original picture, and the
down side is the picture data after Random Erasing. It can be
clearly seen that picture after Random Erasing has an erased
rectangular area on the basis of the original picture.

B. SUB-SAMPLING MULTI-GRAINED SCANNING
Deep Neural Networks (DNN) are powerful in processing
feature relationships [29]. For example, Convolutional Neu-
ral Networks (CNN) [30] are more effective in processing
images with important relationships between pixels. Recur-
rent Neural Networks (RNN) [31] are more effective in
processing sequence data with important sequential rela-
tionships. Inspired by this idea, a model multi-grained
scanning similar to a window slider was proposed by

FIGURE 2. Pictures before and after random erasing.

Zhou and Feng [32]. In multi-grained scanning, the data that
the sliding window slides each time is taken as a sample. The
sliding operation can learn the feature vector about the input
from the original input. Then input into two Random Forests
respectively, and use the class probability vectors output by
the two Random Forests as the features of the new sample.

Multi-grained scanning can get many instances, but there
is also the problem of excessive redundancy of instances. The
resulting problem is that the feature vector after multi-grained
scanning is a dense feature vector, which reduces the effi-
ciency of subsequent Cascade Forest training and infer-
ence, and increases memory consumption and running time.
Based on the above problems, we introduce the operation
of Pang et al. [33] to randomly sample the features of
multi-grained scanning to improve training efficiency.

The number of pictures in the training set is 32, 000, the
picture size is 28 × 28, and there are four channels. For the
specific introduction of the dataset, please refer to section
. Sub-sampling multi-grained scanning uses three different
granularity windows to scan the input images in sequence.
Fig. 3 is a schematic diagram of sub-sampling multi-grained
scanning.

As shown in Fig. 3, when the sampling rate is 0.2,
sub-sampling can not only reduce the number of conversion
instances but also reduce the number of conversion features
from 484 to 96 orders of magnitude, greatly reducing the
amount of calculation and calculation cost. While sampling,
the spatial information and pixel information of the image
will also be saved. New features are generated in each win-
dow, and features from the three windows are cascaded to
identify fewer and more difficult samples.
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FIGURE 3. Schematic diagram of feature extraction using sub-sampling multi-grained scanning. Each image
uses three different sizes with a dimension of 4, a granularity of 7, a step size of 1, and a dimension of 4,
a granularity of 14, a step size of 1, and a dimension of 4, a granularity of 21, and a step size of 1. The
granularity window performs feature extraction on the image, and the sampling rate is 0.2.

The special operation of sub-sampling multi-grained scan-
ning is that the data that each window slides to is applied as
a sample, and the input feature vectors are learned from the
input image after image enhancement, which are the instances
corresponding to Figure 3. Then do sub-sampling on the
scanned instance. Finally, it passes through two Random
Forests, a complete Random Forest (Forest A) and a normal
RandomForest (Forest B). The class probability vector output
by the Random Forest is used as the feature of the new
instances.

The following uses mathematical formulas to describe
sub-sampling multi-grained scanning.

The size of the picture input to the multi-granularity scan is
28×28, assuming that the size of the multi-grained scanning
window is as follows: k1 × k1 × 4, k2 × k2 × 4, k3 × k3 × 4,
where k1, k2, k3 represent the particle size and are all less
than 28. After a window with a granularity of k1 passes
through a sliding step of Sstride_1, the number of instances N
obtained is:

N = (
28− k1
Sstride_1

+ 1)2.

After sub-sampling with a sampling rate of Sratio_1,
the number of instances Nsubsampling becomes:

Nsubsampling = Sratio_1 × (
28− k1
Sstride_1

+ 1)2.

Input Nsubsampling instances into two Random Forests (an
ordinary Random Forest and a complete Random Forest)
respectively, and then Nsubsampling class probability vectors
are obtained in turn. Combine the class probability vectors
obtained from two Random Forests to obtain a new feature
vector X1 of Ddim dimension, where:

Ddim = 8× Sratio_1 × (
28− k1
Sstride_1

+ 1)2.

