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ABSTRACT MeanShift is one of the popular clustering algorithms and can be used to partition a digital
image into semantically meaningful regions in an unsupervised manner. However, due to its prohibitively
high computational complexity, a grid-based approach, calledMeanShift++, has recently been proposed and
succeeded to surprisingly reduce the computational complexity of MeanShift. Nevertheless, we found that
MeanShift++ still has computational redundancy and there is room for improvement in terms of accuracy
and runtime; thus, we propose an improvement to MeanShift++, named α-MeanShift++. We first attempt
to minimize the computational redundancy by using an additional hash table. Then, we introduce a speedup
factor (α) to reduce the number of iterations required until convergence, and we use more neighboring grid
cells for the same bandwidth to improve accuracy. Through intensive experiments on image segmentation
benchmark datasets, we demonstrate that α-MeanShift++ can run 4.1-4.6× faster on average (but up to 7×)
than MeanShift++ and achieve better image segmentation quality.

INDEX TERMS Clustering, mean shift algorithm, MeanShift++, image segmentation.

I. INTRODUCTION
MeanShift is a classical clustering algorithm that assigns data
points to the clusters iteratively by shifting points toward the
mode (mode is the highest density of data points in a region).
Hence, it is also known as the mode-seeking algorithm or the
hill climbing algorithm [4]. MeanShift has been improved in
various ways [17], [20], [22], [27]. Its representative applica-
tions in computer vision include object tracking [6] and image
segmentation [18], [26], [37].

For unsupervised image segmentation, MeanShift can be
preferred to simple linear iterative clustering (SLIC) [1]
and Felzenszwalb [11] due to its non-parametric nature
and independence on data probability distributions. How-
ever, one of the main drawbacks making it unpopular is
its high computational complexity (impractical for high-
resolution image segmentation). To tackle this problem, there
have been several approaches to speed up the algorithm.
Carreira-Perpinan [19] proposed four acceleration strategies
and showed that a spatial discretization strategy can accel-
erate MeanShift image segmentation by up to two orders of
magnitude while achieving almost the same segmentation.
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Wang et al. [34] proposed using a dual-tree to obtain a
faster MeanShift approximation and Xiao and Liu [35] pro-
posed using an adaptive Gaussian kd-tree. The tree-based
approximation could significantly accelerate the neighbor-
hood search, which is the main bottleneck of MeanShift.
Duin et al. [9] proposed using a k-nearest neighbor (k-NN)
density estimate rather than the kernel density estimate in
MeanShift. In addition, the modes and gradient ascent path
connected to the modes were relaxed to consist only of data
points. As a result, the computational complexity of Mean-
Shift could be significantly reduced. LeBourgeois et al. [16]
proposed a fast algorithm that discretized the color space and
used the integral image/volume. In addition, the algorithm
memorized all discrete paths to mean values to avoid shifting
colors along a similar path. Although the algorithm signifi-
cantly reduced the runtime of MeanShift, it required a huge
amount of memory.

Most recently, Jang and Jiang [13] proposed an extremely
fast MeanShift algorithm, named MeanShift++, which first
partitions the input space into a grid, assigns each point
to its corresponding grid cell, and seeks the approximated
mode from each point’s and its neighboring grid cells.
MeanShift++ is ideal in cases with a large number of data
points but low dimensionality, such as image segmentation.
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The authors claim that MeanShift++ is more than 1,000×
faster than MeanShift, but they do not provide sufficient
details about the implementation.

Unfortunately, MeanShift++ is not sufficiently fast
yet, without parallel processing or hardware acceleration.
Through close investigation, we found that this is because
MeanShift++ still has computational redundancy and there
is room for further improvement in terms of accuracy
and speed. For these reasons, we propose a variant of
MeanShift++, named α-MeanShift++, which minimizes
the computational redundancy of MeanShift++ using an
additional hash table, introduces a speedup factor (α) to
reduce the number of iterations required until convergence,
and enables seeking more accurate modes using more num-
bers of neighboring grid cells while reducing the size of
grid cells.

Focusing on improving MeanShift++, our contributions
are as follows:

• A new clustering algorithm, α-MeanShift++, is pro-
posed, which improves MeanShift++ in terms of run-
time and image segmentation quality.

