
Received September 14, 2021, accepted September 15, 2021, date of publication September 20, 2021,
date of current version September 29, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3113988

NNs-Based Adaptive Control for Genetic
Regulatory Networks With Sensor Faults
BING LÜ1 AND QIKUN SHEN 2
1College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
2College of Information Engineering, Yangzhou University, Yangzhou 225127, China

Corresponding author: Qikun Shen (qkshen@yzu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61873229 and Grant 61473250.

ABSTRACT This article considers an adaptive control problem of genetic regulatory networks, where
unknown sensor faults are considered. By using the function approximation capability of neural networks,
a neural-networks-based gene circuit control method is designed, where the unknown sensor faults are
compensated. Comparing with the existing results where regulatory functions meet known SUM logic,
the regulatory functions considered in this article are unknown and do not satisfy SUM logic. Furthermore,
the fault negative influence on neural network function approximation, which is caused by state sensor
faults, has been compensated. In sense of Lyapunov stability theory, the closed-loop system is asymptotically
bounded and all the signals in the system converge to an adjustable neighborhood of the origin. Finally, some
simulation results are given to show the effectiveness of the design method.

INDEX TERMS Genetic regulatory networks, gene circuit control, adaptive control.

I. INTRODUCTION
Gene regulatory networks (GRNs) have become a hot
research issue in recent years. From the research about GRNs,
the researchers can understand the relationship and influence
among genes in a cell, further understand the cell manner and
find ways to control cell behavior. For the research, the first
task is to model for gene regulation networks (GRNs) [1], [2].
Modeling for GRNs is to construct a mathematical model
for GRNs, which can reflect the relationship and influence
among the genes in a cell. Based on the model, further
research can be made. For example, stability analysis can
be made for GRNs [3], [4]. Further, by using the model,
gene circuit control also can be designed for the GRNs to
obtain suitable function, which is called gene circuit control
design [5]–[7]. In addition, to obtain the values of model
parameters in the GRNs model, various filter design methods
also are proposed for GRNs, which is within the scope of
GRNs identification [8], [9]. However, in most of the exist-
ing results, an assumption should be satisfied, namely, for
a gene, each transcription factor acts additively to regulate
it, and each regulatory function is assumed to sum over all
its inputs. The assumption is called SUM regulatory logic
assumption in literature [1]–[12], [23]. In fact, in a cell,
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GRNs are very complex, and the gene regulatory among
the genes also is complex, which implies that the so-called
SUM regulatory logic does not always hold. The purpose
of SUM regulatory logic maybe to decrease the complexity
and to easily understand the GRNs. That is to say, in some
cases, gene regulatory does not satisfy the SUM logic and
is nonlinear regulatory [17], where the regulatory function is
a nonlinear function about the states of the other genes in a
cell. Note that, in our previous results [17], stability control
design was not considered. Obviously, the control design in
the above literatures [1]–[12] do not suitable for the GRNs
without SUM regulatory logic. Therefore, how to control for
GRNs without SUM regulatory logic is necessary and more
interesting, which is the first motivation of this work.

Sensors including state and output sensors may become
faulty in the practical applications [17]–[20]. Due to the
sensor faults, the precise values of the GRNs’ states cannot
be obtained and further cannot be used in gene circuit control
design, and only the values polluted by the faults can be
applied in the control design. Note that, the values polluted by
the faults will affect not only control accuracy but also control
performance. Thus, to increase control accuracy and perfor-
mance of the GRNs with sensor faults, the faults should be
compensated, and fault-tolerant control (FTC) design should
be proposed. Up to now, to our best knowledge, however,
sensor faults were not considered in most of the results about

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 131033

https://orcid.org/0000-0002-1749-2641
https://orcid.org/0000-0003-3278-9395


B. Lü, Q. Shen: NNs-Based Adaptive Control for Genetic Regulatory Networks With Sensor Faults

GRNs in literature. In fact, for control designing of dynamics
systems including GRNs, state sensor fault compensation and
FTC still is a challenging and open problem, which also
motivates us for this work.

Neural networks (NNs) including radius basic function
neural networks (RBFNNs) [15]–[17], can approximate any
unknown smooth function on a compact set. For example,
for an unknown continuous function f (x) with state vector
x, RBFNNs are used to approximated it. The input layer
contains x, and the final output of the NNs, i.e., f̂ (x, 1), also
is dependent on state vector x. From NNs approximation
theory, we know, on a compact set, f (x)− f̂ (x, 1) is bounded
and f̂ (x, 1) can be seen an approximation of f (x). Note that,
it is via sensors that the signal xa can be obtained by the
designer and used in control designing. That is to say, only
xa, not x, can be using in RBFNNs, which implies that the
NNs final output is f̂ (xa, 1). Obviously, in the fault-free case,
x = xa and f̂ (xa, 1) = f̂ (x, 1). However, in the faulty case,
things have changed a lot, where f̂ (xa, 1) 6= f̂ (x, 1) because
of x 6= xa. It implies that the state sensor faults affect the
final output, further affect the approximation accuracy of the
NNs. Hence, state sensor faults should be compensated when
NNs are used to approximate an unknown smooth function.
However, how to compensate for the sensor faults in NNs
function approximation is necessary and important, which is
a motivation of this work.

In this paper, we consider the gene circuit control design
problem of GRNswithout SUM regulatory logic, and propose
a fault-tolerant gene circuit control method against state sen-
sor faults. Comparing with the existing results in literature,
the following contributions are emphasizing.

(i) Unlike the previous results [1]–[6] where gene regula-
tory logic is SUM logic, the regulatory logic considered in
this paper is not only unknown but also nonlinear;

(ii) Different from [7]–[12] where the gene regulatory
functions are known, the gene regulatory functions consid-
ered in this paper are unknown and will be approximated by
NNs;

(iii) The previous results about GRNs such as [1]–[12]
where state sensor faults are not considered, the faults are
considered and compensated to reduce their negative influ-
ence on NNs’ function approximation.

