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ABSTRACT Analysis of heart failure is important in clinical practice to ensure coronary artery dis-
ease (CAD) patients will be provided with appropriate timely treatment. The current gold-standard, echocar-
diography, although reliable, provides a once-off left ventricular ejection fraction (LVEF) measurement and
does not provide information about heart function disturbances during day/night cardiac cycles. Additionally,
the discrimination between heart failure with preserved and mid-range ejection fraction remains challenging
in echocardiography tests. In this vein, this study was sought to investigate the ability of heart rate
variability (HRV) in categorizing CAD patients into multiple LVEF groups throughout the 24-hour circadian
cycle and checking its agreement with established gold-standard echocardiography-based guidelines. A total
of 92 CAD patients who have suffered from heart failure were included in this study. The newly introduced
index, HRV ejection fraction (HRVEF), was based on optimizing indices extracted from HRV data, which
are correlated with the sympathetic and parasympathetic nervous systems, to form group membership of the
preserved (HFpEF), mid-range (HFmEF), and reduced (HFrEF) LVEF categories. HRVEF groups optimized
on hourly basis through Jenks natural breaks algorithm exhibited a consistent pattern with a goodness of
variance fit (GVF) of more than 70% accuracy during the late-night to early-morning (01:00-08:00) and
evening (17:00-23:00) time periods. At these hours, several HRV indices were found significant (p-value ≤
0.05) in differentiating between HRVEF groups using statistical analysis of variance (ANOVA) test. These
features include the successive differences between normal heartbeats (RMSSD), low and high frequency
(LF, HF) power, standard deviation of normal heartbeats (SD2), short-term scaling exponent (alpha1), and
percentage of normal heartbeats in alternation segments (PAS). The findings of this study suggest HRV as
a promising supplementary tool to the once-off echocardiography for timely LVEF measurements and heart
failure prognosis. It paves the way towards multi-time HRV-based estimations for LVEF according to the
association between LVEF and HRV indices to better demonstrate the circadian cardiac function at different
LVEF levels in CAD patients.

INDEX TERMS Heart failure, coronary artery disease, left ventricular ejection fraction, cardiac circadian
rhythm, heart rate variability, Jenks natural breaks.
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I. INTRODUCTION
Heart failure is a chronic condition that is characterized by
a damaged or weakened heart muscle that often leads to a
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reduction in the overall cardiac output [1]. Worldwide, it is
estimated that more than 26 million people are suffering from
heart failure [2]. Early diagnosis as well as timely medication
help people to live a relatively normal life [3]. Left ventricular
ejection fraction (LVEF) is the main clinical indicator used in
the early diagnosis of heart failure. It represents the ratio of
the stroke volume to the end-diastolic volume, i.e., percentage
of blood pumped from the left ventricle [3], [4].

The American College of Cardiology Foundation and the
American Heart Association (ACCF/AHA) [5] classify heart
failure based on LVEF into three main groups; namely heart
failure with preserved EF (HFpEF, EF> 50%), heart failure
with reduced EF (HFrEF, EF< 40%), and heart failure with
mid-range EF (HFmEF, 40% ≤EF≤ 50%). In contrast,
the American Society of Echocardiography and the European
Association of Cardiovascular Imaging (ASE/EACVI) [6]
define HFpEF as > 55%, HFrEF to < 50%, and HFmEF
ranging between (50% ≤EF≤ 55%). Clinically, the cur-
rent gold-standard for measuring LVEF is echocardiogra-
phy [7]. Despite being an efficient technique in determining
LVEF, it is considered expensive and not often available
in public healthcare services [8]. In addition, it is a once-
off measurement for the cardiac output, therefore, it is not
able to provide time variant measurements as well as an
overall representation of the heart rhythm with respect to
cardiac output throughout the day/night cycles. Additionally,
although the current ACCF/AHA and ASE/EACVI guide-
lines provide classifications for patients based on LVEF lev-
els measured using echocardiography, there is disagreement
between cut-off values for preserved, mid-range, and reduced
patient groups. Patients from these groups may exhibit sim-
ilar heart functionality at the time of the echocardiography
test. This usually occurs for the HFmEF patients group that,
despite of their lower LVEF, a normal heart function can
still be observed and hence, this group is usually considered
ambiguous. Therefore, a progression of heart failure may
arise in patients classified with normal or close to normal
heart function.

Developing supplementary indicators for heart failure
associated with left ventricular systolic dysfunction is an
important clinical aim. One such option is the use of electro-
cardiography (ECG) and the corresponding heart rate vari-
ability (HRV) features [9]. HRV represents the changes in
cardiac interbeat (RR) intervals that may be associated with
endocrine, autonomic nervous system (ANS), or intrinsic
modulation of cardiac rhythm [10]. In coronary artery dis-
ease (CAD) patients, changes in the autonomic regulatory
balance involves both the sympathetic and parasympathetic
branches depending on the underlying cause and disease
progression [11]. Despite the wide usage of HRV in car-
diovascular disease analysis, a deep understanding of the
relationship between LVEF and HRV is still lacking and is
not well defined. Further investigations on the mechanis-
tic functionality of the heart as observed by HRV features
is required in the analysis of heart failure progression in
CAD patients. A promising supplementary tool to the current

gold-standard (echocardiography) is ECG and its corre-
sponding HRV, which provides a more extensive perspec-
tive about the functionality of the heart at different LVEF
levels [12]–[14].