• A detailed description of Python implementation of
α-MeanShift++ is provided.

• The performance of α-MeanShift++ is validated on
image segmentation benchmark datasets in various
aspects.

The remainder of this study is organized as follows:
In Section II, related works are reviewed and the baseline
algorithms, MeanShift and MeanShift++, are described.
In Section III, our α-MeanShift++ algorithm is elaborated.
In Section IV, the performance of α-MeanShift++ is vali-
dated on benchmark datasets and its limitations are discussed.
Conclusion and future studies are presented in Section V.

II. RELATED WORK
A. UNSUPERVISED IMAGE SEGMENTATION
Image segmentation is the process of partitioning a digi-
tal image into multiple segments or labeling the pixels of
objects of interest. ‘‘Unsupervised’’ means performing the
task without prior knowledge of ground-truth. Prior to the
emergence of convolutional neural networks as the main tool
for image segmentation, unsupervised classical image seg-
mentation algorithms, including k-means clustering, Mean-
Shift [4], density-based spatial clustering of applications with
noise (DBSCAN) [10], SLIC [1], fuzzy c-means clustering
(FCM) [3], Felzenszwalb [11], and QuickShift [29] were
used. These are typically called superpixel algorithms.

k-means is the most classical partition-based clustering
algorithm [36]. It partitions data points into k clusters in
which each point belongs to the cluster with the nearest mean
(cluster centroid). Iteratively, the mean values of clusters are
updated until convergence. Although the algorithm has been
widely used for image segmentation due to its efficiency,
value of k should be given in advance, and the selection of
k value is very difficult to estimate.

MeanShift is a mode-seeking, density-based clustering
algorithm, which is described in detail in the next section.
It can partition an image into semanticallymeaningful regions
by clustering the pixels in the image. MeanShift usually
produces qualitatively good segmentations but is too slow and
thus, impractical.

DBSCAN is also a density-based clustering algorithm.
It defines core points, which are data points with neighbor
points greater than minPts within a distance of Eps. Then,
a neighborhood graph of the core points is constructed, and
clusters are assigned on the basis of the connected compo-
nents. DBSCAN has been effectively used for image seg-
mentation [24]. It has better segmentation quality and time
complexity than MeanShift for noisy images.

SLIC simply performs k-means clustering in the
five-dimensional (5D) space of color information and pixel
location, limiting the size of the search region for pixel
distance computation. Due to its simplicity, it is very efficient
and widely used for preprocessing of complicated algorithms
for image segmentation. It is essential for this algorithm to
work in Lab color space to obtain good results. The number
of segments is determined by the number of centers for k-
means.

FCM is similar to k-means clustering, but it allows pixels to
have varying degrees of membership to multiple clusters, not
assigning pixels exclusively to a single cluster. Compared to
hard clustering such as k-means clustering, this soft clustering
technique enables reliable image segmentation for real-world
limitations such as noise, outliers, and other imaging arti-
facts. Nevertheless, FCM is still sensitive to noise or outliers;
thus various improvements have been proposed in differ-
ent areas of applications, including measuring patch-based
local similarity using the structural similarity index [25],
decomposing image pixels into feature spaces using tight
wavelet frames [31], and integrating a residual regularization
term [32].

Felzenszwalb is a graph-based image segmentation algo-
rithm that oversegments of a multichannel (i.e., RGB) image
using a fast, minimum spanning tree-based pairwise region
comparison on the image grid. It runs in a time nearly linear
to the number of image pixels and can run at video rates. The
segment size can be controlled by a scale parameter, k [11].

QuickShift is based on an approximation of kernelized
MeanShift, which is applied to the 5D space of color infor-
mation and pixel location. It initializes the segmentation
using MedoidShift [23], a modification of MeanShift. Then,
it moves each point in the feature space to the nearest
neighbor, increasing the Parzen density estimate. One of the
benefits of QuickShift is that it simultaneously computes a
hierarchical segmentation on multiple scales. However, it is
slow and does not allow for explicit control over the size or
number of segments.

QuickShift++ [15] is a recently developed algorithm,
which is a modification of QuickShift. It provides initial
seedings to QuickShift. The seedings are locally high-density
regions that are obtained using the k-NN density estimator
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and the M-cores algorithm [14]. QuickShift++ produces
more reasonable segmentations than QuickShift but has no
improvement in terms of runtime.

