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ABSTRACT This study provides a new development regarding uncertainty and disturbance estima-
tion (UDE) based on fixed-time sliding mode control (FTSMC) for the secure communication of electronic
circuits in a chaos-based system. Takagi-Sugeno (T-S) fuzzy systems were used to remodel chaotic systems
with the aim of softening the control design for the synchronization of the chaos-based system. The master
and slave systems of the secure communication system were maintained in chaotic formats. The originality
of the proposed uncertainty and disturbance estimator is a condition associated with the first derivative of
these values being free. The stability of the system was proven by using the Lyapunov condition. The states
of master and slave systems were used for encryption and decryption, respectively. Finally, the correction of
the proposed control theories was verified by MATLAB simulations, the simulation of the electronic circuits
in OrCAD capture software, and experiments involving electronic circuit communication.

INDEX TERMS Disturbance and uncertainty estimation, Takagi-Sugeno fuzzy system, secure communica-
tion, fixed-time sliding mode control.

I. INTRODUCTION
Disturbance observers are well-known as robust control tech-
niques for the suppression of perturbations from outside and
inside of a control system. There is no exception for a secure
communication system (SCS). A disturbance to an SCS may
be passed from the input channels or through variations in
system parameters. Since secure communication based on
chaotic systems first appeared, many practical papers have
dealt with the problem of synchronization control design and
disturbance and uncertainty compensation. Chen et al. [1]
proposed a secure communication structure based on com-
puter communication. In [2], the secure communication of
two nonidentical logic circuits was archived with the sup-
port of a sliding-mode control (SMC) method. The paper
ignored that, when a circuit is implemented in an exper-
iment, changes in the mainboard uncertainties, capacitors,
and resistors always occur. Therefore, a disturbance observer
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for tolerance control techniques is highly recommended. Our
paper [3] proposed the synchronization of two chaotic sys-
tems based on linear matrix inequality and a time-varying
disturbance observer. That paper stopped at the synchroniza-
tion stage. In [4], a secure communication system with the
synthesis of an adaptive disturbance observer (DOB) and
SMC for chaos-based secure communication was proposed.
The correction of the proposed control method was verified
by an experiment involving computer and electronic circuit
communication. The synchronization of the chaotic system
based on the electronic circuits was applied in a radar appli-
cation [5]. The chaos synchronization application in satellite
secure communication was found in [6]. An application of
chaotic systems in image security can be found in [7]–[10].
Implementations of secure communications based on circuits
systems were presented in [11]–[15]. The synchronization of
a network system was reported in [16]–[20]. The concept
of synchronization was used for stable nonlinear bilateral
teleportation manipulators with the support of adaptive fuzzy
backstepping control [21]. The synchronization concept was
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also considered in [22], wherein a radial basic function neural
network was designed to estimate the parameter variation
in a multilateral telerobotic system. To suppress the distur-
bance and uncertainty of synchronization is a complicated
task, and the MSSs are in chaotic formats. This approach
will decrease the difficulty of perturbation estimator design
if the mathematical portions of these master and slave sys-
tems can be changed into the formats of T-S fuzzy systems.
However, the originality characteristic of the synchronization
system is still maintained if the T-S fuzzy model is used to
build a control algorithm while the master and slave systems
have chaotic formats. Notably, the number of control designs
for the secure communication of the T-S fuzzy chaos-based
system is limited. This paper uses the master and slave in
secure communication in chaotic formats. Control design
based on T-S fuzzy systems is used to feed to the control
input channels. After all, the power of the proposed method
is maintained by precisely synchronizing the states of master
and slave systems (MSSs).

The T-S fuzzy system was found in 1985 [23]. The repre-
sentation of T-S fuzzy system modeling methods was investi-
gated by Tanaka and Wang in [24]. The concepts of sector
nonlinearity was briefly introduced. The T-S fuzzy model
consists of fuzzy membership functions and sublinear sys-
tems. The design of control and synchronization for T-S
fuzzy systems was investigated in [25]–[28]. To the best of
our knowledge, the number of investigations of disturbance
observer-based control for T-S fuzzy systems and the syn-
chronization of chaos-based T-S fuzzy systems are limited.
This paper uses the Chen model from [29]. The states of
the original Chen system are out of the range of [−15; 15].
To apply the mathematical mode of the Chen chaotic system
in an electronic circuit is challenging. To solve this prob-
lem, the system states needs to be rescaled. The details of
the rescaled system procedure are given later. The rescaled
system need to meet the characteristics of the original sys-
tem. To obtain the price synchronization of the chaos-based
system, the disturbances and uncertainty must be completely
deleted.