Combine X1 with the feature vectors X2 and X3 obtained
from the other two sliding windows, where the sampling rate
corresponding to X2 is Sratio_2, the step size is Sstride_2, and
the sampling rate corresponding to X3 is Sratio_3, The step
size is Sstride_3. Get the input featureX of the Cascade Forest,
the dimension of X is:

Ddim_X = 8× [Sratio_1 ×
(
28− k1
Sstride_1

+ 1
)2

+ Sratio_2 ×
(
28− k2
Sstride_2

+ 1
)2

+ Sratio_3 ×
(
28− k3
Sstride_3

+ 1
)2

]

C. CASCADE FOREST
Fig. 4 is a structural diagram of the cascading forest. Each
layer of the Cascade Forest is an integration of Random
Forests composed of decision trees. In the cascading process,
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FIGURE 4. The structure of Cascade Forest. Each layer of the cascade contains two ordinary
Random Forests (black) and two completely Random Forests (blue).

FIGURE 5. Illustration of class vector generation. Different tags in leaf nodes indicate different classes.

different types of Random Forests are used to increase the
diversity of features, because the diversity of features is cru-
cial to the construction of the overall structure. For simplicity,
two completely Random Forests and two ordinary Random
Forests [34] are used. Both the complete Random Forest and
the ordinary Random Forest are composed of 1000 decision
trees. The difference is that each tree in the ordinary Ran-
dom Forest randomly selects

√
d candidate features (d is the

number of input features, that is, Ddim_X), and then uses the
Gini coefficient [35] to filter the split nodes. Each tree in a
completely Random Forest randomly selects a feature as the
split node of the split tree and then grows until each leaf node.
The main difference between the two types of forests is the
candidate feature space. The complete Random Forest selects
features randomly to split in the complete feature space, while
the ordinary Random Forest selects split nodes through the
Gini coefficient in a random feature subspace.

There is a big difference between Cascade Forest and
the Deep Neural Network. The feature extraction process

of the Deep Neural Network is guided and updated by
high-level error backpropagation. In the case of the Deep
Neural Networks, the gradients passed down from high-levels
are susceptible to fluctuations due to various factors. The
entire training process of RES-gcForest is only forward
propagation.

Because the training of each Random Forest between
the single layers of the Cascade Forest is independent of
each other, and the training of the decision trees within a
single Random Forest is also independent of each other,
RES-gcForest can be calculated in parallel. Given an input
feature vector, each Random Forest trains the input feature
vector. The class probability vectors of different categories
are obtained at the leaf nodes of each decision tree. Then
it takes the average of all decision trees in the same ran-
dom forest to generate an estimate of the class distribution,
as shown in Fig. 5. Red highlights the path the instance
traverses to the leaf node. The estimated class distribution
forms a class probability vector, which is then connected with
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the original feature vector to be input to the next cascade
layer.

Fig. 5 is a schematic diagram of simplified Random Forest
probability vector generation for four recognition problems.
X represents the input vector. The input vector will find a
path in each tree to find its subspace. The subspaces found
in different decision trees may be different, so it can count
different categories to get the proportion of each category, and
then average the proportions of all trees to get the probability
of each category in the entire forest distributed. Taking the
Ddim_X dimension X obtained by multi-grained scanning as
the input of the Cascade Forest, after passing through the four
Random Forests of the first layer of the Cascade Forest, four
four-dimensional class probability vectors will be obtained,
which are X1

l1
,X2

l1
,X3

l1
,X4

l1
, concatenate the above four class

probability vectors and X to obtain a new feature vector X1.
Input X1 to the second layer of the Cascade Forest, and you
will get four class probability vectors. Follow the steps of
the first layer to continue until the N -th layer, and get a new
feature vector XN . Input XN into four Random Forests to
generate four class probability vectors, and then average the
four class probability vectors to obtain a class probability
vector, and take the largest class as the final prediction output.

In order to reduce the risk of over-fitting, the class proba-
bility vector generated by each Random Forest is generated
by k-fold cross-validation [36]. Each feature will be used as
training data k − 1 times to generate k − 1 class probability
vectors, and then all class probability vectors will be averaged
to generate the final class probability vector as the enhance-
ment feature of the next layer. After extending to the new
cascade layer, the performance of the entire cascade can be
evaluated on the validation set. If there is no obvious perfor-
mance improvement, the training process will be terminated.
Therefore, the number of cascade layers is automatically
determined. This is the most critical and important thing
in the Cascade Forest. Each layer of the Cascade Forest is
simple supervised learning, because the way it constructs
the Cascade Forest allows the Cascade Forest to automat-
ically determine the number of layers. Contrary to most
deep Neural Networks with fixed model complexity, Cascade
Forest judges the termination time of training by evaluating
each layer in the Cascade Forest, and adaptively determines
its model complexity. This makes it applicable to training
data of different scales, not limited to large-scale training
data.