Several studies have observed a strong association between
HRV and cardiovascular diseases including CAD [15]–[21].
Specific cardiac function characteristics observed using dif-
ferent HRV features at certain times of the day/night cycle
could suggest changes in cardiac function associated with
heart failure progression in parallel with circadian rhythm
changes. Thus, HRV ejection fraction (HRVEF) levels can
be considered as multi-time measurements as opposed to
the once-off measurements provided by echocardiography.
Thus, a combination of HRV, which has been shown to
be a strong indicator for sudden cardiac death, with LVEF
may provide a more powerful assessment tool for treatment
and medication options for patients with established heart
failure. Additionally, in literature, it was found that there
is an association between HRV indices with the severity of
heart failure [22], [23]. Furthermore, it was suggested that
HRV attributes proved its ability in providing information
complementary to LVEF traditional clinical indices [24].

Motivated by the aforementioned, the current study (Fig. 1)
aimed to investigate the ability of HRV and its correspond-
ing features in classifying a total of 92 CAD patients into
LVEF groups as defined by ACCF/AHA and ASE/EACVI.
Unlike the current gold-standard, the new proposed index,
HRVEF, is based on optimizing group membership into
HFpEF, HFmEF, and HFrEF using HRV derived time-
domain, frequency-domain, non-linear, and fragmentation
indices. The optimization was based on Jenks natural breaks
algorithm to determine which HRV features and cut-off val-
ues provide the best fit into HFpEF, HFmEF, and HFrEF
classes. The advantage of using this approach lies in seg-
menting LVEF data in 1-dimension (1D) based on the values
of features obtained from every patient at every hour over
the 24-hour circadian cardiac rhythm. Therefore, in addition
to the current ACCF/AHA and ASE/EACVI LVEF clas-
sification guidelines, the HRVEF grouping may provide a
more comprehensive per-hour categorizations that combines
LVEF and HRV features. Furthermore, this approach pro-
vides hourly categorization for patients based on the corre-
lation between HRV indices and the cardiac function.

II. MATERIALS AND METHODS
A. DATASET AND PATIENTS ENROLLMENT
The selected CAD patients dataset was obtained from the
Intercity Digital ECG Alliance (IDEAL) study of the Univer-
sity of Rochester Medical Center Telemetric and Holter ECG
Warehouse (THEW) archives [25]. An informed consent was
obtained from all participants prior to enrolling in the study.
The database measurements were conducted according to
Title 45, U.S. Code of Federal Regulations, Part 46, Pro-
tection of Human Subjects (Revised November 13, 2001 -
effective December 13, 2001) and in accordance with the
Declaration of Helsinki. Furthermore, the Research Subject
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FIGURE 1. Flowchart for the generation of per-hour heart rate variability ejection fraction (HRVEF) index. (a) HRV acquisition from 24-hour Holter ECG
recordings of coronary artery disease (CAD) patients. (b) Per-hour extraction of HRV features from time, frequency, non-linear, and fragmentation
metrics (showing average normal-to-normal feature (AVNN)). (c) Utilizing Jenks natural breaks algorithm to categorize patients with respect to their left
ventricular ejection fraction (LVEF) levels and statistically comparing them with current gold-standard guidelines.

Review Board of the University of Rochester approved the
IDEAL protocol [26], [27].

The original dataset included 271 patients that were in a
stable condition after 2+ months since their latest cardiac
event. All patients passed the eligibility criteria that included
having exercise-induced ischemia, a record of myocardial
infarction (MI), at least one vessel narrowing >75%, stable
ischemic heart disease, and sinus rhythm. Furthermore, these
patients did not suffer from dilated cardiomyopathy, unstable
angina, congestive heart failure (CHF), previous coronary
artery bypass surgery (CABG), and cerebral/renal vascular
diseases.

All patients had a 24-hour Holter ECG recorded using a
three pseudo-orthogonal lead configuration (X, Y, Z) that cor-
respond to limb lead I, augmented limb lead aVF, and precor-
dial lead V3, respectively. In addition. an echocardiography
test was performed to measure their LVEF percentage at the
time of the enrollment. In the current study, patients with
hypertension (110), diabetes (9), or both (27) were excluded
from any further analysis, as these comorbidities have a

strong effect on HRV. This resulted in including 92 patients
in the finalized dataset after additionally removing patients
with missing ECG or HRV annotations. The complete demo-
graphic information of patients within each LVEF group
following both LVEF guidelines is provided in Table 1. In the
table, most information are illustrated by the range (mininum
to maximum) and the mean±standard deviation (std) values.
All Holter ECG recordings were initially pre-processed to
remove noise and ectopic beats using the signal-dependent
rank order mean (SD-ROM) [28] and adaptive filtering
[29], [30] techniques to decrease abnormalities in the data.

B. CIRCADIAN HRV FEATURES
The database does not provide the starting time of each
recording, therefore, the starting point for analysis of the
24-hour circadian rhythm was initially fixed prior to any
further analysis. Cosinor fitting analysis [12], [31] was per-
formed to ensure that all HRV data starts from 12:00AM.
It is a commonly used algorithm in literature that is capable
of handling unorganized data in terms of recordings starting
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TABLE 1. Demographic information of patients within each LVEF group according to the ACCF/AHA and ASE/EACVI gold-standard guidelines.

time [32]–[34]. In this analysis, a cosine function is used
to fit each HRV data by calculating the midline estimat-
ing statistic of rhythm (MESOR-M), amplitude (Amp), and
acrophase (AC). The reference angle was chosen to be 0°,
referring to 12:00AM, with an increase of 15◦ for every hour
obtained after converting the 24-hour AC into angle data
using (360/24). For example, if an AC of 65.30°was obtained
for a patient’s HRV data, it is converted to the corresponding
hour of 04:00AM. After obtaining the time-fixed dataset for
all patients, several per-hour HRV features were extracted
from time- and frequency-domain metrics [35], non-linear
metrics including Poincare plot, detrended fluctuation anal-
ysis (DFA), and multi-scale entropy (MSE) [36], [37]. Fur-
thermore. the newly introduced fragmentation metrics [38]
were also included. All features used in the current study are
listed and briefly defined in Table 2.