The rest of this paper is organized as follows. In Section II,
the preliminaries and problem formulation are presented.
Main results are proposed In Section III. Section IV gives
some simulations. Finally, Section V draws the conclusions.

II. MODEL FORMULATION AND PRELIMINARIES
In this section, the GRNs considered in this paper can have
the following form,{

ẋi,m(t) = −aixi,m(t)+ gi(xp(t))+ ui,m
ẋi,p(t) = −cixi,p(t)+ dixi,m(t))+ ui,p,

(1)

where xi,p(t) ∈ R and xi,m(t) ∈ R respectively concentrations
of protein and mRNA of the ith gene; ci > 0 and ai > 0

are degradation rates of protein and mRNA, respectively;
ui,m ∈ R and ui,m ∈ R are the control input signals; di denotes
translation rate, and gi(·) is the feedback regulation of the
protein on the transcription of the ith gene, which is a smooth
function. Notice that, the function gi(·) is unknown.
In this paper, for (1), an equilibrium point is assumed to be

(x∗i,m, x
∗
i,p). Define zi,m = xi,m(t)− x∗i,m and zi,p = xi,p − z∗i,p.

Then, it follows from (1) that{
żi,m(t) = −aizi,m(t)+ fi + ui,m + aix∗i,m
żi,p(t) = −cizi,p(t)+ dizi,m(t)+ ui,p + cix∗i,p,

(2)

where fi = gi(x1,p(t), x2,p(t), · · · , xn,p(t)) − gi(x∗1,p(t)
, x∗2,p(t), · · · , x

∗
n,p(t)).

Let

x∗m = [x∗1,m, x
∗

2,m, · · · , x
∗
n,m]

T ,

x∗p = [x∗1,p, x
∗

2,p, · · · , x
∗
n,p]

T ,

zm = [x1,m, x2,m, · · · , xn,m]T

and

zp = [x1,p, x2,p, · · · , xn,p]T ,

um = [u1,m, u2,m, · · · , un,m]T ,

up = [u1,p, u2,p, · · · , un,p]T ,

then (2) can be rewritten in the following compact form:{
żm = −Azm + f + um + Ax∗m
żp = −Czp + Dzm + up + Cx∗p ,

(3)

where A = diag{a1, · · · , an}, C = diag{c1, · · · , cn},
D = diag{d1, · · · , dn}, f = [f1, · · · , fn]T , x∗m =

[x1,m, · · · , xn,m]T , x∗p = [x1,p, · · · , xn,p]T .
The main task in this paper is to design external control

input signals for the GRNs such that it is stable.
Note that, for convenience, •(t) is abbreviated to • here and

in the following.
From Lyapunov stability theory, we know, if f is known

and the states of each gene in the cell can be precisely
measured without sensor faults or measurement noises, then
um and up can be designed as follows:{

um = Kmzm − f − Ax∗m
up = Kpzp − Dzm − Cx∗p

(4)

where matrices Km ∈ Rn×n and Kp ∈ Rn×n will be designed
later.

Define the following Lyapunov function

V1 =
1
2
(zTmzm + z

T
p zp).

Differentiating V1 with respect to time t , it yields

V̇1 = zTmż+z
T
p ṗzp

= zTm(−Azm + f + um + Ax
∗
m)

+ zTp [−Czp + Dzm + up + Cx
∗
p ].
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Substituting (4) into V̇1, we have

V̇1 = zTm(−Azm + Kmzm)+ z
T
p (−Czy + Kpzp)

= zTm(−A+ Km)zm + z
T
p (−C + Kp)zp. (5)

Obviously, if Km and Kp are designed such that

−A+ Km < 0 and − C + Kp < 0,

then, we have V̇1 < 0, which implies that (3) is stable. This
means that the control objective in this paper is achieved.

However, we investigate a special case in this paper. In the
case, not only f (·) is unknown, but also the states of each
gene cannot be preciselymeasurable because ofmeasurement
noises or sensor faults. That is, the actual values of xi,m and
xi,p cannot be obtained, which implies that zi,m and xi,p also
cannot be obtained. Obviously, all of f (·), xi,m, xi,p, zi,m and
xi,p cannot be used in the control design, which means that
the above control input (4) is not reasonable and cannot be
applied in the practical applications.

In the paper, sensor fault can be described as

xa,i,m = xi,m + bi,m, xa,i,p = xi,p + bi,p (6)

where xa,i,m and xa,i,p are actual observed values, bi,m and bi,p
denote sensor faults, which are unknown but bounded.

Hence, the main task in this paper is, considering uncer-
tainty f (·) and sensor faults, to design an adaptive control laws
um and up such the GRNs are stable. In the control scheme,
the fault negative effect on the control performance will be
overcome by adaptive technique. In addition, neural networks
will be used to approximate the unknown continuous func-
tions, which wiil introduced in the following.

On the other hand, neural networks (NNs) can approximate
any continuous function on a compact set. In this paper, radius
basic function neural networks will be used to approximate
the unknown functions fi (i = 1, 2, · · · , n) in the following
form,

fi(zp) = W ∗Ti ξi(z̄p)+ εi(z̄p)

where z̄p = [zTp , 1]
T , ξi(z̄p) = [ξi,1(z̄p), · · · , ξi,NW (z̄p)]

T ,

ξi,j(z̄p) = exp(−
∑vi

l=1 (zl,p(t)−qj,l )
2

(cj)2
), NW is the number of the

RBFNNs, vi is the dimension of z̄p, ci,j > 0 is the width of
the receptive field, and qj,l ∈ R (j = 1, 2, · · · ,NW ) is the
Gaussian function’s center, W ∗i ∈ RNW is the ideal weight
vector defined as

W ∗i = arg min
W∈�W

[ sup
z∈�p

∣∣∣W T
i ξi(p̄τ )− fi

∣∣∣],
�W = {Wi| ||Wi|| ≤ wi,m},

with a constant wi,m > 0,�p denotes a large enough compact
set, εi denotes the optimal approximation error.
From the results on NNs’ approximation [15], [16],

we know, both of W ∗i and εi(z̄p) are bounded.
Note that, because of sensor faults, zi,p cannot obtained,

and only za,i,p is obtained and used in the control design.