The RES-gcForest model firstly enhances the satellite
imagery of the plateau area. Since there are fewer weather
stations in the plateau area and the quality of the collected
samples is low, it is necessary to enhance the image of the
collected satellite images. After that, a multi-window and
multi-grained scanning with random sampling is performed.
The main purpose of the scan is to perform feature extrac-
tion. The extraction technique is similar to the CNN [37].
The use of multi-window and multi-grained can enrich the
diversity of features, so that the spectral features and texture
features of the original image can be converted into examples

for recognition as much as possible. The instances obtained
through multi-grained scanning are randomly sampled, and
then the class vectors generated by the two Random Forests
are regarded as new sample features. Finally, the above sam-
ple features are fused and input into the Cascade Forest.
The Cascade Forest is inspired by deep Neural Networks to
process the features after multi-granularity scanning layer by
layer.

III. EXPERIMENTAL SETTINGS
A. DATASET AND EXPERIMENTAL EQUIPMENT
The image samples used in the article are all from the envi-
ronment and natural disaster forecasting satellite HJ-1A/1B.
The HJ-1A/1B satellite data with four channels are used for
analysis. Tab. 1 shows the four HJ-1A/1B The wavelength of
the visible channel.

TABLE 1. HJ-1A/1B CCD camera channel parameters.

In this study, we realized patch-wise cloud/snow recog-
nition by collecting and extracting cloud and snow satellite
samples from high-resolution satellite images whose space
resolution is 30 meters and size is about 150000 × 150000.
We first extract the cloud/snow patches from full-scale satel-
lite images with the size of 128× 128× 4, and 64× 64× 4,
where 4 is the number of spectrums. However, when we
performed the prediction on the full-scale satellite images,
the prediction results are coarser than that of 28× 28× 4 due
to the prediction results in Fig. 7 and Fig. 8 are visualized by
patch-wise predicting on the full-scale large satellite images.
Considering the feasibility of patch-wise cloud/snow recog-
nition, we chose an appropriate size of 28× 28 to establish a
cloud/snow dataset to realize accurate patch-wise cloud/snow
recognition. Fig. 6, Fig. 7, and Fig. 9 are the prediction results
on the full-scale satellite images, where we first perform
the training to get a robust cloud/snow recognition model
and then performing patch-wise predictions on the full-scale
satellite images whose scale range from 150000 × 150000.

40, 000 images of 28 × 28 size are taken, and the sam-
ples in the dataset included: cloud/snow-free data, cloud-only
data, snow-only data, and cloud/snow mixed data. Each
category of images contains 10, 000 samples. 70% of the
total number of the dataset are taken as a training set and
10% of the total number of the dataset are applied as a
validation set and the remaining 20% as a test set. In this
experiment, the following test environments were used for
all experiments: CPU (i7-9700K), RAM (32GB), and GPU
(GTX2070).

B. EXPERIMENTAL DESIGN
RES-gcForest is used to discern the full range of
multi-spectral satellite remote sensing images in Tibet.
Experiment conducts Cascade Forest, Random Forest (RF),
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FIGURE 6. Single-Spectrum cloud/snow recognition results using different algorithms. In the predicted images, black is a
cloud/snow-free area, blue represents a snow-only area, red indicates a cloud-only area, and white denotes
a cloud/snow mixed area.

FIGURE 7. Multispectral cloud/snow recognition results using different algorithms: black is a cloud/snow-free area, blue represents
a snow-only area, red indicates a cloud-only area, and white denotes a cloud/snow mixed area.

Neural Network (NN), and Convolutional Neural Network
(CNN), ResNet, and gcForest as comparison algorithms.

The experiment involves three groups of comparisons.
1) Comparison of prediction effects of RES-gcForest with
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other algorithms on single-spectral images. 2) Comparison
of prediction effects of RES-gcForest with other algorithms
on multi-spectral images. 3) Compare the parameters in
the RES-gcForest model and analyze the influence of the
parameter changes on the experimental results.