DBSCAN++ [12] is a modification of DBSCAN that only
requires computing point densities for a subset of data points.
Compared to DBSCAN, DBSCAN++ can provide not only
competitive performance but also added robustness in the
bandwidth while requiring a fraction of the runtime.

MeanShift++ [13] is a fast version of MeanShift, its speed
was improved by orders of magnitude and it is notably faster
than QuickShift++. The algorithm is detailed in the next
section.

To achieve hierarchical segmentation, agglomerative clus-
tering can be employed, where an independent component
analysis mixture model allows a better estimation of complex
densities than k-NN [21].

As observed in this section, since unsupervised image
segmentation algorithms have inherent weaknesses in terms
of accuracy or runtime, regardless of differences in oper-
ating principles, many approaches have been continuously
proposed to further improve the existing image segmentation
algorithms in specific applications or by coupling one algo-
rithm with the other.

B. MeanShift AND MeanShift++
We briefly introduce the procedure of baselineMeanShift and
MeanShift++ to cluster data points X := {x1, x2, . . . , xn},
xi ∈ Rd in Algorithms 1 and 2 [13]. At each iteration,
MeanShift searches the neighbor points of each point within
a radius of b (typically called bandwidth) and moves the point
to the weighted mean of the neighbors until convergence. The
weights wj are typically set to 1 for simplicity [4]. However,
the computational cost for the neighbor search is too high,
i.e., O(n2 dt) where t represents the number of iterations
of the algorithm, even if space-partitioning data structures
(e.g., adaptive Gaussian kd-tree [35]) are used to speed up
the search.

MeanShift++ first partitions data points into grid cells,
which are hypercubes of side length h. Then, at each iteration,
MeanShift++ computes the mean by moving each point
using the neighbor points of the grid cell to which the point
belongs and its 1-neighboring grid cells. To have the same
bandwidth as MeanShift, h needs to be equal to 2b/3. The
neighbor search can be much faster because determining
which cell each point belongs to is as simple as dividing the
point values by h and taking the element-wise floor function,
which gives a d-dimensional integer index of the grid cells.
In Algorithm 2, two hash tables C and S store the count
of data points belonging to each grid cell and their sum,
respectively, simplifying the mean computation using neigh-
bor points. As a result, computational complexity is reduced
from O(n2 dt) to O(n3d t).

III. α-MeanShift++

In this section, we present α-MeanShift++, which aims to
improve MeanShift++.

Algorithm 1MeanShift
Inputs: bandwidth b, tolerance η, X .
Initialize y0,i := xi for i ∈ [1, n], t = 1.
do

For all i ∈ [1, n]:
Get a set Nt−1,i which contains the neighbors of
yt−1,i as elements.

yt,i←

∑
yt−1,j∈Nt−1,i

wjyt−1,j∑
yt−1,j∈Nt−1,i

wj
.

t ← t + 1.
while

∑n
i=1

∥∥yt,i − yt−1,i∥∥ ≥ η;
Algorithm 2MeanShift++
Inputs: cells’ side length h, tolerance η, X .
Initialize y0,i := xi for i ∈ [1, n], t = 1.
do

Initialize empty hash tables C (stores cell counts)
and S (stores cell sum).
C
(
byt−1,i/hc

)
← C

(
byt−1,i/hc

)
+ 1 for i ∈ [1, n].

S
(
byt−1,i/hc

)
← S

(
byt−1,i/hc

)
+ yt−1,i for

i ∈ [1, n].
Next, for all i ∈ [1, n]:

yt,i←

∑
v∈{−1,0,1}d S

(
byt−1,i/hc + v

)∑
v∈{−1,0,1}d C

(
byt−1,i/hc + v

) .
t ← t + 1.

while
∑n

i=1

∥∥yt,i − yt−1,i∥∥ ≥ η;
MeanShift++ still has computational redundancy.