C. MISSING DATA IMPUTATION
Data imputation is an essential technique to ensure having a
complete dataset. It is defined as the process in which miss-
ing data are replaced with new data values learned through
different algorithms [39]. Data imputation techniques are
widely implemented in literature to address missing values
issue often found in medical data [40]–[42]. In addition, it is
essential to carefully correct and replace missing values to
provide complete analysis of clinical data, especially those
who rely on 24-hour measurements (as in this study). In this
work, data imputation was applied on the extracted HRV
features dataset, as many patients had missing recordings
at certain hours, thus, they had no values for HRV features
extracted at these hours.

1) MOVING MEAN
In this basic data imputation approach, each missing value
for each feature is replaced by a moving mean value with a

TABLE 2. Definitions of heart rate variability (HRV) features.

pre-defined window length. In this work, the window size is
determined to be 5.

2) K-NEAREST NEIGHBOUR (kNN)
In kNN, missing values are filled based on the infor-
mation taken from other available values obtained from
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neighbours [43]. If the targeted missing value is expected to
be numerical, which is the case in current data, the missing
value is filled with a value obtained from the k nearest neigh-
bours. In this work, the number of k neighbours was selected
to be 5.

3) MULTIPLE IMPUTATION BY CHAINED EQUATIONS (MICE)
TheMICE algorithm suggests the use of multiple imputations
in addressing missing values as opposed to single imputation
methods. In multiple imputations, missing values are imputed
multiple times iteratively with values drawn from a posterior
predictive distribution of the missing values conditional on
the available values [44]. An advantage of the MICE algo-
rithm is the ability to impute data on a variable-by-variable
basis [45].

4) NEURAL NETWORKS
The selected neural network architecture is based on Datawig
framework [46], which provides deep learning models to
impute missing values. In this approach, features are learned
through a symbolic API of Apache MXNET. The advantage
of utilizing this technique, as in any deep learning trained
model [47], is the ability to learn from all other features prior
to any prediction of missing features values. In this work,
eachmissing value is initially replaced by the average value of
its variable across patients. The encoder and featurizer were
selected to be numerical corresponding to the type of data
imputed.

5) RANDOM FOREST (RF)
RF is machine learning algorithm that utilizes ensembles of
decision trees through bootstrap aggregation to make deci-
sions [48]. In the context of data imputation, all missing
values were initially replaced by their corresponding vari-
able average. Then, for each LVEF group, the model was
trained using patients HRV features dataset as the input data.
On the other hand, the response (regression value/label) for
every patient was the target feature value. The training and
prediction was allowed to run for three iterations to keep
updating the missing value (that was initially set as the aver-
age value) and optimize it further. The training/prediction
of missing values was performed iteratively as a regression
problem, where on each iteration, missing values of every
feature were updated based on all other learned features. The
iterative approach resembles an optimization problem, where
the dataset is updated on each iteration to reach an optimized
HRV features dataset with no missing values. The imputation
process is performed as a prediction provided after learning
from all other features. In this work, the total number of
decision trees used for training was specified to be 50.

D. JENKS NATURAL BREAKS OPTIMIZATION
Jenks natural breaks is a 1D clustering technique used to
arrange data values into different classes based on within-
classes variance calculations. The natural ranges in a dataset
of values refer to the most optimal class ranges found

naturally in the data that form natural groups of values
with similar characteristics [49]. To optimize natural classes,
the algorithm seeks minimizing the deviation of values in
each class from the class mean. In addition, it tries to maxi-
mize the deviation of values from the mean of other classes.
In other words, it reduces the within-class variance and
increases the between-classes variance [49], [50].

This technique performs three major steps iteratively to
optimize natural breaks. These steps are:

1) Find the sum of squared deviations from the current
array mean (SDAM) as follows,

SDAM =
n∑
i=1

(xi − x)2, (1)

where i denotes the array value, n is the total number of values
in the array, and x is the mean of values within the array.

2) Find the sum of squared deviations from each class
mean (SDCM) by,

SDCM =
m∑
k=1

n∑
i=1

(xik − xk )2, (2)

where k is the class number, m is the total number of classes,
xik is the ith value in the class array, and xk is the mean of
values within the class.

3) Decide if a move of one unit from the class with a larger
SDCM to an adjacent class with a lower SDCM is needed.
This step is needed to ensure that the within-class deviations
are minimized.

A goodness of variance fit (GVF) parameter is measured
at the end of the clustering process to evaluate the variance
fitting performance. GVF ranges between 1 (perfect fit) and 0
(worst fit) and is calculated as follows:

GVF =
SDAM − SDCM

SDAM
. (3)

To ensure the best possible clustering process of the data,
the GVF value was obtained when for three clustering sce-
narios; namely 2, 3, and 4 classes. The best class clustering
scenario was selected at each hour and for every HRV feature
once the GVF reaches a value of more than or equal to 0.70.
In the case of 2-class, HRVEF groups were named as HRV
with reduced EF (HRVrEF) and HRV with preserved EF
(HRVpEF). For 3-class scenario, an additional group was
included between the two aforementioned groups as HRV
with mid-range EF (HRVmEF). Finally, the 4-class scenario
included an additional HRVmEF named as HRV with mid-
range 2 EF (HRVm2EF).