Let the symbol z̄a,p

z̄a,p = (za,1,p, za,2,p, · · · , za,n,p)T

Then, we have

fi = W ∗Ti ξi(z̄p)+ εi(z̄p)

= W ∗Ti ξi(z̄a,p)+W ∗Ti [ξi(z̄p)− ξi(z̄a,p)]+ εi(z̄p)

= W ∗Ti ξi(z̄a,p)+ ef ,i, (7)

where ef ,i = W ∗Ti [ξi(z̄p)− ξi(z̄a,p)]+ εi(z̄p).
It is well known that,W ∗i and εi(z̄p) are bounded. And from

the definition of ξi,j(·), we further know |ξi,j(·)| < 1, which
means that the norm of ξi also is bounded. Thus, ef ,i also is
bounded. That is to say, |ef ,i| ≤ Mf ,i, where Mf ,i > 0 ∈ R is
an unknown constant.

Note that, unknown functions can be tackled via adaptive
manner in other simpler ways [21], [22].

Now, in order to design control inputs, the following
assumptions are introduced.
Assumption 1: There exists an unknown constant

Mf ,i > 0 ∈ R such that |ef ,i| ≤ Mf ,i over a compact set,
for i = 1, 2, · · · , n.
Assumption 2: The sensor faults are bounded, and there

exist two unknown constants b̄i,m and b̄i,p such that
|bi,m| ≤ b̄i,m and |bi,p| ≤ b̄i,p.

III. MAIN RESULTS
In this section, we will derive control inputs for the GRNs (1)
from the Lyapunov stability point of view. In addition, using
adaptive technique, the adaptive laws of sensor fault upper
boundaries also are respectively derived. Finally, a theorem
is given to summarize the main results in this paper.

Let us recall V1 and its time derivative V̇1,

V1 =
1
2
(zTmzm + z

T
p zp),

V̇1 = zTm(−Azm + f + um + Ax
∗
m)

+ zTp [−Czp + Dzm + up + Cx
∗
p ].

Since fi(·) is unknown, RBFNNs are used to approximate
it. Since the actual values of the states cannot be obtained
because of sensor faults, as doing in (7), fi(·) can be approxi-
mated by NNs as follows:

fi(zp) = W ∗Ti ξi(z̄a,p)+ ef ,i.

Hence, unknown function vector f (zp) can be described as
follows:

f (zp) = [f1(zp), f2(zp), · · · , fn(zp)]T

= [W ∗T1 ξ1(z̄a,p),W ∗T2 ξ2(z̄a,p), · · · ,W ∗Tn ξn(z̄a,p)]T

+ [ef ,1(z̄a,p), ef ,2(z̄a,p), · · · , ef ,n(z̄a,p)]T

= W ∗T ξ (z̄a,p)+ e(z̄a,p) (8)

where

W T
= diag{W ∗T1 ,W ∗T2 , · · · ,W ∗Tn }

ξ (·) = [ξT1 (·), ξ
T
2 (·), · · · , ξ

T
n (·)]

T

e(z̄a,p) = [ef ,1(z̄a,p), ef ,2(z̄a,p), · · · , ef ,n(z̄a,p)]T
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Substituting (8) into V̇1, we have

V̇1 = zTm[−Azm +W
∗T ξ (·)+ e(·)+ um]

+ zTp [−Czp + Dzm + up] (9)

Define control input um as follows:

um = Km(za,m − b̂m)− Ŵ T ξ (·)− sgn(za,m)M̂f − Ax∗m,

(10)

where

sgn(za,m) = diag{sgn(za,i,p), sgn(za,2,p), · · · , sgn(za,n,p)}

M̂f = [M̂f ,1, M̂f ,2, · · · , M̂f ,n]T

b̂m = [b̂1,m, · · · , b̂n,m]T

Km = diag{k1,m, · · · , kn,m}

with design parameter ki,m < 0 is a design parameter, b̂1,m
and M̂f ,i respectively the estimations of bi,m and Mf ,i, i =
1, 2, · · · , n.
Now, substituting um into the first term of (9), it yields

zTm[−Azm +W
∗T ξ (·)+ e(·)+ um + Ax∗m]

= −zTmAzm + z
T
mW
∗T ξ (·)+ zTme(·)+ z

T
mum

≤ −zTmAzm + z
T
mW
∗T ξ (·)+ |zm|TMf + zTmum

≤ −zTmAzm + z
T
mW
∗T ξ (·)+ |za,m|TMf + bTmMf + zTmum

= −zTmAzm + z
T
mW
∗T ξ (·)+ |za,m|TMf + bTmMf

+ zTm[Km(za,m − b̂m)− Ŵ
T ξ (·)− sgn(za,m)M̂f ] (11)

where |za,m| = [|za,1,m|, · · · , |za,m|], W̃ = W ∗ − Ŵ
and M̃f = Mf − M̂f , e = [ef ,1, ef ,2, · · · , ef ,n]T with
ef ,i = W ∗Ti [ξi(·) − ξi(z̄p)] + εi(z̄a,p). where sgn(za,m) =
diag{sgn(za,1,m), · · · , sgn(za,n,m)}, |e| = [|ei,f , · · · , |en,f ]T ,
M̃f = M∗f − Ŵf , the property M̂i,f ) > 0 is used, which is
ensured bt the adaptive laws ().

