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ABSTRACT Data assaults from unauthorized access to the Internet of Things will induce severe intrusion
and hazard to the whole network. Employing only traditional application layer password authentication
approaches cannot guarantee the security of the communication system. Therefore, it is critical to develop a
capable and efficient radio frequency fingerprints based physical layer authentication system. To incorporate
the domain knowledge in more capable feature extracting and reduce information loss caused by converting
RF baseband I/Q signals, we propose a novel differential complex-valued convolutional neural network based
individual recognition approach of communication radiation sources in the paper. The proposed method
can fully capture the nonlinearity of the RF baseband I/Q signals while decreasing the unfavorable impact
of phase rotation induced by carrier frequency offset, which also significantly reduces the required data
length of the collected steady-state data transmission section. The recognition performance evaluation on
20 wireless network card devices with duplicate batch, type, and manufacturer shows that the proposed
approach has the best recognition performance compared with two conventional approaches whose recogni-
tion accuracies are lower than 95%, achieving the total recognition accuracy of 99.7%. Moreover, compared
with constellation based approaches, which require at least 5,000 to 10,000 data points as input parameters,
the proposed method can reduce the required data length of the collected steady-state data transmission
section effectively, which is easier to implement in practical applications.

INDEX TERMS Radio frequency fingerprint, constellation figure, physical layer authentication, differential
processing, complex-valued convolutional neural network.

I. INTRODUCTION
Information security is crucial for constructing reliable and
resilient Internet of Things (IoT). Data assaults from unau-
thorized devices of wireless communication induce severe
intrusion and hazard to the entire network. The major chal-
lenge to be solved by the utilization of IoT is how to reliably
identify and authenticate IoT devices, frustrating user imper-
sonation, and device cloning. The conventional authentica-
tion approaches are implemented on the application layer in
the communication system, employing cryptographic algo-
rithms to provide encoding outputs, hard for third parties to
forge. However, these approaches are vulnerable to hazards
such as protocol security flaws and key leaking. The terminal
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device, which belongs to the perception layer of the Internet
of Things, exhibits variety, intelligence, complexity, and a
wide variety of features. Moreover, the conventional authen-
tication approaches are not befitting for large-scale networks
and incidental large-scale data, hard to fulfill the information
security demands in the Internet of Things, although they
can provide some extent of information security. As a result,
individual recognition approaches with low error rates, high
efficiencies, and low costs are critical to maintaining the
steady performance of the Internet of Things. Constructing
a radio frequency fingerprints based effective physical layer
authentication system is momentous [1].

The existing frequency fingerprints based identity ver-
ification techniques can be classified into two categories
depending on the exploited physical layer resources: the
channel-based [2] and transmission signal based [3], [4]
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fingerprint recognition technologies. The latter can be
father further partitioned as transient signal based [3], [4]
identification approaches and steady signal based identifi-
cation approaches. Initially, transient signals are utilized to
extract radio frequency fingerprints since the fingerprints
present in the steady-state signal are hard to calculate. In con-
trast, the steady-state signal has a long duration and is easier
to obtain when the transmitter is working in stable state.

To extract the radio frequency fingerprint features, two
kinds of methods have been proposed: waveform domain
based and modulation domain based feature extraction meth-
ods. The waveform domain based fingerprint feature extrac-
tion methods include Hilbert-Huang transform [5], wavelet
transform, Synchrosqueezing transform [6], improved fractal
box dimension [7], Fourier transform, et cetera. Ali et al. [8]
extract thirteen features in three feature groups from the
transient signals of Bluetooth devices obtained by an
improved energy envelope technique along with their time-
frequency-energy distributions (TFED), which are produced
by the Hilbert-Huang transform (HHT). Three different clas-
sifiers, including the complex decision tree, Linear Support
Vector Machine (L-SVM), and Linear Discriminant Analysis
(LDA), are implemented to get final identification results
on different levels of signal to noise ratio (SNR) levels.
Aghnaiya et al. [9] propose a method using variational mode
decomposition (VMD) in extracting features from Bluetooth
transient signals. The transient signals are decomposed into
a series of band-limited modes, and higher order statisti-
cal (HOS) features are extracted both from band-limited
modes and reconstructed transient signals individually. The
L-SVM classifier is employing for recognition, with which
the performance bounds of VMD are scrutinized.