C. COMPARISON MODEL
In order to evaluate the performance of the RES-gcForest,
compared with other existing technologies, including Cas-
cade Forest, Random Forest (RF) [33], Neural Network
(NN), Convolutional Neural Network (CNN), gcForest, and
ResNet.

All algorithms are trained and tested on GPU and CPU.
Through parameter optimization, we found that when the
window granularity is (14, 7, 3), the sampling rate is 0.64,
the number of decision trees in the scan part of the Random
Forest is 60, and the number of Random Forest decision trees
in the Cascade Forest is 1000. It can get results with higher
accuracy than other algorithms, so the next comparison test
uses this as a benchmark.

Both CNN and NN are designed with a six-layer structure,
150 epochs, batch_size is 100, and the final accuracy rate is
averaged. The number of twoRandomForest decision trees in
Cascade Forest is 1000, the number of decision trees in RF is
1000, the decision tree of gcForest scanning part of Random
Forest is 60, the cascade part is 1000, and the window size is
(14, 7, 3). The sampling rate of RES-gcForest is set to 0.64,
the decision tree for the scanning part of the Random Forest
is 60, the decision tree for the cascade part is 1000, and the
window size is (14, 7, 3).
We chose a sub-sampling rate of 0.2 to accelerate the

training and predicting process of RES-gcForest, and com-
pare it with other algorithms. In the original framework of
deep forest, multi-grained scanning is designed to enhance
the representation learning of cascade forest, transforming
the original satellite images into a probabilistic space. As can
be seen from the structure of multi-grained scanning, we can
get multiple sub-instances by performing multi-scale sliding
windows on original satellite images and transform the origi-
nal satellite image into a class probability vector.More sliding
windows are beneficial for the feature extraction but lead
to the redundant feature representation, which would slow
down the training of cascade forest. Therefore, we perform a
sub-sampling to accelerate the training of RES-gcForest. The
ratio of 0.2 is concluded from the experimental trials that both
considering the training efficiency and the overall perfor-
mance of cloud/snow recognition. Such that, RES-gcForest
can be a good choice where small-scale accurate cloud/snow
recognition is desirable.

IV. EXPERIMENTAL RESULTS
A. COMPARISON OF SINGLE SPECTRUM EXPERIMENT
It can be obtained from the experiment that all algo-
rithms have the highest test accuracy for Channel 2, so the

experimental results of all algorithms on Channel 2 are com-
pared, and the results are shown in Tab. 2.

TABLE 2. Single-Spectrum cloud/snow recognition performance
comparison based on different algorithms.

It can be seen from Tab. 2 that the traditional SVM algo-
rithm has the lowest recognition accuracy for single-spectrum
satellite image cloud/snow recognition, and the average test
accuracy of the test set is only 63.12%. Followed by the Neu-
ral Network algorithm, the accuracy rate is 73.39%. The accu-
racy of RandomForest is better thanNN, and the test accuracy
of RES-gcForest is the highest among all algorithms. The
results also show that the training speed of RES-gcForest is
faster than CNN, gcForest, and Cascade Forest. The accuracy
of RES-gcForest is 6.50% higher than the average accuracy
of CNN, 1.02% higher than gcForest, and 5.15% higher
than Cascade Forest. Meanwhile, RES-gcForest is superior
to ResNet in performance. In terms of test time, Random
Forest has the fastest test time, but the accuracy rate is very
low. GcForest has the slowest test time and the longest time,
but the accuracy rate is higher. RES-gcForest can guarantee
the highest accuracy without much test time consumption.
Fig. 6 shows single-spectrum satellite cloud/snow images
of different recognition algorithms. In the predicted image,
black is a cloud/snow-free area, blue is a snow-only area, red
is a cloud-only area, and white is a cloud/snow mixed area.