In the following, we will analyze the terms in (11), respec-
tively.

Since

za,i,m = zi,m − bi,m,

za,m = [za,1,m, · · · , za,n,m]T , b = [bi,m, · · · , bn,m]T ,

we have

za,m = zm − bm,

Further, we have

zTm(−Azm + Kmza,m − Kmb̂m)

= zTm(−Azm + Kmzm + Kmbm − Kmb̂m)

= −zTm(A− Km)zm + z
T
mKmb̃m

= −zTm(A− Km)zm + (zTa,m − b
T
m)Kmb̃m

= −zTm(A− Km)zm + z
T
a,mKmb̃m − b

T
mKmb̃m (12)

From Young’s Inequality, we have

zTm(−Azm + Kmza,m − Kmb̂m)

= −zTm(A− Km)zm + z
T
a,mKmb̃m − b

T
mKmb̃m

≤ −zTm(A− Km)zm + z
T
a,mKmb̃m

+
η1

2
b̃TmK

T
mKmb̃m +

1
2η1

bTmbm (13)

where η1 > 0 is a design parameter, and b̃m = bm − b̂m.
Though simple calculation and from Young’s Inequality,

we have

zTm(W
∗T ξ − Ŵ T ξ ) = zTmW̃ ξ

= (zTa,m−b
T
m)W̃ ξ

= zTa,mW̃ ξ − b
T
mW̃ ξ

≤ zTa,mW̃ ξ +
η2

2
ξT W̃ T W̃ ξ +

1
2η2

bTmbm

≤ zTa,mW̃ ξ +
η2

2
W̃ T ξT ξW̃ +

1
2η2

bTmbm (14)

where η2 > 0 is a design parameter, and W̃ = W ∗ − Ŵ .
From the definition of ξi,j in Section II, we known,
|ξi,j| ≤ 1, j = 1, · · · ,NW , i = 1, · · · , n, then we have

ξT ξ ≤ nNW ,

where NW > 0 is the node number of NNs. Thus, (14) can be
developed as

zTm(W
∗T ξ − Ŵ T ξ ) = zTmW̃ ξ

≤ zTa,mW̃ ξ +
η2

2
W̃ T ξT ξW̃ +

1
2η2

bTmbm

≤ zTa,mW̃ ξ +
η2nNW

2
W̃ T W̃ +

1
2η2

bTmbm (15)

By similar analysis, we have

|za,m|TMf + bTmMf − zTmsgn(za,mM̂f )

= zTa,msgn(za,m)Mf − zTa,msgn(za,m)M̂f + bTmMf

= zTa,msgn(za,m)M̃f + bTmMf + bTmM̂f (16)

Since

bTmMf ≤
η3

2
bTmbm +

1
2η3

MT
f Mf (17)

we have

bTmM̂f = bTm(Mf − M̃f ) = bTmMf − bTmM̃f

≤
η4

2
bTmbm +

1
2η4

MT
f Mf

+
η5

2
bTmbm +

1
2η5

M̃T
f M̃f (18)

where η3 > 0, η4 > 0 and η5 > 0 respectively design
parameters.

Substituting (17) and (18) into (16), we have

|za,m|TMf + bTmMf − zTmsgn(za,mM̂f )

≤ zTa,msgn(za,m)M̃f

+
η3 + η4 + η6

2
bTmbm + (

1
2η3
+

1
2η4

)MT
f Mf

+
1
2η5

M̃T
f M̃f (19)

131036 VOLUME 9, 2021



B. Lü, Q. Shen: NNs-Based Adaptive Control for Genetic Regulatory Networks With Sensor Faults

Substituting (13), (15) and (19) into (11), we have

zTm[−Azm +W
∗T ξ (·)+ e(·)+ um + Ax∗m]

≤ −zTm(A− Km)zm + z
T
a,mKmb̃m

+
η1

2
b̃TmK

T
mKmb̃m +

1
2η1

bTmbm

+ zTa,mW̃ ξ +
η2nNW

2
W̃ T W̃ +

1
2η2

bTmbm

+ zTa,msgn(za,m)M̃f +
η3 + η4 + η6

2
bTmbm

+ (
1
2η3
+

1
2η4

)MT
f Mf +

1
2η5

M̃T
f M̃f (20)

Re-ranging (20), it yields

zTm[−Azm +W
∗T ξ (·)+ e(·)+ um + Ax∗m]

≤ −zTm(A− Km)zm
+ zTa,m(Kmb̃m + W̃ ξ + sgn(za,m)M̃f )

×
η1

2
b̃TmK

T
mKmb̃m +

η2nNW
2

W̃ T W̃ +
1
2η5

M̃T
f M̃f

+ ηbmbTmbm + ηmMfM
T
f Mf (21)

where

ηbm =
1
2η1
+

1
2η2
+
η3 + η4 + η6

2
(22)

and

ηmMf = (
1
2η3
+

1
2η4

). (23)

Define up as follows:

up =Kp(za,p − b̂p)− D(za,m − b̂m)− Cx∗p . (24)

where b̂p = [b̂1,p, b̂2,p, · · · , b̂n,p]T , which is an estimate of
bp, bp = [b1,p, b2,p, · · · , bn,p]T , b̂i,p is an estimate of bi,p,
Kp = diag{k1,p, k2,p, · · · , kn,p}, ki,p < 0 (i − 1, · · · , n) is a
design parameter.