The modulation domain based fingerprint feature
extraction methods contain I/Q offset, carrier frequency
offset, modulation offset, constellation trace figure [10],
differential constellation trace figure [11], constellation based
contour stellar [12], et cetera, and their combinations [13].
A CB-DNA based radio frequency fingerprint recognition
approach [14], [15] is proposed by Carbino. The fingerprint
was generated from the Ethernet card’s unintended cable
radiation in order to improve the conventional MAC-based
ID verification and decrease illegal network penetration.
Following the extraction of radio frequency fingerprints using
feature engineering approaches, classifier construction is an
important step in the recognition process.

Recently, scholars have employed deep learning appro-
aches to tackle the issues of feature extraction, feature
selection, and recognition in radio frequency fingerprint
identification [16], [17]. Ding et al. [18] propose a deep
learning technique based on the steady-state section of the
signals, which employs a convolutional neural network and
compressed bispectrum to distinguish specific transmitters.
Zhao et al. [19] propose a transfer learning approach using
rejection sampling to update weights which are then coupled
with rejection sampling to build a training set, making the
trained model less influenced by time-varying and channel

characteristics. A framework to use the complex baseband
error signals in the time domain for training convolutional
neural networks is proposed by Merchant [20], which suc-
cessfully identified 7 ZigBee devices. This approach does
not exploit the preamble sequence or the signal segment,
which reemerges at a fixed position. And the obtained radio
frequency fingerprint feature is not related to the content con-
veyed by the signal to be distinguished. Chatterjee et al. [21]
develop a deep neural network framework based on the
concept of RF-PUF, which only employs the waveform of
the data portion and does not need a preamble sequence.
According to simulation experiments, the identification rate
of 10,000 transmitters can reach 99% under different channel
conditions. Themulti-sampling convolutional neural network
[22], which is adopted by Yu et al., performs robustly under
LOS and NLOS in experiments. Yu et al. [23] also developed
a denoising autoencoder based radio frequency fingerprint
recognition model in the same year. Compared with tradi-
tional convolutional neural network (CNN), when the signal-
to-noise ratio (SNR) is 10 dB to 5 dB under the additive
white Gaussian noise channel, the recognition accuracy can
be promoted by 14% to 23.5%, which can reach 97.5% even
if the SNR is 10 dB.

Roy et al. [24] propose the Radio Frequency Adversarial
Learning (RFAL) framework for building a robust system
to identify rogue RF transmitters by designing and imple-
menting a generative adversarial net (GAN). After detection
and elimination of the adversarial transmitters, the learned
feature embedding is used as fingerprints for categorizing
the trusted transmitters. The eight trusted transmitters are
correctly distinguished with 97% accuracy. In the approach
proposed by Peng et al. [11], differential constellation trace
figure (DCTF), a two-dimensional representation of the dif-
ferential relation of signal time series, is utilized to extract
radio frequency fingerprint features without requiring any
synchronization. A convolutional neural network is then
designed to identify different devices using DCTF features,
which achieves 99.1% and 93.8% accuracy under SNR
levels of 30 dB and 15 dB respectively when classifying 54
target ZigBee devices. Fadul et al. [25] propose RF Distinct
Native Attributes fingerprint-based Specific Emitter Identi-
fication method, which utilizes a CNN initialized by Con-
volutional autoencoder under Rayleigh fading and degrading
SNR conditions. Ma et al. [26] propose a novel identifica-
tion approach based on long short-term memory (LSTM)
and LabVIEW software, which use the particular gate struc-
ture inside to extract the distinguishing features, such as
channel state information and RF device fingerprinting.
The identification accuracy of the unauthorized broadcast-
ing signals is 99.83% accuracy at the licensed frequency
of 107.8 MHz in realistic electromagnetic environments.
In the paper [27], Davaslioglu et al. use a deep learning based
autoencoder to extract spectrum-representative features and
train a deep neural network to classify waveforms reliably as
idle, WiFi, or jammer. The Minimum Covariance Determi-
nant outlier detection method is employed to authorize the
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signals, achieving the average accuracy of 89.8%. Moreover,
an approach exploiting the deep sparse capsule network for
signal recognition [28] has also been proposed.