It is worth noting that the calculations of GVF were not
affected by the imbalance found in the current dataset. GVF
is ameasure of how each category differ from other categories
as well as how each category’s samples are close to each
other, thus, the total number of samples does not affect one
class over the other.
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E. STATISTICAL ANALYSIS OF FEATURES
To evaluate HRV features on an hourly basis, the average
feature value was calculated for each of ACCF/AHA and
ASE/EACVI LVEF classification guidelines as well as the
HRVEF groups obtained by the Jenks algorithm. An one-
way analysis of variance (ANOVA) test was carried out to
compare the mean values of each feature across LVEF groups
with significant difference between groups at (p < 0.05) [51].
Furthermore, amultiple comparison post-hoc analysis (Tukey
post-hoc test) [52] was applied.

FIGURE 2. An example of the signal-dependent rank order mean
(SD-ROM) and adaptive filtering applied to 24-hour HRV data.
(a) Original HRV data; (b) SD-ROM and adaptive filtering [28], [29]
de-noised HRV data.

III. RESULTS
A. HRV PRE-PROCESSING
Fig. 2 shows the denoising process of HRV abnormalities
using SD-ROM and adaptive filters. From the figure part (a),
the original HRV data had few peaks above and below the
normal range of HRV. Such peaks are considered abnor-
mal (noise) and may affect the observations and analysis of
LVEF. These abnormalities could rise due to ectopic beats,
arrhythmias, or miss-detection of the peaks in the ECG signal
by the annotator. Part (b) shows the filter effect in success-
fully obtaining the real HRV data of normal beats (normal-
to-normal) without any abnormalities. All HRV data were
pre-processing and denoised for every hour segment in the
24-hour cardiac cycle prior to feature extraction and further
analysis.

B. MISSING HRV FEATURES IMPUTATION
Initially, missing HRV features, as a result of a corrupted
recording or an unrecorded hour, on each hour were imputed
for the three LVEF groups. An example to show missing
values percentages was taken from the dataset for the three
LVEF groups based on ACCF/AHA guidelines (Fig. 3(a)).

This example roughly shows three ranges for the missing
values, namely 5%, 10%, and 20% across the three groups.
These missing values were considered to be missing com-
pletely at random (MCAR), which means that there are
no relationships (dependency) between features across each
patient. It is worth noting that the reduced LVEF group had
the least number of patients data (8), therefore, missing values
percentage was often higher than other groups. For example,
40 missing values in reduced group represent 20% missing
values defect, while 40 missing values in the preserved group
represent only 2.5%. Therefore, a missing value weighed
more in this category compared to the other LVEF categories
due to the small sample size. In addition, hour 9:00 AM had a
complete dataset for the three groups with no missing values,
thus, it was selected as the hour to be used for evaluating
imputation techniques.

FIGURE 3. HRV feature imputation process to ensure a complete features
dataset with no missing values. (a) Percentage of missing values across
the 24-hour HRV data for each LVEF patient groups. (b) Average root
mean square error (RMSE) for the five data imputation techniques. Three
missing values scenarios (Dot: 5%, Cross: 10%, and Circle: 20%) were
applied on the preserved (green), mid-range (blue), and reduced (red)
LVEF groups to evaluate each technique.

To adjust the dataset to include complete 24-hour HRV
features data, several data imputation techniqueswere applied
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FIGURE 4. Heart rate variability ejection fraction (HRVEF) grouping using Jenks for selected HRV features. The figure shows the number of
Jenks breaks whenever the goodness of variance fit (GVF) have reached ≥ 0.70 for (a) time-domain: RMSSD. (b) Frequency-domain: HF Peak.
(c) Frequency-domain: LF Power. (d) Non-linear: SD2. (e) Fragmentation: PAS. Bad variance fit (BVF) was assigned for GVF < 0.70. The
dashed circles denote having three or more consecutive ≥ 0.70 GVF.

(discussed in Section II-C) based on conventional or sophis-
ticated methods. Among these techniques are the moving
mean filling, k-nearest neighbour (kNN), multiple impu-
tation by chained equation (MICE), neural networks, and
random forest (RF). To decide on which technique to use
for HRV missing data imputation, a systematic approach
was followed. Initially, an amount of 5%, 10%, and 20%
of missing values was introduced to per-hour patients’ data
from each LVEF group. Then, missing values were imputed

using each technique and evaluated through the root mean
squared error (RMSE) between the original and the newly
imputed dataset. Lastly, the average RMSE value across all
HRV features for all patients in every LVEF category was
calculated to elaborate on the performance of each technique.

The performance of the data imputation techniques is
depicted in Fig. 3(b) for the preserved (green), mid-range
(blue), and reduced (red) LVEF groups classified based on
the ACCF/AHA guidelines. The figure shows the average
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RMSE value using each imputation technique with 5%, 10%,
and 20% missing values scenarios. Based on the figure, kNN
and RF methods had the lowest error among the three LVEF
groups. For the 5% missing values scenario, kNN had error
values of 0.16, 0.10, and 0.24 for the preserved, mid-range,
and reduced LVEF groups, respectively. On the other hand,
the error for these three groups was slightly lower using
RF with 0.13, 0.08, and 0.22. For the 10% missing values
scenario, the error increased to 0.18, 0.19, and 0.38 using
kNN and 0.15, 0.15, and 0.35 using RF for the three groups,
respectively. The highest error values were observed for the
20% missing values scenario with 0.22, 0.25, and 0.47 for
kNN and 0.17, 0.23, and 0.44 for RF. The highest RMSE
values were observed for the reduced LVEF group across
all imputation techniques. This is due to the small number
of samples (8) in the reduced group as compared to the
preserved (65) and mid-range (19) groups.

Based on the observation obtained from the average RMSE
of the five data imputation techniques, RF was selected to
impute the HRV dataset. The average error values across
the three missing values scenarios for preserved, mid-range,
and reduced groups were 0.15, 0.15, and 0.34, respectively.
These values were less than kNN which had values of 0.19,
0.18, and 0.36 for preserved, mid-range, and reduced groups,
respectively. The selection was not only based on the best
average RMSE values, but also was due to the ability of RF
as a machine learning method to learn from all other features
prior to predicting the missing value in the dataset.