It can be seen from Fig. 6 that using different algorithms
to train single-spectrum satellite image data, NN has the
worst overall performance among the above algorithms. The
visual result of NN is that most cloud/snow-free areas are
classified as snow-only areas, while the cloud/snow mixed
area at the bottom of the satellite image is detected as snow-
fall areas. Compared with the results of NN, the ability to
detect cloud/snow-free areas in the Random Forest recogni-
tion image has been improved. The cloud/snow mixed area at
the bottom of the satellite image can be correctly detected, but
the incorrectly classified areas are not significantly reduced.
Fig. 6(b) and Fig. 6(e) Compared with NN and Random
Forest algorithms, the use of Cascade Forest and CNN has
improved the detection effect of only cloud areas, but CNN
has a poor detection effect on cloud/snow mixed areas, and
the same problem also exists in gcForest. In Fig. 6(g), due
to the feature redundancy in ResNet, the original image
information is seriously lost. Therefore, comparedwith CNN,
the recognition effect is not greatly improved. In the lower
right corner of the figure, the effect of RES-gcForest on cloud
and snow recognition in this area is more significant than that
of other algorithms in this area. Among all the algorithms,
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the result of RES-gcForest is the best. Compared with the
first four algorithms, the misrecognition area is reduced, but
compared with the original image, the recognition image is
still not ideal, such as the snow-only area in the lower right
corner of the satellite image. It is mistakenly divided into
a cloud-snow mixed area, and the cloud-free and snow-free
areas in the upper left corner of the image are predicted to be
a cloud and snow area. Except for the Cascade Forest algo-
rithm, the rest of the algorithmswill predict the cloud-free and
snow-free area in the upper left corner as a cloud and snow
area. The above algorithm does not have high accuracy for
cloud/snow recognition of a single spectral satellite image,
and the recognition effect on the entire HJ-1A / 1B cloud
and snow image has not reached the expected result. all
algorithms are inaccurate in the single-channel prediction
effect, because all the algorithms obtain limited texture and
spectral information in the single-channel image data, and
cannot fully extract the useful information of the channel,
resulting in that the accuracy rate of the algorithm is low and
the false recognition rate is high.

B. COMPARISON OF MULTISPECTRAL EXPERIMENT
Because of the low accuracy of RES-gcForest and the com-
parison algorithm in single-spectral cloud and snow recogni-
tion, we try to train multi-spectral satellite images and predict
8000 28 × 28 multi-spectral satellite images. The parameter
settings for the comparison of the multi-spectrum experiment
are consistent with the single spectrum, and the experimental
results are shown in Tab. 3. Obviously, the accuracy of the
test on the multi-spectrum test set is higher than that on the
single spectrum.

TABLE 3. Comparison of multi-spectral cloud/snow recognition
performance based on different algorithms.

The results in Tab. 3 show that RES-gcForest has the best
performance on the multi-spectral cloud/snow recognition,
and the accuracy is the highest. In terms of test accuracy,
RES-gcForest is 0.43% higher than gcForest, but because of
the introduction of image enhancement and sub-sampling,
RES-gcForest can use less time and cost to obtain better
performance than gcForest, and at the same time memory
consumption is higher than gcForest is reduced, the training
speed is increased by 38.70%, and the test speed is increased
by 37.37%. ResNet not only take a long time to train, but
also have lower accuracy than RES-gcForest. Among all
algorithms, Random Forest has the worst test effect, with
an accuracy rate of only 88.09% on the test set, but due
to its own structural advantages, its test speed is the best.

The accuracy of Cascade Forest is only 0.94% higher than
Random Forest, but the training time is more than twice
the training time of Random Forest, and the test time is
more than ten times that of Random Forest. The accuracy
of NN and CNN is better than Cascade Forest, but lower
than gcForest and RES-gcForest. Because the multi-spectral
data increases the connection between the original images,
the performance of ResNet can be brought into full play.
In Fig. 7, the rectangular area in the upper right corner
represents the area where the cloud and snow are mixed.
According to visual perception, the visual effects of ResNet,
gcForest and RES-gcForest are significantly better than other
algorithms. The training and testing speed of RES-gcForest
is faster than NN and CNN. Figure 7 shows the recognition
results of multi-spectral satellite cloud/snow images based on
different recognition algorithms.