Now, let us consider the term zTp (−Czp+Dzm+ up−Cx
∗
p )

in (9). Substituting (24) into it, we have

zTp [−Czp + Dzm + up − Cx
∗
p ]

= −zTpCzp + z
T
pDzm

+ zTpKpza,p − z
T
pKpb̂p − z

T
pDza,m + z

T
pDb̂m

= −zTpCzp + z
T
pDzm + z

T
pKpzp + z

T
pKpbp

− zTpKpb̂p − z
T
pDzm + z

T
pDbm − z

T
pDb̂m

= −zTp (C − Kp)zp + z
T
pKpb̃p + z

T
pDb̃m (25)

where b̃m = bm − b̂m and b̃p = bp − b̂p.
Note that,

zTpKpb̃p = zTa,pKpb̃p − b
T
pKpb̃p

≤ zTa,pKpb̃p +
1
2γ1

b̃TpKpK
T
p b̃p +

γ1

2
bTp b

T
p (26)

where γ1 > 0 is a design parameter, and

zTpDb̃m = zTa,pDb̃m − b
T
mDb̃m

≤ zTa,pDb̃m +
1
2γ2

b̃TmDD
T b̃m +

γ2

2
bTmb

T
m (27)

where γ2 > 0 is a design parameter.
Substituting (26) and (27) into (25), we have

zTp [−Czp + Dzm + up]

= −zTp (C − Kp)zp + z
T
pKpb̃p + z

T
pDb̃m

≤ −zTp (C − Kp)zp + z
T
a,pKpb̃p + z

T
a,pDb̃m

+
1
2γ1

b̃TpKpK
T
p b̃p +

γ1

2
bTp b

T
p

+
1
2γ2

b̃TmDD
T b̃m +

γ2

2
bTmb

T
m (28)

Further, substituting (21) and (28) into (9), we have

V̇1 ≤ −zTm(A− Km)zm
+ zTa,m(Kmb̃m + W̃ ξ + sgn(za,m)M̃f )

×
η1

2
b̃TmK

T
mKmb̃m +

η2nNW
2

W̃ T W̃

+
1
2η5

M̃T
f M̃f + ηbmbTmbm + ηmMfM

T
f Mf

− zTp (C − Kp)zp + z
T
a,pKpb̃p + z

T
a,pDb̃m

+
1
2γ1

b̃TpKpK
T
p b̃p +

γ1

2
bTp b

T
p

+
1
2γ2

b̃TmDD
T b̃m +

γ2

2
bTmb

T
m (29)

Re-ranging (29), we have

V̇1 ≤ −zTm(A− Km)zm − z
T
p (C − Kp)zp

+ zTa,m(Kmb̃m + W̃ ξ + sgn(za,m)M̃f )

+ zTa,p(Kpb̃p + Db̃m)

+ b̃Tm(
η1

2
KT
mKm +

1
2γ2

DDT )b̃m +
1
2η5

M̃T
f M̃f

+
1
2γ1

b̃TpKpK
T
p b̃p +

η2nNW
2

W̃ T W̃

+ (ηbm +
γ2

2
)bTmbm + ηmMfM

T
f Mf +

γ1

2
bTp b

T
p (30)

Define Lyapunov function

V2 = V1 +
1

2βW
W̃ T W̃ +

1
2βM

M̃T
f M̃f

+
1

2βm
b̃Tmb̃m +

1
2βp

b̃Tp b̃p (31)

where βW > 0, βM > 0, βm > 0 and βp > 0 are design
parameters, respectively.

Differentiating V2 with respect to time t , we have

V̇2 = V̇1 −
1
βW

W̃ T ˙̂W −
1
βM

M̃T
f
˙̂Mf

−
1
βm

b̃Tm
˙̂bm −

1
βp
b̃Tp
˙̂bp (32)
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Substituting (30) into (32), we have

V̇2 ≤ −zTm(A− Km)zm − z
T
p (C − Kp)zp

+ b̃Tm[(Kmza,m + Dza,p)
T
−

1
βm

˙̂bm]

+ W̃ T (ξza,m −
1
βW

˙̂W )

+ M̃T
f (sgn(za,m)za,m −

1
βM

˙̂Mf )

+ b̃p(KpzTa,p −
1
βp

˙̂bp)

+ b̃Tm(
η1

2
KT
mKm +

1
2γ2

DDT )b̃m +
1
2η5

M̃T
f M̃f

+
1
2γ1

b̃TpKpK
T
p b̃p +

η2nNW
2

W̃ T W̃

+ (ηbm +
γ2

2
)bTmbm + ηmMfM

T
f Mf +

γ1

2
bTp b

T
p (33)

Define the following adaptive laws as follows:

˙̂bm = βm(Kmza,m + Dza,p)T − κmb̂m (34)
˙̂W = βW ξza,m − κW Ŵ (35)
˙̂Mf = βM sgn(za,m)za,m − κM M̂f (36)
˙̂bp = βpKpzTa,p − κpb̂p (37)

where κm > 0, κW > 0, κM > 0 and κp > 0 are design
parameters, respectively.

Substituting the adaptive laws (34)-(37) into (33), it yields

V̇2 ≤ −zTm(A− Km)zm − z
T
p (C − Kp)zp

+
κm

βm
b̃Tmb̂m +

κW

βW
W̃ T Ŵ +

κM

βM
M̃T
f M̂f +

κp

βp
b̃pb̂p

+ b̃Tm(
η1

2
KT
mKm +

1
2γ2

DDT )b̃m +
1
2η5

M̃T
f M̃f

+
1
2γ1

b̃TpKpK
T
p b̃p +

η2nNW
2

W̃ T W̃

+ (ηbm +
γ2

2
)bTmbm + ηmMfM

T
f Mf +

γ1

2
bTp b

T
p (38)

From Young’s inequality, we have

κW

βW
W̃ T Ŵ ≤ −

κW

2βW
W̃ T W̃ +

κW

2βW
W ∗TW ∗. (39)

By the similar analysis, we also have

κM

βM
M̃f M̂f ≤ −

κM

2βM
M̃T
f M̃f +

κM

2βM
MT
f M

T , (40)

κm

βm
b̃Tmb̂m ≤ −

κm

βm
b̃Tmb̃m +

κm

βm
bTmbm, (41)