C. GENERATING HRVEF GROUPS
1) NATURAL BREAKS OPTIMIZATION
The outcomes of the Jenks natural break optimization algo-
rithm in generating HRVEF groups is shown in Fig. 4 for a
feature from every HRV metric including RMSSD, HF Peak,
SD2, and PAS features. These features have exhibited a
unique pattern in the number of Jenks breaks at specific time
periods more than other features. These time periods were
mostly during the late-night to early-morning (01:00-08:00)
and evening (17:00-23:00) hours, where three or more con-
secutive GVF values of more than 0.70 were observed. The
complete Jenks natural breaks optimization for every HRV
features is provided in Supplementary Fig. S1.

From the time-domain, RMSSD had GVF values ranging
between 0.70 to 0.74 with three natural breaks during the
evening hours. The HF Peak feature from the frequency-
domain had close pattern during the evening but with two
natural breaks. In addition, three breaks had a better fitting
performance during the late-night hours with values in the
range of [0.73-0.83]. Furthermore, LF Power returned three
natural breaks during the late-night to morning and evening
hours with GVF values of more than 0.70. For the non-linear
metrics, SD2 had the most continuous pattern with four nat-
ural breaks during the early-morning hours and three natural
breaks during the evening hours. For the fragmentation met-
rics, PAS had the best performance with two breaks during

the late-night and evening hours and four groups during the
early-morning hours. A GVF of more than 0.80 was observed
mainly when using four natural breaks.

2) HRVEF GROUPS DISTRIBUTION
The distribution of HRVEF groups based on Jenks natural
breaks is depicted in Fig. 5 and 6 for the late-night to early-
morning (01:00-08:00) and evening (17:00-23:00) hours,
respectively. The complete 24-hour spectrum for every HRV
features is provided in Supplementary Fig. S2.

During the late-night to early-morning hours, RMSSD had
a close pattern for groups distribution. The HRVpEF group
was always determined to be more than 44% LVEF. Further-
more, HRVmEF group ranged between 36% and 44% LVEF
percent levels except for hours 01:00, 03:00, and 04:00 where
an additional HRVm2EF group was observed. The HRVrEF
group ranged between 25% and 35% LVEF levels for almost
all the hours. The HF Peak feature had more variability in
the decision for groups limits across the hours. The late-night
hours (01:00-04:00) suggested three groups with varying
HRVmEF group limits of more than 48% LVEF. On the other
hand, the early morning hours (05:00-06:00) had four and
two groups, respectively. The HRVpEF had a wider range
across most hours. Similarly to RMSSD, LF Power had three
groups estimation duringmost of the hourswith theHRVmEF
group ranging between 36% to 44% except for two early-
morning hours where the majority of patients were consid-
ered in the HRVrEF group. SD2 feature showed a unique
pattern for the HRVmEF groups. The late-night hours had
three groups scenario with HRVmEF limits between 35% and
41% LVEF levels. The early-morning hours had four groups
with an additional HRVm1EF at high LVEF levels ranging
between 73% and 74%. However, the majority of patients
had similar HRV characteristics, thus, they were included in
the HRVmEF group ranging between 34% and 73%. The last
HRV feature, PAS, suggested a two group scenario during the
late-night hours with a LVEF range between 25% and 54%
for HRVrEF and 54% to 82% for HRVpEF. In addition, early-
morning hours had four grouping scenario with the HRVmEF
group ranging between 44% and 70% andHRVm1EF ranging
between 70% and 71%.

During the evening hours, the distribution of HRFEV
groups had close patterns to the one in the late-night to early
morning hours using the RMSSD feature. The range of the
HRVmEF group was between 34% to 41% for most hours
except for hour 22:00-23:00 where an additional HRVm2EF
group was needed for patients with 35% to 41% LVEF levels.
The HRVpEF had patients with LVEF levels of more than
41% while the HRVrEF had patients with levels of less than
34%. For the HF Peak feature, two groups were essential to
divide patients during most hours without exhibiting a unique
pattern. Most patients were considered as HRVrEF with lev-
els of less than 55%, while HRVpEF patients were suggested
to have more than 55% except for hours 16:00-17:00 and
18:00-19:00. A pattern close to RMSSDwas observed for the
LF Power feature with three groups at most hours. The range
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FIGURE 5. The late-night (01:00-03:00) to early-morning (04:00-08:00) hours distribution of heart rate variability ejection fraction (HRVEF)
groups across patients based on Jenks natural breaks.

for HRVmEF group was between 35% and 44% with values
less than 35% for the HRVrEF group and more than 44%
for the HRVpEF group. The SD2 feature had three groups
scenario across all hours with varying HRVmEF limits. How-
ever, it is worth noting that hours 22:00-23:00 covered a
wider range of patients within these groups with LVEF values
between 55% and 79%. The last feature, PAS, suggested four
groups scenario during the 16:00-18:00 time window with
HRVm1EF of more than 65% and less than 71%. However,

most hour intervals had two group scenarios with HRVpEF
patients presenting with LVEF levels of more than 53%.

It is worth noting that the GVFmeasure was not affected by
the total number of samples included in each category, which
was shown in Figures 4, 5, and 6. Taking SD2 as an example,
in Figure 4d, SD2 had bad variance fitting (BVF) in hours
1-3 even though these hours had widespread of the preserved
LVEF group (as in 5d). On the other hand, hours 4-8 had high
GVF accuracies of 70-80% in 4d with the widespread being
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FIGURE 6. The evening (17:00-23:00) hours distribution of heart rate variability ejection fraction (HRVEF) groups across patients based on
Jenks natural breaks.

in favor of the mid-range LVEF group as shown in 5d. There-
fore, GVF is a measure of clustering separability between the
two, three, or four HRVEF categories.