The disturbance observer is well-known as an unknown
input observer that uses the output signal and control input
to construct compensated perturbations. The perturbations
from both inside and outside the system strongly affect the
desired outcomes and directly influence the performance of
the control system. This paper uses the basic concept of the
nonlinear disturbance observer (NDOB) in [30] to construct
a new DOB. The developments of the basic NDOB was
investigated in [31]–[33]. The perturbation observers require
the assumption that the first derivative disturbance is equal
to zero. To soften this assumption, this paper proposes a
new disturbance observer to delete the perturbations from
both sides of the secure communication system without the
condition of the first derivative of perturbations. To correctly
obtain disturbance values, the precision of the control system
is a very important factor. Here, fixed-time sliding-mode
control was proposed for synchronizing the MSS.

SMC is well-known as a nonlinear control technique, and
it consists of equivalent control and switching control. These
control values are used to stabilize the system states on a
sliding surface and force state convergences on a predefined
surface [34]. In [35], a new stochastic sliding mode surface
was introduced as the chattering of the sliding mode control
appearing from the switching control gain and the boundary
layer thickness of the switching function [36]. In [4], an
adaptive law with the integration of tracking error values was
used to update the switching control gain. Fuzzy logic control
was used to regulate the fixed sliding mode surface bound-
ary and reduce the chattering value for an active magnetic
bearing system [37]. An adaptive boundary layer SMC was
proposed in [38]. Chattering can be reduced with a suitable
switching control gain [39]. The SMC in this paper includes
a fixed-time control strategy for the reaching phase and a
finite-time strategy for the sliding phase. All the DOB and
SMC components are used for the secure communication of
chaotic systems. Secure communication operation is based
on the synchronization of the states of MSSs. A sent signal
is encrypted by the state of the master system, and a mixed
signal is transferred to a public line. A mixed signal can be
decrypted by the slave system state. The precision of the
recovery data depends on the precision of synchronization
control.

Some motivations from previous published papers are as
follows: In [2], an SMC was used to synchronize the mas-
ter and slave of a logical element chaotic system, and the
synchronization outcome was good under ideal conditions.
However, the synchronization overshoot and settling times
were still high. Additionally, the disturbance and uncertainty
problem was not considered. In our paper [3], the disturbance
observer was still complicated. In [4], the first-derivative dis-
turbance value was removed under the conditions of sliding-
mode control. These limited problems are solved in a simple
way in this paper. Furthermore, in [40], the synchronization
system was proposed based on feedback control. However,
disturbance suppression was ignored. Motivated by previous
papers, this paper proses a new DOB to solve the problem
of perturbation effects for a synchronization system. Fur-
thermore the fixed-time concept may not be found in elec-
tronic circuits. The special consideration of this paper is the
implementation of a fixed-time strategy by using electronic
circuits, whichwill be introduced from an experimental study.
The calculations of signum functions, and exponential func-
tions can be represented in electronic circuits. The main con-
tributions and novelties of this study are briefly introduced as
follows:
1. In this study, the scale of the Chen system was reduced to

fulfill the request of the electronic circuit voltage ranges.
Then, the chaotic format was converted into the format
of a T-S fuzzy system by using the sector nonlinearity
method. The converted system was used as the control
design implementation. The MSSs are maintained in the
form of chaotic systems. This contribution is a suggestion
for the applications of a recalled chaotic system in the
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secure communication design and in the chaos control
theory field.

2. The effects of perturbations from outside and inside of a
secure communication systemwere softened by a new dis-
turbance observer to obtain the precision synchronization
goal. The disturbance observer in this paper is developed
based on the DOB in a previously published study [30].
However, the problem of first derivative disturbance value
conjunction is solved completely. The contribution of the
solving problem of the boundary of the first derivative
disturbance will open a direction for the application of
the improved DOB method in other control systems. The
proposed disturbance observer in this paper is first present
for the basic nonlinear systems before it is implemented
in a real synchronization system. This effort provides an
overview of the application of the proposed DOB for
nonlinear systems.

3. To synchronize the MSS, a fixed-time sliding-mode con-
trol was introduced in the secure communication system.
Herein, the fixed-time concept is newly implemented in
electronic circuits. This is a new suggestion for fixed-
time control-based hardware implementation. The origi-
nality of the proposed fixed-time function is represented
by the simple function of sign(sδ), which is simpler
and effective in both a small and big initial state. This
contribution is aimed to give a direction to the optimal
fixed-time control method for themicromovement control
system.