κp

βp
b̃Tp b̂p ≤ −

κp

βp
b̃Tp b̃p +

κp

βp
bTp bp. (42)

Substituting (39)-(42) into (38), we further have

V̇2 ≤ −zTm(A− Km)zm − z
T
p (C − Kp)zp

− (
κW

2βW
−
η2nNW

2
)W̃ T W̃

− (
κM

2βM
−

1
2η5

)M̃T
f M̃f

− b̃Tm(
κm

βm
I −

η1

2
KT
mKm +

1
2γ2

DDT )b̃m

− (
κp

βp
−

1
2γ1

)b̃Tp b̃p

+
κW

2βW
W ∗TW ∗

+ (
κM

2βM
+ ηmMf )MT

f

+ (
κm

βm
+ ηbm +

γ2

2
)bTmbm

+ (
κp

βp
+
γ1

2
)bTp b

T
p (43)

By the design parameters are chosen suitably, we can
obtain

λW =
κW

2βW
−
η2nNW

2
< 0

λM =
κM

2βM
−

1
2η5

< 0

3m =
κm

βm
I −

η1

2
KT
mKm +

1
2γ2

DDT < 0

λp =
κp

βp
−

1
2γ1

< 0 (44)

Then, (43) can be re-written as

V̇2 ≤ −zTm(A− Km)zm − z
T
p (C − Kp)zp

− λW W̃ T W̃ − λM M̃T
f M̃f

− b̃Tm3mb̃m − λpb̃Tp b̃p + µ ≤ −λV2 + µ (45)

where

λ = min{λW , λM , λp, λm,
1
βW

,
1
βM

,
1
βm
,
1
βp
}

λm = min{σmin(A− Km), σmin(C − Kp), σmin(3m)}

µ =
κW

2βW
W ∗TW ∗ + (

κM

2βM
+ ηmMf )MT

f

+ (
κm

βm
+ ηbm +

γ2

2
)bTmbm + (

κp

βp
+
γ1

2
)bTp b

T
p (46)

and the symbol σmin(•) denotes the minimum eigenvalue of
matrix •.
From (45) and the definition of V2, it can be seen that,

if V2 ≥
µ
λ
, then V̇2 < 0. Thus, all the signals in the closed-

loop system are uniformly bounded, namely,

||zm|| ≤

√
2µ
λ
, ||zp|| ≤

√
2µ
λ
, ||M̃f || ≤

√
2βMµ
λ

,

||W̃ || ≤

√
2βWµ
λ

, ||b̃m|| ≤

√
2βmµ
λ

, ||b̃p|| ≤

√
2βpµ
λ

.

(47)
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which implies that all closed-loop signals converge to an
invariant compact set � defined as

�

=





zm,

zp,

M̃f ,

W̃ ,

b̃m,

b̃p



∣∣∣∣∣∣∣∣∣∣∣∣∣


||zm|| ≤

√
2µ
λ
, ||zp|| ≤

√
2µ
λ
,

||W || ≤

√
2βWµ
λ

, ||M̃f || ≤

√
2βMµ
λ

,

||b̃p|| ≤

√
2βmµ
λ

, ||b̃m|| ≤

√
2βpµ
λ




.

Now, let us propose the following theorem to summarize
the analysis.
Theorem 1: Consider the GRNs (1) with Assumptions

1 and 2. If control inputs (10), (24) and adaptive laws
(34)-(37) are adopted, then, (3) is asymptotically stable, all
the signals in the closed-loop system are bounded and con-
verge to an adjustable compact set �.

Proof: From the above analysis, it is easy to obtain the
result. the detailed proof is omitted here.

IV. SIMULATION RESULTS
In this section, let us consider the following GRNs, which
contains three genes,{

ẋ1,m(t) = −3.4 x1,m + f1(x1,m(t), x2,m(t), x3,m(t))
ẋ1,p(t) = 0.9x1,p + 0.3x1,m(t){
ẋ2,m(t) = −3.6x2,m + f2(x1,m(t), x2,m(t), x3,m(t))
ẋ2,p(t) = 0.8x2,p + 0.2x2,m(t){
ẋ3,m(t) = −3x3,m + f3(x1,m(t), x2,m(t), x3,m(t))
ẋ3,p(t) = 0.7x3,p + 0.35x3,m(t)

where unknown gene regulatory functions have the following
forms

f1(·) = −0.125
x23,p(t)

1+ x23,p(t)
,

f2(·) = −0.126 x1,p(t)x3,p(t),

f3(·) = −0.127
x21,p(t)

1+ x21,p(t)
.

As doing in (2), the above GRNs can be re-written as{
ẋm(t) = −Axm(t)+ f
ẋm(t) = −Cxp(t)+ Dxm(t),

where xm = [x1,m, x2,m, x3,m]T , xp = [x1,p, x2,p, x3,p]T ,
f = [f1, f2, f3]T ,

A =

 3.4 0 0
0 3.6 0
0 0 3

 ,
C =

 0.9 0 0
0 0.8 0
0 0 0.7



FIGURE 1. The states xm.

FIGURE 2. The states xp.

D =

 0.3 0 0
0 0.2 0
0 0 0.35

 .
Adding control inputs ux ∈ Rn and uy ∈ Rn to the above

equation, then we have{
ẋm(t) = −Axm(t)+ f + um
ẋm(t) = −Cxp(t)+ Dxm(t)+ up,

where um = [u1,m, u2,m, u3,m]T and up = [u1,p, u2,p, u3,p]T .
In this paper, sensor faults are set as follows: b1,m =

0.1 sin(x1,m), b2,m = 0.1 sin(x2,m), b3,m = 0.1 sin(x3,m),
b1,p = 0.1 cos(x1,p), b2,p = 0.1 cos(x2,p), b3,p =

0.1 cos(x3,p).
The initial states are set as: xm(0) = [0.15, 0.20, 0.25]T ,

xp(0) = [0.15, 0.20, 0.25]T . Weight vector Ŵi ∈ R10,
i = 1, 2, 3 are taken randomly in interval (0, 1]. The design
parameters are set as follows: βl = 10, l = W ,M ,m, p,
ηd = 0.1, d = 1, 2, 3, 4, 5, κm = κW = κM = κp = 0.15.
In this simulation, it is assumed that equilibrium point is the
origin. In this simulation, the sample time is 0.08s.