D. STATISTICALLY DISCRIMINATIVE FEATURES
Table 3 shows the values of features during two time peri-
ods, early-morning (03:00-04:00) and evening (18:00-19:00),
where most significant differences occurred across fea-
tures. The table shows feature values (Mean ± STD) for
ACCF/AHA, ASE/EACVI, and HRV/Jenks guidelines.

Based on ACCF/AHA guidelines, RMSSD showed
significant differences between the groups during the late-
night (02:00-03:00) and evening (17:00-22:00). In addi-
tion, HF Power and LF Power showed similar patterns
during the same time periods. However, Alpha1 was only
significantly different between 05:00-06:00. On the other
hand, following the ASE/EACVI guidelines, RMSSD was
significant during the late-night period (02:00-04:00) and
bewtwwen 21:00-22:00. Similarly to ACCF/AHA guide-
lines, HF Power had a similar pattern in the distribution
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TABLE 3. HRV features values (Mean±STD) at the most significantly different hours along with the p-value for one-way ANOVA test. The table shows
features based on the ACCF/AHA, ASE/EACVI, and HRVEF/Jenks categories.

of significant differences across the 24 hours. However,
LF Power showed significant differences during the early-
morning period (03:00-06:00 and 10:00-11:00 and evening
(18:00-19:00). For Alpha1, a significant difference occurred
across all hours due to the drop in the values in the HFrEF
group.

Compared toACCF/AHAandASE/EACVI, usingHRVEF
groups, RMSSD, HF Power, LF Power, and Alpha1 have
exhibited close patterns in their significant differences
across hours. This pattern was mostly focused on the late-
night (00:00-03:00) to early-morning (04:00-11:00) and
evening (17:00-23:00) hours. However, LF Power had a
significant difference between the groups during the after-
noon hours (13:00-16:00). In contrast to ACCF/AHA and
ASE/EACVI, RMSSD showed a high difference between val-
ues for HRVm2EF and other groups during the time periods
01:00-04:00 and 22:00-00:00. In addition, Alpha1 exhibited
significant differences between HRVm2EF and other groups
during the same aforementioned time periods. Additional
features were also represented in the figure such as HF Norm,
HF Peak, SD2, and PAS. Among these feature, SD2 have
showed significant differences during the afternoon (12:00)
along with the PAS (12:00-13:00 and 15:00-16:00).

Relative to Jenks clustering, it is worth noting that the sig-
nificant p-value measures shown in the table reflect the sta-
tistical significance between each group separately. On the
other hand, Jenks natural break clustering took into account
the dataset as a whole in a 1D feature space when iteratively
evaluating clusters and reporting GVF results. Therefore,
a GVF can be high if the category in between was essential
in discriminating between it and the other two groups. For
example, HFmEF and HFpEF as well as HFmEF and HFrEF
in RMSDD at hour 18:00-19:00 had significant differences
as shown in Table 3, however, no significance was observed
between HFpEF and HFrEF. Thus, a high GVF was observed

using the 1D Jenks clustering algorithm due to the separation
ability of HFmEF between it and the other two groups, which
matches with the statistical analysis results.

IV. DISCUSSION
This study demonstrated a strong association between LVEF
and HRV during specific time periods in the circadian cardiac
rhythm. The new index, HRVEF, allowed for multi-time esti-
mations of LVEF throughout the day and night based on the
functionality of the heart as represented byHRV features. The
results suggest HRV as a promising automated and accurate
supplementary tool to the once-off echocardiography test for
timely LVEFmeasurements and heart failure prognosis. Clin-
ically, despite of the reliability of echocardiography in pro-
viding accurate LVEF measurements, it is essential to be able
of providing an estimation for LVEF levels throughout the
day/night cardiac cycles. Thus, a patient may require echocar-
diography tests as an initial evaluation of his/her LVEF level,
then, takes a 24-hour ECG test. This allows to observe cardiac
functionality variations throughout the hours correlated with
LVEF levels. In addition, in this study, we recommended best
time-periods (late-night, early morning, evening) for ECG
measurements to categorize and predict LVEF levels with the
highest possible accuracy.

Although the Jenks algorithm is most commonly used in
choropleth maps clustering, it is interesting to observe its
ability in segmenting data for medical applications. Jenks
natural breaks and HRV allowed for an expanded view on the
distribution of LVEF among CADpatients. Unlike the current
LVEF guidelines where a patient is classified based on their
echocardiography LVEF level, the Jenks breaks optimiza-
tion for certain HRV features helped in assigning patients
into LVEF groups on an hourly basis. In addition, the opti-
mization was not only based on a three groups scenario,
but also indicated that for certain HRV features and time
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intervals the patients could be divided into two and four LVEF
groups.

The variations in the number of group scenarios across the
24 hours show that a single feature may be observed very
similarly across patients with different LVEF levels, thus,
resulting in fewer LVEF groups. TakingHF Peak feature as an
example, which is a good indicator for the cardiac parasym-
pathetic nerve activity [53], a two groups scenario of HRVrEF
and HRVpEF was suggested during the evening time periods
(18:00-21:00). Therefore, at these hours, the need for an addi-
tional mid-range group was not required. This indicates that
there is a greater effect of parasympathetic systemmodulation
of cardiac rhythm in the evening hours and hence a greater
difference between postulated groups with less intragroup
variance.