4. To verify that the proposed control theories are effec-
tive for secure communication in chaos-based systems in
implementation and theory, the Lyapunov condition was
chosen to solve the stability problem. All the theories
were verified by MATLAB simulations, OrCAD Cap-
ture simulations, and experimental studies of electronic
circuits.

Note that the T-S fuzzy model was used for control design
so that the method used to enhance the synchronization of
the chaos-based system could easily access the perturbations
from both outside and inside the system. The organization
of this work is as follows: The proposed control, related
synchronization, and secure communication techniques are
introduced in the first section. Second, the mathematics of
the master and slave systems are introduced in modeling with
T-S formats. In addition, the preliminaries of the finite and
fixed time operations are briefly introduced. Third, the pro-
posed disturbance observer and the synchronization control
are introduced in detail in section III. Fourth, the illustrative
examples are given inMATLAB simulation, OrCADCapture
software simulation, and experimental study to verify that the
proposed theories are correct and real. Final, the conclusion
and some comments for our future work are given in the last
section.
Notations: Im×m is identity matrix. AT is transposition

of A. If s = [ s1, s2, . . . ., sn ]T and s ∈ Rn then sign(s) =
sign[ s1, s2, . . . ., sn ]T , and the exponent of the sign function
is calculated as sign(sδ) = sδ/ |s|δ = signδ(s).

II. MATHEMATICAL MODELING, SYNCHRONIZATION
PROBLEMS DESCRIPTION, AND PRELIMINARY
MATHEMATICS
This section presents the mathematical modeling of MSS
into the formats of T-S fuzzy systems, the synchronization
problem formulations, and the basic concept of the fixed-time
sliding mode control and disturbance observer. The origina-
tion of this section is as follows: (A) the mathematical model-
ing of MSS and synchronization problem are presented, and
(B) some mathematical preliminaries are given.

A. MATHEMATICAL MODELING AND
SYNCHRONIZATION PROBLEM
This study used the Chen system in [29] to construct the
MSS. Basically, the magnitude of the system states is used
to determine that the system can or cannot be implemented
on the electronic circuits. The system with full disturbance
and uncertainty values is rewritten as follows:

ẋ1(t) = −(a+1a)x1(t)+ (a+1a)x2(t)+ dx1 (t)
ẋ2(t) = −(τ +1a)x1(t)+ (c+1c)x2(t)

− x1(t)x2(t)+ dx2 (t)
ẋ3(t) = x1(t)x2(t)− (b+1b)x2(t)+ dx3 (t)

(1)

where x1(t), x2(t) and x3(t), are system states. The system
parameters in [29] were chosen as a = 35, b = 3, c = 28, and
τ = a − c,1a,1b,1c, and 1τ are the system parameters
variation values of a, b, c, and τ respectively. dx1 (t), dx2 (t),
and dx3 (t) are the disturbance on the x−, y− and z−axis,
respectively. The performances of system (1) were chaos,
unpredictable, nonperiodic. Furthermore, the system states
are out of the range [−15, 15]. To apply the concept and
phenomenon of the Chen system (1) to the electronic circuits,
the scales of the system states need to be the subsets of the
range [−15, 15]. The rescale process is taken as x(t) →
x1(t)/10, y(t) → x2(t)/10, and z(t) → x3(t)/20 respec-
tively. System (1) can work as its original phenomenon if the
assumption below is satisfied.
Assumption 1: The system (1) is reliable if the disturbance

on each axis and the parameter variations are all bounded
as follows |1a| ≤ a1, |1τ | ≤ τ1, |1c| ≤ c1, |1b| ≤ b1,∣∣dx1 (t)∣∣ ≤ d1,

∣∣dx2 (t)∣∣ ≤ d2, and
∣∣dx3 (t)∣∣ ≤ d3, respectively,

where a1, τ1, b1, c1, d1, d2, and d3 are all positively defined.
Combining assumption 1 and the rescale process, sys-

tem (1) is now remodeled as follows:
ẋ(t) = −(a+1a)x(t)+ (a+1a)y(t)+ dx(t)
ẏ(t) = (−τ +1τ )x(t)+ (c+1c)y(t)

−20x(t)z(t)+ dy(t)
ż(t) = 5x(t)y(t)− (b+1b)z(t)+ dz(t)

(2)

where disturbance on the x−, y−, and z−axes is referred to
as dx(t), dy(t), and dz(t), respectively.
Remark 1: The disturbance and uncertainty on the x−,

y−, and z−axes of the system (2) all need to be bounded as
assumption 1.