It can be seen from Fig. 7 that using different algorithms
to train multispectral satellite image data, the visual effect
of NN in the above algorithm is the worst. In NN, many
satellite images are predicted as snow-falling areas only in
cloud areas, and other areas are predicted as cloud-free and
snow-free areas. Although the recognition accuracy of NN is
very high, the visual effect is poor. Although the recognition
accuracy of Random Forest and Cascade Forest is not high,
they can distinguish rough areas more accurately. Compared
with NN, the visual effect is improved. However, these two
algorithms are in the snow area in the lower right corner of
the satellite image. The prediction effect is poor. CNN has
mis-recognized the snowfall area in the lower right corner,
predicting a part of the cloud-only area as a snowfall area.
ResNet can distinguish the cloud-snow mixed area better,
but their recognition in the upper right corner area is not as
good as that of RES-gcForest and gcForest. Compared with
gcForest, RES-gcForest has more obvious visual effects in
the recognition of the snow area at the bottom of the satellite
image. But the recognition of gcForest in the snow area in
the lower right corner is not as effective as RES-gcForest.
Compared with the other seven algorithms, RES-gcForest
visually matches the recognition area of the original image.

The recognition results of each model are plotted as a
confusion matrix, as shown in Fig. 8. In Fig. 8, the horizontal
represents the predicted label and the vertical represents the
true label. CSF represents the cloud/snow-free area, CO rep-
resents the cloud-only area, SO represents the snow-only
area, and CS represents the cloud-snow mixed area. Fig. 8(a)
shows that Cascade Forest has a better recognition effect
on cloud/snow-free, snow-only, cloud-only, and cloud/snow
mixed areas. This is because Cascade Forest can effectively
extract the texture and spectral features of clouds and snow so
that they can be recognized more accurately. However, it can
be seen from the confusion matrix of Cascade Forest that
its recognition in the cloud-only, snow-only, and cloud-snow
mixed areas is still somewhat inadequate, indicating that the
texture and spectral characteristics of clouds and snow have
not been fully utilized. For the same reason, it can be seen
that the Random Forest in Fig. 8(b) also has shortcomings
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FIGURE 8. Confusion matrix diagram of different cloud/snow recognition algorithms: CSF represents the cloud/snow-free area,
CO denotes the cloud-only area, SO indicates the snow-only area, and CS is the cloud-snow mixed area.

in the cloud-only, snow-only, and cloud-snow mixed areas.
Fig. 8(c) and Fig. 8(d) show that NN and CNN have poor
prediction results for cloud-only, snow-only, and cloud-snow
mixed regions. The neural network algorithm has poor gen-
eralization ability in cloud and snow classification. This is
because the characteristics of the multi-spectral cloud and
snow image have great fluctuations for the neural network,
and the texture characteristics of cloud and snow cannot be
distinguished well. In the process of back propagation of the
neural network, it is affected by various factors, resulting in
an increase in misclassification. However, it can be seen from
the figure that NN and CNN are very accurate in identifying
cloud/snow-free areas. In Fig. 8(e), ResNet for recognition
of snow-only areas has been further improved compared to
CNN. GcForest has high accuracy in cloud/snow recogni-
tion. However, it can be seen from the confusion matrix that
the RES-gcForest method proposed in this article has the
highest detection accuracy. The structure of multi-grained
and multi-scale feature extraction in proposed model can
not only effectively extract texture features, but also other
effective semantic features. In addition, the application of
image enhancement improves the robustness of the model to
image data. Therefore, the RES-gcForest method not only has
excellent recognition accuracy for clouds and snow but also
has excellent recognition accuracy for other categories.

Fig. 9 shows the comparison results of single-spectral
image recognition andmulti-spectral image recognition using
CNN, ResNet, gcForest, and RES-gcForest, respectively.
It can be seen from the comparison chart of single spectrum
and multi-spectrum in Fig. 9 that the recognition effect of
the three methods on multi-spectral images is much better

than that of single-spectrum recognition images, and there are
fewer misrecognized areas. As can be seen in Fig. 9(a) and
Fig. 9(e), CNN can not only improve the accuracy of recog-
nition on multispectral but also improve the visual recogni-
tion effect. The multi-spectral CNN can identify cloud-only
area, cloud-free and snow-free area, and snow-only area,
reducing the number of mis-recognized snow-only regions
and snow-only regions. In the multispectral experiment, com-
paring the area framed in the figure, it is obvious that the
recognition effect of gcForest and RES-gcForest is better
than that of ResNet. However, compared with gcForest and
RES-gcForest, the visual effect of CNN is still poor, and
there are still more areas of misrecognition. Due to the
shallow network framework, CNN cannot extract advanced
features from multi-spectral images. Therefore, the general-
ization ability of multi-spectral data recognition is not ideal,
resulting in many misrecognition areas in visual effects.
Obviously, gcForest and RES-gcForest can effectively use
the spectral feature information between multi-spectral data
and have better multi-spectral data generalization capabilities
than single-spectral data.