The constellation figure based approaches will lose some
original information when transforming baseband signals to
the constellation figure and cannot be trained end to end.
Most current deep learning based radio frequency fingerprint
recognition approaches directly take baseband data as train-
ing data to learn fingerprint feature extraction models and
have achieved some successes. However, to tackle the disad-
vantage caused by ‘‘black box’’ natures and large parameters
optimization space, domain knowledge based constraints or
modules should be incorporated to promote the generaliza-
tion and interpretability ability of deep neural network mod-
els. In this paper, a novel differential complex convolutional
neural network based individual recognition method used for
communication radiation sources is proposed, and the main
contributions of the paper are as below:

1) We propose a differential complex-valued convolu-
tional neural network based radio frequency fingerprint
extraction and identification framework, which can
fully capture the nonlinearity of the RF baseband
I/Q signals while reducing the unfavorable impact of
phase rotation induced by carrier frequency offset and
Doppler effect based on collected steady-state data
transmission section.

2) The proposed method can reduce the required data
length of the collected steady-state data transmission
section effectively, without the need of converting the
I/Q signals into a constellation figure, compared with
the typical constellation based method.

3) Experiments on the measured signals from 20 wireless
network card devices which have the duplicate batch,
type, andmanufacturer prove the validity and reliability
of the proposed method.

We arrange the rest of this paper as follows: Section II
describes the representative constellation based approaches
and the proposed approach. The experimental analysis
and performance evaluations are manifested in Section III.
Section IV obtains the conclusions.

II. METHODOLOGY
Diverse modulation waveforms habitually produce diverse
transition patterns in the I/Q complex plane. As a result,
the constellation figures can characterize a unique feature of
the radio frequency baseband I/Q signals.

Recently, quadrature modulation has been widely
employed in communication, which makes the radio fre-
quency fingerprint characteristics in the modulation domain
greatly concerned. Researchers have proposedmanymethods
containing constellation trace figure [10], differential constel-
lation trace figure [11], and constellation based contour stellar
[12] to represent and distinguish radio frequency fingerprints.

Fig.1 illustrates the constellation figure corresponding to
radio frequency baseband I/Q signals of a wireless net-
work card device. Depending on the point density in the

FIGURE 1. The constellation figure corresponding to radio frequency
baseband I/Q signals of a wireless network card device.

2-dimensional constellation figure, different regions are allo-
cated with different colors varying in a defined range, which
converts the 1-dimensional signal into a 2-dimensional color
image (similar to a high-definition X-ray photograph), more
comprehensively describing the delicate properties of the
signal.

This color constellation figure is called constellation based
contour stellar and can be further processed by the filters
of the convolutional neural network. Then, physical layer
authentication for IoT terminal devices can be conducted,
shown in Fig.2.

FIGURE 2. The physical layer authentication for IoT terminal equipment
based on contour stellar.

Although constellation based methods have been exten-
sively researched and developed, they need to convert original
baseband I/Q signals to constellation figure, which may lose
information and be computationally intensive. We design a
novel RF fingerprint extraction and recognition framework
to directly capture the characteristics of the RF baseband I/Q
signals based on the collected steady-state data transmission
section.

A. DIFFERENTIAL PROCESSING OF I/Q SIGNALS
We detailed analyze the phase rotation and deviation of
the demodulated baseband signal as following, which may
cause additional disturbances and errors for RF fingerprint
identification.

Noting that f tc is the transmitter carrier frequency, and
X (t) stands for transmitter baseband signal, the RF signal
transmitted by the transmitter can be depicted as below:

S (t) = X (t) e−j2π f
t
c t (1)

If we suppose that the RF circuit of the transmitter and the
communication channel are both ideal, the received RF signal
on the receiver is equal to that transmitted.
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After the RF signal is received, the baseband signal can be
generated by down-converting the received signal, described
as:

Y (t) = R (t) ej(2π f
r
c t+ϕ) (2)

where ϕ is received signal phase offset, f rc stands for the
receiver carrier frequency.

When f tc 6= f rc , the baseband signal can be characterized as
below:

Y (t) = X (t) ej(2πθ t+ϕ) (3)

where θ = f rc − f
t
c .

It can be seen that each baseband signal sampling point has
a phase rotation factor ej2πθ t , for there is residual frequency
deviation θ in the demodulated signal. The phase rotation
ej2πθ t changes with the sampling point, commonly resulting
in inadequate resilience and stability for the obtained constel-
lation features, as illustrated in Fig.3.