Simulation results are given in Fig.1-4. Figures 1 and 2.
clearly show that x1,m, x2,m, x3,m, x1,p, x2,p and x3,p can
asymptotically converge to the adjustable neighborhood of
the origin. Figures 1 and 2 further show that, by using the
fault-tolerant control inputs (10) and (24) with the adaptive
laws (34)-(37), the GRNs are asymptotical stable and the
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FIGURE 3. The states xm.

FIGURE 4. The states xp.

FIGURE 5. The states xm.

states of the GRNs asymptotically converge to the adjustable
neighborhood of the origin.

However, if the faults are not consider and compensated
in control design, namely, there are not fault compensation
terms in (10) and (24), the situation will change greatly. From
Figures 3 and 4, we find, the states of the GRNs do not
asymptotically converge to the adjustable neighborhood of
the origin, which means that the control objective defined in
Section II is not obtained.

In order to further show the effectiveness of the con-
trol design in this paper, according to the previous
works [17], [28]–[30], another control design is applied. The
simulation results can be given in Figures 5 and 6. From
Figures 5 and 6, we find, if the faults exist in sensors and fault
have not been compensated in control design, the states are

FIGURE 6. The states xp.

divergent, and the trajectories of the states cannot converge to
the origin. From the above simulation results, the presented
control strategy in this paper works very effectively.

V. CONCLUSION
In this paper, the gene circuit control design is studied for the
GRNswith nonlinear gene regulatory logic, which are subject
to sensor faults. based on neural networks, a control method is
presented. In the method, the unknown gene regulatory func-
tions are approximated by neural networks, and the unknown
sensor faults are compensated. Simulation results show that
the proposed method is effective.

REFERENCES
[1] S. Ben-Tabou and E. H. Davidson, ‘‘Modeling the dynamics of transcrip-

tional gene regulatory networks for animal development,’’ Develop. Biol.,
vol. 325, no. 2, pp. 317–328, Jan. 2009.

[2] Z. Yu, H. Chen, J. You, J. Liu, H.-S. Wong, G. Han, and L. Li, ‘‘Adaptive
fuzzy consensus clustering framework for clustering analysis of cancer
data,’’ IEEE/ACMTrans. Comput. Biol. Bioinf., vol. 12, no. 3, pp. 568–582,
Jul./Aug. 2015.

[3] L. Chen and K. Aihara, ‘‘Stability of genetic regulatory networks with time
delay,’’ IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 49, no. 5,
pp. 602–608, May 2014.

[4] C. Li, L. Chen, and K. Aihara, ‘‘Stability of genetic networks with SUM
regulatory logic: Lur’e system and LMI approach,’’ IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 53, no. 11, pp. 2451–2458, Nov. 2006.

[5] S. Zhan, J. F. Miller, and A. M. Tyrrell, ‘‘An evolutionary system using
development and artificial genetic regulatory networks for electronic cir-
cuit design,’’ Biosystems, vol. 98, no. 3, pp. 176–192, Dec. 2009.

[6] F. Menolascina, M. di Bernardo, and D. di Bernardo, ‘‘Analysis, design
and implementation of a novel scheme for in-vivo control of synthetic
gene regulatory networks,’’ Automatica, vol. 47, no. 6, pp. 1265–1270,
Jun. 2011.

[7] P. Rué and J. Garcia-Ojalvo, ‘‘Gene circuit designs for noisy excitable
dynamics,’’ Math. Biosci., vol. 231, no. 1, pp. 90–97, May 2011.

[8] B.-S. Chen and W.-S. Wu, ‘‘Robust filtering circuit design for stochastic
gene networks under intrinsic and extrinsic molecular noises,’’ Math.
Biosci., vol. 211, no. 2, pp. 342–355, Feb. 2008.

[9] H. Jiao, M. Shi, Q. K. Shen, J. Zhu, and P. Shi, ‘‘Filter design with
adaptation to time-delay parameters for genetic regulatory networks,’’
IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 15, no. 1, pp. 323–328, 2018.

[10] L. Li and Y. Yang, ‘‘On sampled-data control for stabilization of genetic
regulatory networks with leakage delays,’’ Neurocomputing, vol. 149,
pp. 1225–1231, Feb. 2015.

[11] W. Pan, Z. Wang, H. Gao, Y. Li, and M. Du, ‘‘On multistability of
delayed genetic regulatory networks with multivariable regulation func-
tions,’’ Math. Biosci., vol. 228, no. 1, pp. 100–109, 2010.

[12] H. Moradi and V. J. Majd, ‘‘Robust control of uncertain nonlinear switched
genetic regulatory networks with time delays: A redesign approach,’’Math.
Biosci., vol. 275, pp. 10–17, May 2016.

131040 VOLUME 9, 2021



B. Lü, Q. Shen: NNs-Based Adaptive Control for Genetic Regulatory Networks With Sensor Faults

[13] Y. Sun, G. Feng, and J. Cao, ‘‘A new approach to dynamic fuzzy modeling
of genetic regulatory networks,’’ IEEE Trans. Nanobiosci., vol. 9, no. 4,
pp. 263–272, Dec. 2010.

[14] E. Klipp, R. Herwig, A. Kowald, C. Wierling, H.Lehrach, Systems Biology
in Practice: Concepts, Implementation and Application. Hoboken, NJ,
USA: Wiley, 2008.