In Algorithm 2, yt is computed for all points. However,
points belonging to the same grid cell yield the same yt
value. Therefore, if yt for a point in a grid cell has already
been computed, yts for the other points in the same grid cell
need not be computed again. Considering this, we create an
additional hash table U in Algorithm 3. When yt is computed
for a point, we add the index of the grid cell that the point
belongs to and yt to U . Then, if points belong to the grid
cells added to U , their yts are brought from U without re-
computation.

In Algorithm 2, MeanShift++ only considers
1-neighboring grid cells to compute yt , i.e., v ∈ {−1, 0, 1}d .
However, we extend to the r-neighboring grid cells,
i.e., v ∈ [−r, r]d , r ≥ 1. In practice, the searching radius
(=bandwidth) for neighboring points in MeanShift could be
determined by h and r in MeanShift++, but r was fixed
to 1. This may be because MeanShift++ works similar to
MeanShift as r increases (see Fig. 1); thus, computational
complexity increases in proportion to r . In α-MeanShift++,
however, due to U and fast indexing (NumPy slicing in
Sect. IV-A), using r (>1) barely increases the runtime while
improving image segmentation quality. This will be detailed
in the experimental results.

In MeanShift++, at iteration t , yt−1 is replaced by the
newly-computed mean yt , i.e., yt = mean(yt−1). This can
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FIGURE 1. Bandwidth in MeanShift and α-MeanShift++. The red circle is
the point we want to shift to the mean of its neighbors.

Algorithm 3 α-MeanShift++
Inputs: cells’ side length h, tolerance η, X .
Initialize y0,i := xi for i ∈ [1, n], t = 1.
do

Initialize empty hash tables C (stores cell counts), S
(stores cell sum), and U (stores update values).
C
(
byt−1,i/hc

)
← C

(
byt−1,i/hc

)
+ 1 for i ∈ [1, n].

S
(
byt−1,i/hc

)
← S

(
byt−1,i/hc

)
+ yt−1,i for

i ∈ [1, n].
Next, for all i ∈ [1, n]:

if byt−1,i/hc ∈ U .keys then
yt,i← U

(
byt−1,i/hc

)
.

else

ŷt,i =

∑
v∈[−r,r]d S

(
byt−1,i/hc + v

)∑
v∈[−r,r]d C

(
byt−1,i/hc + v

) .
α← 1+ κeγ (1−t).
yt,i← αŷt,i+(1− α)yt−1,i.
U
(
byt−1,i/hc

)
← yt,i.

end
t ← t + 1.

while
∑n

i=1

∥∥yt,i − yt−1,i∥∥ ≥ η;
be rewritten as yt = yt−1 + {mean(yt−1) − yt−1}. To reduce
the number of iterations, we add a speedup factor α, which
is a positive value and exponentially decays. yt is forced
to move to the direction of mean(yt−1) − yt−1, i.e., yt =
yt−1 + α{mean(yt−1)− yt−1}.
As a result, the computational complexity of α-

MeanShift++ is reduced to O(c(2r + 1)d t), where c repre-
sents the number of grid cells, i.e., c = n/hd . In Algorithm 3,
the difference between α-MeanShift++ and MeanShift++
is highlighted in blue.

IV. IMPLEMENTATION AND EVALUATION
A. IMPLEMENTATION DETAILS
All algorithms (MeanShift,MeanShift++, and α-MeanShift)
were implemented in Python (unlike using Cython in [13]).
Parallel processing was not used. Only the NumPy mod-
ule [38] was used, except that the Scikit-Learn module [40]
was used to accelerate searches for the nearest neighbors in
MeanShift. In MeanShift++ and α-MeanShift++, C and S
were created as NumPy arrays, and U was created as a Python
dictionary. NumPy slicing was used to access a grid cell of C
or S and its r-neighboring grid cells.

For image segmentation, input images were converted into
three-dimensional NumPy arrays, which accept (R, G, B)
color. Given that, adding spatial coordinates makes no dif-
ference in segmentation quality [13], the spatial coordinates
of each pixel were not considered. For each algorithm,
the returned clusters are taken as the segments. The label of
each cluster depends on the color of the pixels in the cluster,
which may differ from the ground-truth label.