However, at other time periods, a wider distribution of
patients based on LVEF was observed, leading to higher
number of LVEF groups (three or four). An example of this
was the LF Power results, that mainly represents the sympa-
thetic branch of the ANS [53], where a three groups scenario
was suggested with a ≥ 0.70 GVF during the late-night
to early-morning (01:00-08:00) and evening (18:00-22:00)
hours. Furthermore, features such as SD2 which reflects
sympathetic activation [54] and PAS that mainly represents
changes in the heart rate acceleration [55] suggested an addi-
tional HRVm2EF group due to a greater variability in these
HRV features between patients during the early-morning time
periods. This indicates that the early morning sympathetic
surge affects patients with similar LVEF differently due to
some difference in heart mechanics or rhythm generator
which is identified by the more sensitive HRV feature.

The analysis of HRV provides information about the over-
all status of ANS modulation of cardiac rhythm. Although
the use of HRV features for estimating LVEF is effective
when investigating the effect of the ANS on cardiac rhythm,
the relationship between HRV indices and LVEF has not
been well defined in CAD patients in the literature. One
of the reasons could be that HRV analysis is affected by
the presence of cardiac arrhythmias and oscillatory modula-
tions due to sources other than intrinsic cardiac regulation
(e.g. SA node) [56]. The observations found in this study
highlight the role of the ANS in cardiac rhythm and progres-
sion of cardiovascular diseases including heart failure. Our
analysis is of interest as it extends findings in [57] which
showed that reduced HRV was associated with New York
Heart Association (NYHA) functional class, left ventricular
end diastolic dimension, reduced left ventricular ejection
fraction, and peak exercise oxygen consumption (p-value <
0.05) in all patients. More recently, [58] showed that HRV
differentiated patients with symptomatic heart failure and
impaired LVEF and patients without heart failure symptoms
and normal LVEF. The significance of the findings remained
following adjustment for clinical variables including age,
sex, creatinine, fasting glucose, CAD, hypertension, diabetes
mellitus (DM), dyslipidemia, and the use of beta block-
ers, calcium channel blockers (CCBs) and angiotensin II

receptor blockers (ARBs) or angiotensin-converting enzyme
inhibitors (ACEIs) in five different logistic regression mod-
els, where medication has been shown not to highly influ-
ence the results. Additionally, [59] reported similar findings
of noninvasive autonomic features identifying patients with
increased risk of hospitalization due to heart failure among
clinically stable patients with left ventricular systolic dys-
function, even when adjusting for other clinical parameters
including medication. The utility or association of HRV with
heart failure is further highlighted by [21], who reported that
the mortality risk in post-acute myocardial infarction patients
with low LVEF is predicted by indices reflecting decreased
HRV or heart rate responsiveness and cardiac parasympa-
thetic dysfunction, whereas in patients without low LVEF,
the risk is predicted by a combination of indices that reflect
decreased HRV or heart rate responsiveness and indicator that
reflects abrupt large heart rate changes suggesting sympa-
thetic involvement [59]. The high accuracy obtained in the
current work (> 70% GVF) for categorization of heart failure
as well as the statistically significant differences between
heart failure categories at known time periods (late-night to
early morning and evening) for increased risk of heart attack
indicate the importance of this approach.

In the current study, pre-processing of the ECG ensured
removal of heart rate artifacts and led to significant find-
ings. High-frequency HRV features (HF Peak, HF Power),
SD2, and Alpha1, which are associated with parasympa-
thetic nervous system activities correlated with the degree
of LVEF. This was especially the case during the late-night
to early-morning (00:00-06:00) and evening (19:00-23:00)
time periods, which are high-risk times for cardiac arrest.
These findings match the previous observations reported in
the literature that suggested time intervals such as 6 pm to
12 am as times of higher mortality due to cardiac infarc-
tion [60]. The current findings could open up the possibility
of cardiovascular chronopharmacology where HRV provides
additional information during specific hourly (diurnal and
nocturnal) intervals. In addition, several studies in literature
have elaborated on the variability of the cardiac function
throughout the 24-hours of the day [12], [60]–[62], thus,
specific time-periods (as observed in this study) are usually
more preferred for heart failure, CAD, and LVEF assessment.

Relative to the current ACCF/AHA and ASE/EACVI
guidelines for heart failure classification based on LVEF,
results for HRVEF indicated some changes in the range
of accepted heart failure classes based on LVEF classifi-
cations. Features such as RMSSD and pNN50 suggested a
range for HRVmEF group between 35% ≥ EF ≥ 44%. This
agrees to some extent with the ACCF/AHA guidelines for
patients with more than 40% LVEF, however, based on the
ACCF/AHA guidelines, few HFrEF patients were assigned
to the mid-range group. On the other hand, more patients
were in the mid-range category based on ASE/EACVI but
these guidelines recommend a range of 50% to 55% for mid-
range LVEF, which is significantly different to the HRVEF
estimations shown herein. The aforementioned findings show
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patients with EF ≥ 44% at normal heart functionality during
the late-night to early-morning and evening time periods.
However, these patients become at-risk of developing cardiac
abnormalities leading to heart failure by moving from being
HRVpEF to HRVmEF or HRVrEF during the afternoon as
seen in the full spectrum of the RMSSD and pNN50 features
(Supplementary Figure S2). Both of these features reflect the
modulation of the parasympathetic activity and their varia-
tions are usually linked to heart failure. For example, lower
RMSSD has been shown to be associate with an increase in
all-cause mortality [63]. Furthermore, RMSSD variations are
mainly due to the fast frequency modulation of the SA-node
via the parasympathetic input at about 1-4 beats coupled with
a slower sympathetic input between 4-10 beats. Additionally
to these features, HF Power and SD1 showed similar results
suggesting less activation in the parasympathetic branch at
the aforementioned time periods.