C. COMPARISON OF RES-GCFOREST MODEL
PARAMETERS
A small number of decision trees cannot effectively learn
feature information, but too many decision trees in Random
Forests can easily lead to over-fitting [36], resulting in a
decline in the generalization ability of the model. As the
number of decision trees increases, the training time and
testing time of the model also increase at the same time.
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FIGURE 9. Comparison of CNN, ResNet, gcForest, CNN and RES-gcForest algorithms based on single-spectral image recognition and
multi-spectral image recognition: black denotes a cloud/snow-free area, blue represents a snow-only area, red indicates a cloud-only
area, and white is a cloud/snow mixed area.

TABLE 4. The influence of the number of different decision trees in
the Cascade Forest on the performance of the RES-gcForest model.
The other parameters in the model are set as follows.
W = (14, 7, 3), S = 0.81, D = 7, Ts = 60.

The size of the sampling rate also affects the results. In order
to reflect the influence of the parameters in the RES-gcForest
model on its results, such as the number of decision trees in
the Random Forest, the size of the sub-sampling sampling
rate and other factors on the results, each influencing factor
was analyzed quantitatively and qualitatively. The influence
of the number of decision trees and the sampling rate on the
recognition results is tested by the control variable method.
W represents the size of the sliding window, S represents
the size of the sub-sampling sampling rate, D represents the
sliding step size, Ts represents the number of decision trees
in the multi-granularity scan, and Tc represents the number of
decision trees in the Cascade Forest.

Tab. 4 shows the influence of the number of different
decision trees in the Cascade Forest on the performance of
the RES-gcForest model.

It can be seen from Tab. 4 that as the number of decision
trees in the Cascade Forest increases, all evaluation indicators
are on an upward trend, and there will occasionally be some
fluctuations, but the overall level is on the rise. In order to
more intuitively see the influence of the number of decision
trees in the cascading forest on the model, the results are
drawn as a line graph, as shown in Fig. 10.

From the curve in Fig. 10, as the number of decision trees in
the Cascade Forest continues to increase, all indicators are in
an upward phase. But for the training accuracy, the balance
will be reached at a certain critical point. If the number of
decision trees continues to increase, the accuracy will not
increase significantly. The number of decision trees in the
Cascade Forest is not the better, the more decision trees,
the more time it takes to train and test, but the accuracy is not
improved, so it is necessary to find a balance between time
consumption and accuracy point.

Tab. 5 shows the effect of the number of different decision
trees in sub-sampling multi-grained scanning on the perfor-
mance of the RES-gcForest model.

Tab. 5 is a quantitative analysis of the number of deci-
sion trees in Random Forests in sub-sampling multi-grained
scanning. Tab. 5 shows that in sub-sampling multi-grained
scanning, the change in the number of decision trees in the
Random Forest has little effect on the final test accuracy, but
the training time will increase with the increase in the number
of decision trees. The test time also increased slightly.

Tab. 6 shows the effect of different sampling rates in
sub-sampling multi-grained scanning on the performance of
the RES-gcForest model.
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FIGURE 10. The accuracy curves and time curves of the number of decision trees in the Cascade Forest on the
model.

FIGURE 11. The effect of sampling rate on the model in sub-sampling multi-grained scanning.

TABLE 5. The effect of the number of different decision trees in
sub-sampling multi-grained scanning on the performance of the
RES-gcForest model. The other parameters in the model are set
as follows. W = (14, 7, 3), S = 0.81, D = 7, Tc = 500.