B. EXPERIMENTAL SETUP
To evaluate the performance of α-MeanShift++, we mainly
compared α-MeanShift++ with baseline algorithms, Mean-
Shift andMeanShift++, on image segmentation. In addition,
we included three popular algorithms, SLIC, Felzenszwalb,
and QuickShift, from the scikit-image module [30] in the
comparison. The comparison of MeanShift++ with other
algorithms can also be found in a previous study [13], but
not in detail. To measure the quality of segmentation results,
we used the adjusted Rand index (ARI), the adjusted mutual
information (AMI), the Fowlkes-Mallows index (FMI), and
the mean absolute error (MAE), which are metrics provided
in the Scikit-Learn module [40]. Since each segment in the
segmentation results may not have the same label as the
ground-truth, we did not use metrics such as the dice score
for measuring classification accuracy. Instead, we employed
the MAE to indirectly measure the accuracy. To compute
the MAE, we colored the ground-truth images, by replacing
each labeled segment with its average color (computed from
the corresponding color images) using the color.label2rgb
function in the scikit-image module [30]. We conducted
experiments using the Berkeley segmentation dataset
and benchmarks (BSDS500) [2] comprising 500 images,
the Leeds Butterfly dataset (LBDS832) [33] compris-
ing 832 images, and the PASCAL Visual Object Classes
Challenge 2012 (VOC2012) comprising 2,913 images
with ground-truth segmentations each (see Fig. 2). The
LBDS832 images were rescaled to 320 × 240 or 240 × 320.
We ran the algorithms on a desktop computer equipped with
an i7-11700 2.5GHz CPU and 128GB RAM.

We set κ , γ , and η to 1, 1, and 20, respectively. Larger
κs or smaller γ s are expected to further reduce the runtime
of α-MeanShift++ but may increase the runtime for some
images (this will be demonstrated later). b in MeanShift was
heuristically set to 30; thus, h in MeanShift++ was set to
20 (=2b/3). In α-MeanShift++, h and r were adjusted so
that the bandwidth for mean computation was the same (=30)
as inMeanShift andMeanShift++. A wider bandwidth could
reduce the runtime of these algorithms, but the images were
undersegmented, as shown in Fig. 3. For the optimal selection
of the bandwidth, the bandwidth could be updated adaptively
by computing the covariance matrix of data points [27] or the
reciprocal of the local density of each point [5]; however, this
is not considered in this study.

MeanShift++ originally fixed r to 1 but was modified
to work with different r in our experiments to show the
effect of r .
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FIGURE 2. A part of images used in our experiments and their
ground-truth segmentations, where each segment has a binary, gray,
or color label.

FIGURE 3. Undersegmentation by MeanShift++ with h = 30. Left: original
and right: segmentation results.

FIGURE 4. Clustering of random points using MeanShift++ and
α-MeanShift++ (r = 1). The red ellipses represent the distribution range
of the points that will move to the same mean point. The points are
clustered in fewer iterations in α-MeanShift++, i.e., 3, compared to 4 in
MeanShift++. The number above each point represents its index.

C. EXPERIMENTAL RESULTS
Before performing image segmentation, we attempted to
cluster randomly-generated two-dimensional points based on
their spatial coordinates, which are integer numbers ranging
from 0 to 255. In Fig. 4, 100 points are generated and clus-
tered usingMeanShift++ and α-MeanShift++, where it was
verified that the introduction of α can reduce the number of
iterations.

Figure 5 shows the image segmentation results of sev-
eral images. MeanShift achieved results visually closer to
the ground-truth, whereas MeanShift++ achieved similar
results in an extremely shorter time. However, runtime reduc-
tion was not as substantial as was mentioned in [13] (This
may be in part because the algorithms were implemented
in Cython in [13]). The proposed α-MeanShift++ achieved
results identical to MeanShift++ but up to 7× faster. For
most images, the segmentation quality could be improved
when r was greater than 1, unlike r being fixed to 1, as in
MeanShift++, as shown in Fig. 6 and Tables 1 and 2. The
last column of Fig. 5 shows the segmentation results with
tuned rs in α-MeanShift++, where the quality metrics were
the best. SLIC and Felzenszwalb ran in just tens or hundreds
of milliseconds, and QuickShift ran in a couple of seconds.
However, their results were either too oversegmented or
undersegmented.