In contrast to the ACCF/AHA and ASE/EACVI guidelines
where the upper cut-off value for the mid-range group was
set at 50% and 55%, respectively, a wider distribution for
the HRVmEF group was observed with the SD2 feature
during the early-morning (05:00-08:00) time periods. Fur-
thermore, an additional HRVm2EF group was suggested due
to the higher variability between patients at higher LVEF
levels (EF ≥ 70%). The additional group with a LVEF range
between 73% to 75% suggests greater force of the heart
activity for patients at those levels during early-morning
hours and distinguished them from the preserved and mid-
range LVEF groups. However, most of the HRVmEF patients
(EF ≥ 44%) were considered earlier as preserved patients
during the late-night (01:00-04:00) hours, which matches the
range for the ACCF/AHA guidelines of EF ≥ 50%, before
they start dividing up in the early-morning. This shows that
these patients were possibly not at-risk of a cardiac event
associate with heart failure during these time periods as seen
from the SD2 feature that reflects sympathetic branch activa-
tion, as sympathetic activation usually implies greater risk of
a cardiac event. Looking at the overall 24-hour spectrum of
this feature, patients started to divide into two groups with the
majority being considered as HRVrEF patients before they
start returning back during the late-night hours. Knowledge
about the at-risk time periods allows for optimal medications
to prevent any further development of a cardiac event in
the future. Although the PAS HRV feature showed no clear
grouping of patients throughout the 24-hour cycle, it had a
similar pattern during the early-morning time periods as seen
in Supplementary Figure S2, which supports the claim that
the early morning is a high-risk time periods for cardiac arrest
associated with heart failure.

Comparing the significant differences across LVEF groups
based on ACCF/AHA, ASE/EACVI, and HRVEF, the statis-
tical discrimination ability was higher between the HRVEF
groups as seen in Table 3. The mid-range group (blue)
had a wider difference in values compared to other groups
for features such as RMSSD, HF Power, and LF Power,
which was not clearly shown in the observations associated

with the ACCF/AHA and ASE/EACVI guidelines. In the
proposed HRVEF guidelines, greater differences in values
were observed for the reduced patients, whereas the patients
with rEF had closer values to the preserved group. How-
ever, patients in the rEF with very low LVEF values as
discussed earlier showed severe symptoms of heart failure
that distinguished them from the preserved patients. The
more discrimination ability of mid-range patients, the less
ambiguity there is in the classification of such patients and
the better the treatment and medication process. In addi-
tion, the newly introduced HRVm2EF group was found to
be significantly different at certain time periods, in contrast
to the ACCF/AHA an ASE/EACVI guidelines for LVEF.
This may indicate additional information about high func-
tionality of the heart at specific time periods for specific
patients [64]. Lastly, to elaborate on the findings of the
ANOVA test relative to Jenks natural breaks, for example,
the RMSSD feature showed significant difference at hour
19:00 (as shown in Table 3) between HFmEF and the other
two categories. Therefore, due to the high variability in this
category, it resulted in observing high GVF when clustering
the groups using Jenks natural breaks algorithm.

It is worth noting that most of the patients included in
this study were male patients from the elderly group who
were smokers in general, however, sex and age discrepancies
disappeared in an extensive study in [65], and is also less
apparent during sleep periods and rather more dependent on
type of HRV feature. In addition, smoking mainly influences
high frequency (HF-HRV) portion of HRV, but not the LF/HF
balance and more within a short time frame (10 minutes)
following smoking [66], [67].

V. STUDY LIMITATIONS
Although this study shows strong association between LVEF
categories and HRV features at certain time periods, it has
a number of shortcomings. The majority of the subjects
included in this study were male with mean age of 56 years
old. Therefore, future studies may apply additional inves-
tigations on the efficacy of HRV categorization of LVEF
groups on a more evenly distributed dataset between male
and female subjects, as older male subjects were often found
more prone to sleep apnea that slightly affects HRV param-
eters [68]. In addition, while the algorithm was efficient in
identifying two, three, and four LVEF categories using hourly
HRV features, it should be noted that most of the patients
may have taken medications, including beta blockers, anti-
arrhythmics, and diuretics, which may affect the autonomic
control system. Thus, even thoughmedicationsmay influence
HRV and LVEF, further analysis are still required for future
studies to address the effect of medications on the distribu-
tion of LVEF categories using HRV features. Furthermore,
the proposed approach to categorize patients with accordance
to their LVEF levels showed high levels of performance
(accuracy ≥ 0.70) at specific hours in the day/night cycles,
however, the predictive accuracy of these estimations needs to
be validated on a larger cohort of patients under a longitudinal
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follow up study. On the technical part, despite of the suc-
cessfulness of the imputation techniques used in this study,
especially RF, further analysis on actual HRV feature val-
ues are required to strengthen the observations. In addition,
even though Jenks algorithm was simple, yet efficient, future
studies may consider the use of other clustering techniques
when applied on HRV features to formHRVEF groups. Thus,
providing a wider insight on the usefulness of HRV indices
in providing multi-time estimations of LVEF through com-
puterized algorithms. Lastly, future works may also consider
providing a complete study over the expenses related to ECG
Holter tests to compare with echocardiography for frequent
clinical tests. It is usually estimated that a Holter test ranges
from 299 USD to 355 USD and an echocardiogram varied
from 210 USD to 1830 USD, which may or may not include
the cost for the interpretation by the cardiologist [69].

VI. CONCLUSION
This study demonstrated the strong association between
LVEF and HRV features by using Jenks natural breaks.
It suggests HRV as a promising multi-time tool or frame-
work in estimating LVEF levels in CAD patients as well as
as a supplementary tool to current echocardiography-based
measurements.
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