It is obvious from Tab. 6 that as the sampling rate increases,
training time and testing time also increase, because the
increase in sampling rate leads to more features, which slows
down the training speed and testing speed of the model.
Meanwhile, the accuracy of the model is also increasing,
but there is a zero point. When this critical point is reached,
even if the sampling rate increases again, the accuracy of the
model will decrease. Because of the excessive amount of data,
the model has the risk of over-fitting. So for the RES-gcForest
model, a reasonable sampling rate can get the best results.
Fig. 11 visualizes the data in Tab. 6.
In Fig. 11(a), as the sampling rate increases, both the

training accuracy and the test accuracy improve, but they
will tend to flatten and reach a peak. Since the sampling rate
continues to increase, the accuracy rate will tend to decrease.
Fig. 11(b) and Fig. 11(c) can show that the training time and

TABLE 6. The effect of sub-sampling ratio on the performance of
model. The other parameters in the model are set as follows.
W = (14, 7, 3), D = 7, Ts = 60, Tc = 1000.

testing time both increase with the increase of the sampling
rate.

Summarizing the results of the impact of the above param-
eters on the RES-gcForest model, it can be found that the
parameters that have a greater impact on the model are the
number of decision trees in the Cascade Forest and the sam-
pling rate in sub-sampling multi-grained scanning. As the
number of decision trees in the Cascade Forest increases,
the training time and testing time of the model will increase
accordingly. When a certain number of decision trees is
reached, the performance will reach the best, which is called
the equilibrium point. After this balance point, no matter how
to increase the number of decision trees and sampling rate
of the model, the overall performance of the model is poor.
Because as the number of decision trees increases, the train-
ing time and testing time will increase significantly, resulting
in a lower overall performance of the model. The above
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FIGURE 12. Single-Spectral and multi-spectral image recognition based on RES-gcForest: black is a
cloud/snow-free area, blue indicates a snow-only area, red denotes a cloud-only area, and white
represents a cloud/snow mixed area.

results can also be concluded that the number of decision trees
in sub-samplingmulti-grained scanning has little effect on the
model.

In order to verify the stability and generalization effect of
RES-gcForest on multispectral data training and recognition,
as well as the robustness and generalization of the model
to image data, 50 HJ-1A/1B satellite images were carried
out using the RES-gcForest model. Recognition. All results
prove the effectiveness and superiority of the RES-gcForest
method. Fig. 12 shows the comparison between the prediction
result of another satellite image of RES-gcForest and the
original image.

V. CONCLUSION
In this paper, in view of the low utilization of features of
satellite remote sensing images in traditional algorithms, and
a large amount of model parameters in deep learning algo-
rithms, and the low degree of distinction between clouds and
snow, this paper proposes an improved deep forest cloud
based on Random Erasing Snow recognition model, this
model has a small number of parameters, high feature uti-
lization, can effectively distinguish between clouds and snow,
and the model training time is greatly reduced compared with
deep learning algorithms. The RES-gcForest model employs
Random Erasing, an image enhancement method, to ensure
the robustness of the model to images, and takes advantage
of multi-window scanning to extract image features to ensure
the integrity of image spatial features and extract more fea-
tures. Then through this operation of sub-sampling to reduce
the number of model parameters and improve the learning
ability of the model.

The experiments are compared with traditional machine
learning methods and the latest deep learning methods.
Experimental results show that RES-gcForest is superior to
current machine learning methods and deep learning meth-
ods in accuracy, and has certain advantages in speed. The
traditional method and the deep neural network algorithm
do not achieve the expected effect in the single spectral
dataset training, while the RES-GCForest in the single spec-
tral dataset can reach 81.47% of the test accuracy, it can
be seen from the comparison figure that the visual recogni-
tion effect of RES-GCForest is better than other algorithms.

Compared with single spectral images, RES-gcForest has
a great improvement in cloud/snow recognition ability in
multi-spectral images, and can effectively identify cloud and
snow.

Although RES-gcForest has advantages in cloud/snow
recognition, it still has disadvantages in some aspects. There-
fore, the future research is as follows: 1) RES-gcForest
model cannot connect every single spectral channel of cloud
and snow image, and future research needs to explore the
correlation between different spectra; 2) The representation
learning ability of the RES-gcForest model is always limited.
When processing a large amount of cloud image data, its
advantages are not as obvious as those of neural networks.
In future studies, we can try to combine the advantages of
RES-gcForest feature extraction and the robustness of the
model with the strong representation learning ability of deep
learning. A more accurate and fast model will be proposed,
which will be applied on large-scale high-resolution datasets.
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