The frequency deviation θ̃ and phase deviation ϕ̃ can be
estimated inmost coherent demodulation systems to compen-
sate for the received signal, generating a stable constellation.

FIGURE 3. The transition patterns proportional to 16-QAM in the I/Q
complex plane: (a) the ideal constellation; (b) the actually received
constellation disturbed by offset of carrier frequency, random noise, and
Doppler effect.

However, in RF fingerprint extraction, the receiver does
not aim to demodulate every signal symbol correctly. The
received baseband signals can be processed by performing
difference in I/Q complex plane in accordance with special
temporal interval n to produce a stable constellation diagram,
depicted as:

D (t) = Y (t) · Y (t + n)

= X (t) ej(2πθ t+ϕ) · X (t + n) e−j(2πθ(t+n)+ϕ)

= X (t) · X (t + n) e−j2πθn (4)

where Y ∗ stands for the conjugate value.
Although the signalD (t) processed by difference still con-

tains a phase rotation factor e−j2πθn, this factor is a constant
which will not alter when the sampling point position t varies.
Consequently, a stable constellation can be generated after
differential processing.

B. DIFFERENTIAL COMPLEX-VALUED CONVOLUTIONAL
NEURAL NETWORK
To reduce information loss by converting differential pro-
cessed I/Q signals into constellation based contour stellar
and incorporate the domain knowledge in more capable
feature extracting, we propose a complex-valued convolu-
tional neural network to fully capture the nonlinearity of the
amplitude and phase information of the differential processed
I/Q signals, shown in Fig.4.

The baseband signal is acquired by down-converting
the received signal and can be naturally decomposed into
In-phase and Quadrature signals. Delay and differential
processing are then conducted to reduce the unfavorable
impact of phase rotation. The processed In-phase signal
and Quadrature signal can form complex-valued data matrix
(sequence), whose characteristic can be effectively captured
and extracted by the elaborate complex-valued convolutional
neural network and aggregated by the subsequent pooling
layer. The extracted informative and discriminative feature is
used to identify communication radiation sources by a fully
connected layer.

FIGURE 4. The framework of the proposed method which conducts
physical layer authentication for IoT terminal equipment, including the
baseband signal acquisition, I/Q signals differential processing,
complex-valued convolution, and individual recognition.

Our method can also effectively reduce the required data
length of the collected steady-state data transmission section,

FIGURE 5. The calculation process of the complex convolution module.
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FIGURE 6. Experimental test scheme: the FSW26 spectrum analyzer is
used to sample the signals of channel 6 in the 2.4GHz frequency band for
20 wireless network card devices. The proposed differential
complex-valued convolutional neural network is employed to identify
these devices by the baseband I/Q signals.

for the I/Q signals do not need to be converted into constella-
tion diagram.

The calculation process of complex convolution is illus-
trated in Fig.5. A more detailed discussion of the complex
convolution operator can be found in our previous work [29].

III. APPLICATION AND ANALYSES
In this paper, to validate the effectiveness of the proposed
method, 20 wireless network card devices with duplicate
batch, type, and manufacturer are utilized.

A. IMPLEMENT DETAILS
The experimental testing process is illustrated in Fig.6. The
FSW26 spectrum analyzer is used as the receiver of radio
frequency baseband to sample signals of channel 6 in the
2.4GHz frequency band for 20 wireless network card devices
in the indoor laboratory scene. Fifty rounds of sampling are
conducted in which signal sampling rate is 80MHz, and each
sampling duration is 1.75ms, that is 140,000 points per round.
The steady-state data transmission section of each sampling
is used after excluding the channel noise section. In order to
achieve data enhancement, the steady-state data transmission
section is further equally divided into 80 segments. Therefore,
the total number of sampling sequences is 80 ∗ 50 ∗ 20 =
80,000. In Fig.7, a sampling sequence of baseband signal
received by wireless network card device sampling sequence
of a device is shown. While in Fig.8, an example of a pro-
cessed I/Q signal which performs difference after delay is
displayed.

The signal sampling rate is set to 80 MHz according to
previous works and additional experiments, which is ade-
quate for sampling steady-state signals. Steady-state regions
are determined by the variance trajectory detection method,
which calculates variances of the signals and then sets the
energy threshold to obtain the results.