[15] Q. Shen, P. Shi, T. Zhang, and C.-C. Lim, ‘‘Novel neural control for a class
of uncertain pure-feedback systems,’’ IEEE Trans. Neural Netw. Learn.
Syst., vol. 25, no. 4, pp. 718–727, Apr. 2014.

[16] Q. Shen, P. Shi, J. Zhu, S. Wang, and Y. Shi, ‘‘Neural networks based dis-
tributed adaptive control of nonlinear multi-agent systems,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 31, no. 3, pp. 1010–1021, Mar. 2020.

[17] H. Jiao, L. Zhang, Q. Shen, J. Zhu, and P. Shi, ‘‘Robust gene circuit
control design for time-delayed genetic regulatory networks without SUM
regulatory logic,’’ IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 15, no. 6,
pp. 2086–2093, Nov. 2018.

[18] Q. Shen, P. Shi, R. K. Agarwal, and Y. Shi, ‘‘Adaptive neural network-
based filter design for nonlinear systems with multiple constraints,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 32, no. 7, pp. 3256–3261, Jul. 2021.

[19] Q. Fu, Q. Shen, and Z. Jia, ‘‘Cooperative adaptive tracking control for
unknown nonlinear multi-agent systems with signal transmission faults,’’
Circuits, Syst., Signal Process., vol. 39, no. 3, pp. 1335–1352, Mar. 2020.

[20] Q. Shen, B. Jiang, and V. Cocquempot, ‘‘Fuzzy logic system-based adap-
tive fault-tolerant control for near-space vehicle attitude dynamics with
actuator faults,’’ IEEE Trans. Fuzzy Syst., vol. 21, no. 2, pp. 289–300,
Apr. 2013.

[21] S. Roy, S. Baldi, and L. M. Fridman, ‘‘On adaptive sliding mode control
without a priori bounded uncertainty,’’ Automatica, vol. 111, Jan. 2020,
Art. no. 108650, doi: 10.1016/j.automatica.2019.108650.

[22] S. Roy, J. Lee, and S. Baldi, ‘‘A new adaptive-robust design for time delay
control under state-dependent stability condition,’’ IEEE Trans. Control
Syst. Technol., vol. 29, no. 1, pp. 420–427, Jan. 2021.

[23] L. Wu, K. Liu, J. Lü, and H. Gu, ‘‘Finite-time adaptive stability of gene
regulatory networks,’’ Neurocomputing, vol. 338, pp. 222–232, Apr. 2019.

[24] W. Qi, G. Zong, and F. Shun Su, ‘‘Fault detection for semi-Markov switch-
ing systems in the presence of positivity constraints,’’ IEEE Trans. Cybern.,
early access, Aug. 3, 2021, doi: 10.1109/TCYB.2021.3096948.

[25] W. Qi, G. Zong, and W. X. Zheng, ‘‘Adaptive event-triggered SMC for
stochastic switching systems with semi-Markov process and application to
boost converter circuit model,’’ IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 68, no. 2, pp. 786–796, Feb. 2021.

[26] W. Qi, Y. Hou, G. Zong, and C. K. Ahn, ‘‘Finite-time event-triggered
control for semi-Markovian switching cyber-physical systems with FDI
attacks and applications,’’ IEEETrans. Circuits Syst. I, Reg. Papers, vol. 68,
no. 6, pp. 2665–2674, Jun. 2021.

[27] Y. Jin, W. Qi, and G. Zong, ‘‘Finite-time synchronization of delayed
semi-Markov neural networks with dynamic event-triggered scheme,’’ Int.
J. Control, Autom. Syst., vol. 19, no. 6, pp. 2297–2308, Jun. 2021.

[28] X. Zhang, Z. Zhang, Y. Wang, and C. Liu, ‘‘Guaranteed cost con-
trol of genetic regulatory networks with multiple time-varying discrete
delays and multiple constant distributed delays,’’ IEEE Access, vol. 8,
pp. 80175–80182, 2020.

[29] Y. Xie, L. Xiao, L. Wang, and G. Wang, ‘‘Algebraic stability criteria of
reaction diffusion genetic regulatory networks with discrete and distributed
delays,’’ IEEE Access, vol. 9, pp. 16410–16418, 2021.

[30] L. Zhang, X. Zhang, Y. Xue, and X. Zhang, ‘‘New method to global
exponential stability analysis for switched genetic regulatory networks
with mixed delays,’’ IEEE Trans. Nanobiosci., vol. 19, no. 2, pp. 308–314,
Apr. 2020.

BING LÜ received the B.Sc. degree in agronomy,
the M.Sc. degree in plant physiology, and the
Ph.D. degree in crop genetics and breeding from
Yangzhou University, Yangzhou, China, in 1996,
1999, and 2007, respectively. She is currently
an Associate Professor with the College of Bio-
science and Biotechnology, Yangzhou University.
Her research interests include signal transduction,
stress physiology, and growth and development
physiology in plants.

QIKUN SHEN received the B.Sc. degree in com-
puter science and applications from the Chinese
University of Mining and Technology, Xuzhou,
China, in 1996, the M.Sc. degree in computer
science and applications from Yangzhou Univer-
sity, Yangzhou, China, in 2007, and the Ph.D.
degree in control theory and control engineer-
ing from Nanjing University of Aeronautics and
Astronautics, China, in 2015.

He is currently a Professor with the College
of Information Engineering, Yangzhou University. His research interests
include distributed control, consensus control, fault-tolerant control, adap-
tive control, fuzzy control, neural networks-based control, and intelligent
control.

VOLUME 9, 2021 131041

http://dx.doi.org/10.1016/j.automatica.2019.108650
http://dx.doi.org/10.1109/TCYB.2021.3096948