As shown in Table 1, MeanShift++ was 342× faster
than MeanShift and its ARI and FMI values were 0.034 and
0.019 higher, respectively. Its MAE was 0.11 lower as well.
However, the runtime was still long. α-MeanShift++ was
4.6× faster than MeanShift++, with a little improvement
in all quality metrics. Besides, the quality metrics notably
improved with tuned rs. Note that this tuning does not cause
a loss of runtime, as shown in Fig. 7. It was the same for
MeanShift++, as the segmentation quality improved when
r was tuned. The performance difference between the two
datasets (BSDS500 and LBDS832) was unnoticeable. There
was nothing to mention in the standard deviation values.
There was little difference in performance variability for each
algorithm. The ARI, AMI, and FMI values of SLIC, Felzen-
szwalb, and QuickShift were too low. In addition, their MAE
values were greater than MeanShift++ or α-MeanShift++,
which means that the segmentation accuracy was also worse
than MeanShift++ or α-MeanShift++.

As shown in Table 2, the segmentation quality for the
VOC2012 dataset was much worse than that for the other two
datasets. However, the overall tendency in the performance
of each algorithm was similar. MeanShift++ was 251×
faster than MeanShift, and α-MeanShift++ was 4.1× faster
than MeanShift++. In contrast, the segmentation quality of
α-MeanShift++ was slightly worse than that of MeanShift
and MeanShift++. When r was tuned, the segmentation
quality ofMeanShift++ and α-MeanShift++was improved,
and α-MeanShift++ had the best performance in terms of all
metrics.

The quality metrics were not correlated with r when the
bandwidth was the same (Fig. 6). However, all or some
metrics were better when r was greater than 1. As shown
in Tables 3 and 4, setting r to 1 achieved the worse results
in 75%-80% of the images in terms of segmentation quality
for both MeanShift++ and α-MeanShift++. The MAE val-
ues were not always correlated with the other metrics. In other
words, although MeanShift++ and α-MeanShift reduced
MAE values of MeanShift for some images, their ARI, AMI,
and FMI values were lower than those of MeanShift, and
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FIGURE 5. Segmentation results of MeanShift, MeanShift++, α-MeanShift++, and the scikit-image algorithms. MeanShift yields results closer to the
ground-truth but takes too long to run. MeanShift++ and α-MeanShift++ return segmentations that are similar to MeanShift with up to 600× and
2,000× speedup, respectively. In α-MeanShift++, the segmentation quality could be improved when using r greater than 1 for most images. The other
algorithms run very fast but yield too over or under-segmented results.

vice versa. Overall, MAE values were inversely correlated
with the other metrics (Table 1 and Table 2).

As described in Section III, α-MeanShift++ has
two speedup factors (U and α) to be faster than
MeanShift++. As demonstrated in Fig. 7 and Tables 5 and 6,
the use of U minimized the computational redundancy of
MeanShift++ and reduced the runtime of MeanShift++ by

69.87% on the BSDS500 and LBDS832 datasets and 69.46%
on the VOC2012 dataset on average when r = 1. When
the bandwidth was the same, the runtime of MeanShift++
tended to increase in proportion to r , but the runtime with U
remained almost constant according to r . Then, the introduc-
tion of α further reduced the runtime, although the reduction
was not evident for some images. The runtime was reduced
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FIGURE 6. Change in the quality metrics when using different pairs of h and r with the same bandwidth. In MeanShift++, the quality metrics are not the
best when r = 1, which is why r greater than 1 is used to improve the segmentation quality in α-MeanShift++.

TABLE 1. Runtime and segmentation quality averaged across 200 randomly selected images from the BSDS500 and LBDS832 datasets. The values to the
left and right of ‘‘/’’ represent the mean and standard deviation, respectively.

TABLE 2. Runtime and segmentation quality averaged across 100 randomly selected images from the VOC2012 dataset. The values to the left and right of
‘‘/’’ represent the mean and standard deviation, respectively.

by 22.00% on average and up to 47.91% on the BSDS500 and
LBDS832 datasets and by 19.14% on average and up
to 34.54% on the VOC2012 dataset, compared to before

introducing α. The advantage of α is more evident in Table 7,
where the number of iterations was reduced by 0.54 on
average in α-MeanShift++ compared to MeanShift++.
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TABLE 3. Numbers (ratios) of images with the best segmentation quality (the highest in ARI, AMI, and FMI) per r , for 200 randomly selected images from
the BSDS500 and LBDS832 datasets.