3200 sampling sequences are randomly chosen for each
device to gather the training set for the complex-valued con-
volutional neural network after differential processing for
each sampling sequence, and the remaining 800 sampling
sequences per device are used for testing. To validate the

FIGURE 7. A sampling sequence of baseband signal received by wireless
network card device.

FIGURE 8. An example of processed I/Q signals which perform
differential processing after delay.

effectiveness of the proposed approach, two representa-
tive methods are implemented for comparison. One is the
constellation based contour stellar method [12], and another
is the complex convolutional neural network based method
without differential processing [30]. For the constellation
based contour stellar method [12], the structure of convo-
lutional neural network is presented in Table 1. And for
both the complex-valued convolutional neural network based
method without differential processing [30] and the proposed
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TABLE 1. The structure of convolutional neural network for the constellation based contour stellar method.

TABLE 2. The structure of complex-valued convolutional neural network for both the complex-valued convolution based approach without differential
processing [30] and the proposed approach.

FIGURE 9. The recognition results on the basis of the contour stellar
approach [12].

method, the structure of the complex-valued convolutional
neural network is illustrated in Table 2.

B. EXPERIMENTAL RESULTS AND ANALYSES
At last, the recognition results are obtained over the above
three methods, as shown in Fig.9, Fig.10, and Fig.11.

For the constellation based contour stellar method [12],
the collected steady-state data transmission section of each
sampling sequence, which contains 80,000 points, is used
after excluding the channel noise section. The steady-state
data transmission section of each sampling sequence is fur-
ther equally divided into eight segments. Therefore, the total
number of sampling sequences is 8 ∗ 50 ∗ 20 = 8000. And
each new sampling sequence is used to generate a contour
stellar, and then 320 contour stellars of each device are chosen

FIGURE 10. The recognition results on the basis of the complex-valued
convolutional neural network based approach [30].

randomly for training, and the remaining 80 contour stellars
of each device are used for testing.

The detailed individual recognition results across different
approaches are illustrated in Table 3.

It can be seen from the results that the proposed approach
achieves the best identification performance compared with
other representative approaches. The total recognition rate by
the proposed method can reach 99.7%, and eight wireless
network card devices are completely identified correctly. The
reason is that the employed differential processing can sig-
nificantly decrease the unfavorable effect of phase rotation,
while the proposed approach can fully capture the nonlinear-
ity of the amplitude & phase information of the differential
processed I/Q signals.

According to the experimental results, device 5, device 7,
and device 9 are highly misclassified. It can be deduced
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FIGURE 11. The recognition results on the basis of the proposed
approach.

TABLE 3. The recognition results of comparison among the experimental
three methods.

that the RF fingerprints produced by transmitter imper-
fection of these three electronic devices are difficult to
identify, which are highly relevant to the characteris-
tics of transmitter imperfection caused by random factors
in the manufacturing process. The different approaches
have different feature extraction modules and identifica-
tion frameworks, which make the devices show different

performances, reflecting the recognition ability of different
approaches. The proposed approach achieves the best recog-
nition performance, which is the main contribution of our
work.

IV. CONCLUSION
Individual recognition approaches with low error rates,
high efficiencies, and low costs are critical to guaran-
tee the security of the Internet of Things and maintain
steady performance. A novel differential complex convolu-
tional neural network based individual recognition method
of communication radiation sources is proposed in the paper.
After evaluating the recognition performance of 20 wireless
network card devices with duplicate batch, type, and manu-
facturer, the main conclusions of the paper can be drawn as
below:

1) Compared with the other two representative methods
of which the recognition accuracies are lower than
95%, the proposed approach achieves the best recog-
nition performance with the total recognition accuracy
of 99.7%.

2) The employed differential processing can significantly
decrease the unfavorable impact of phase rotation
induced by carrier frequency offset and Doppler effect.
The proposed approach can fully capture the nonlin-
earity of the amplitude & phase information of the
differential processed I/Q signals.

3) Compared with constellation based methods, which
require at least 5,000 to 10,000 data points as input
parameters, the proposed method can reduce the
required data length of the collected steady-state data
transmission section effectively, which is easier to
implement in practical applications.
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