FIGURE 7. Change in the runtimes when using different pairs of h and r . The employment of U and α contributes to the runtime reduction in
α-MeanShift++. With U and α, the runtime does not change much with increase in r .

TABLE 4. Numbers (ratios) of images with the best segmentation quality (the highest in ARI, AMI, and FMI) per r , for 100 randomly selected images from
the VOC2012 dataset.

TABLE 5. Contribution of U and α to the runtime on the BSDS500 and
LBDS832 datasets.

TABLE 6. Contribution of U and α to the runtime on the VOC2012 dataset.

The reduction was different depending on r but up to 1.58.
Table 7 also shows the results for when κ was set to 0.2, 0.5,
and 1.5. When κ was set to values less than 1, the number of
iterations was less reduced. When κ was set to values greater
than 1, α-MeanShift++ could not always reduce the number
of iterations (see the results when r = 3). This is why we set
κ to 1 in our experiments.

D. LIMITATION
For images with a wide and flat color distribution,
α-MeanShift++ may require more iterations until

convergence, making it slower than MeanShift++. This is
an inherent problem in hill-climbing algorithms. For those
images, we can make α-MeanShift++ operate similarly to
MeanShift++ by setting κ to a small value and γ to a large
value. Fig. 8 shows the channel-wise histograms of some
images. The upper images have wide and flat histograms in
all channels, whereas the lower images have sharp and split
histograms. α-MeanShift++ performed well for the lower
images, but it took 11.01 s (1.18 s longer than fixing α to 1,
as inMeanShift++) for the upper-left imagewhen h= 20 and
r = 1, and 11.66 s (2.14 s longer than fixing α to 1, as in
MeanShift++) for the upper-right image when h = 6 and
r = 5. However, by setting κ to 0.5, the runtimeswere reduced
to 8.62 s and 8.66 s, respectively, which were 1.21 s and 0.86 s
shorter than fixing α to 1. To investigate how many images
in each dataset have a wide, flat color distribution, we cal-
culated the entropy of the color histograms of images using
the stats.entropy function in the SciPy module [41]. In our
experiments, wide, flat color histograms corresponded to
entropy values greater than 5.3. On the BSDS500, LBDS832,
and VOC2012 datasets, 13, 63, and 462 images had such
wide, flat histograms in all color channels, respectively.
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TABLE 7. Average iterations until convergence per r for 200 randomly selected images from the BSDS500 and LBDS832 datasets.

FIGURE 8. Channel-wise histograms of images. α-MeanShift++ may work incorrectly for the upper images with wide
and flat histograms.

In Fig. 8, the upper-left image had entropy values of 5.35,
5.33, and 5.29 in blue, green, and red channels, respectively.
In contrast, the lower-right image had entropy values of 4.41,
4.56, and 4.56 in blue, green, and red channels, respectively.

V. CONCLUSION
This study proposed a new clustering algorithm,
α-MeanShift++, which is a modification of MeanShift++.
It reduced the computational redundancy of MeanShift++
and introduced a factor α to accelerate convergence.
α-MeanShift++ was 4.1-4.6× faster than MeanShift++,
depending on image segmentation benchmark datasets, with-
out parallel processing on CPU. In addition, α-MeanShift++
allowed using more neighbor grid cells of smaller sizes with
the same bandwidth. With the number of neighbor grid cells
tuned, α-MeanShift++ significantly improved the segmen-
tation quality of MeanShift++.

Future studies will focus on optimizing the proposed algo-
rithm in terms of speed to make it more practical (e.g., imple-
menting it in Cython or C/C++ [8] and parallelizing it to run
on graphics processing units [28] or field-programmable gate
arrays [7]. In addition, to overcome the limitations mentioned

in Section IV-D, we plan to adjust α more precisely by
analyzing the color distribution of images (e.g., using his-
togram entropy). In this study, we showed that using r greater
than 1 improves the performance of MeanShift++, but we
did not provide a method for determining the optimal value
per image. Thus, we are planning a future study to determine
the optimal value of r .
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