VOLUME 9, 2021 133665



V. N. Giap et al.: Disturbance and Uncertainty Rejection-Based on FTSMC

System (2) is now converted to the other format as ẋ(t)ẏ(t)
ż(t)

 =
−a a 0
−τ c −20x(t)
0 5x(t) −b

 x(t)y(t)
z(t)


+

−1a 1a 0
−1τ 1c 0
0 0 −1b

 x(t)y(t)
z(t)


+

 1 0 0
0 1 0
0 0 1

 dx(t)dy(t)
dz(t)

 (3)

System 2 is completely nonlinear. Constructing the dis-
turbance observer for system (3) is still difficult. To convert
system (3) to the T-S fuzzy system, the system as follows

ζ̇ (t) = hm(ζ (t),
u(t))ζ (t)+ gm(ζ (t), u(t))u(t)+ Dd(t)

δ(t) = lm(ζ (t),
u(t))ζ (t)

(4)

should be considered, where ζ (t) is the system state vector
and δ(t) is the system output vector. hm, gm, and lm are
smoothing functions. u(t) is a control input vector and d(t)
is a disturbance value. The state of the system needs to be a
subset of a fixed range as ζi(t) ∈ [ζmin(t); ζmax(t)]. The fuzzy
variable schedules are now calculated as follows: nj0(.) =

ζjmax − ζj(.)
ζjmax − ζjmin

nj1(.) = 1− nj0(.)
(5)

The fuzzy membership function is ω(ζi)(t), with:

φi(ζj)(t) =
p
5
j=1
φij(ζj)(t) (6)

where φi(ζij)(t) = nj0 or n
j
1(.). Applying the sector nonlinear-

ity to system (4) yields:
ζ̇ (t) =

r∑
i=1

φi(ζj(t))[(Ai +1Ai)ζ (t)

+ (Bi +1Bi)u(t)+ Did(t)]
δ(t) = Cζ (t)

(7)

where ζ (t) ∈ Rn×m is the state; u(t) ∈ Rp×m is the control,
and δ(t) ∈ Rq×m is the system output vectors, respectively.
d(t) ∈ Rk×m is the disturbance. Ai ∈ Rn×n,Bi ∈ Rn×p, and
C ∈ Rq×n are approximated matrices. 1Ai ∈ Rn×n and
1Bi ∈ Rn×p are uncertainty matrices Di ∈ Rn×k is the
approximated matrix of disturbance.
Remark 2: To easily design the controller and observer for

the T-S fuzzy system as in Eq. (7), the approximated matrices
Bi and Di should be chosen as the identity matrices.
Assumption 2: System (7) can work as its original charac-

teristics, and the lumped perturbations need to be bounded by
|Did(t)| < d , |1Ai| ≤ a, |1Bi| ≤ b, respectively, where d, a,
and b are all positively defined.

Assumption 3: To simplify the calculation process, the dis-
turbance and uncertainty are assumed to be calculated as one
unique term as 1Aix(t) + 1Biu(t) + Did(t) = Eiγ (t). The
perturbation is defined by γ (t) = [ γ1(t), γ2(t), γ3(t) ]T .
Remark 3: To easily obtain the information of perturba-

tions, the approximated matrix Ei is strongly recommended
to be identity.

System (7) can be simplified as: ζ̇ (t) =
r∑
i=1

φi(ζj(t)){Aiζ (t)+ Biu(t)+ Eil(t)}

δ(t) = Cζ (t)

(8)

Using the sector nonlinearity of the T-S fuzzy modeling,
system (2) is remodeled into the format as follows:

ζ̇ (t) =
2∑
i=1

φi(ζi(t))[AiX (t)+ Biu(t)+ Eil(t)] (9)

where

ζ = [ x y z ]T , φ1(x(t)) = (5+ x(t))/10,

φ2(x(t)) = (5− x(t))/10, A1 =

−a a 0
−τ c −100
0 25 −3

 ,
A2 =

−a a 0
−τ c 100
0 −25 −3

 ,
E1 = E2 =

 1 0 0
0 1 0
0 0 1

 ,
and B1 = B2 =

 1 0 0
0 1 0
0 0 1

. With parameters and initial values

as ζ (0) = [ 0.1 0.05 −0.05 ]T , u(t) = [ 0 0 0 ]T and d(t) =
[ 0 0 0 ]T , system states and the phase trajectories are shown
in Figure 1 below.

These system states in Figure 1 above show that the
rescaled system is chaotic and nonperiodic. The states are
now ranged into the spaces of the subset of [−15, 15]. The
conversion of the Chen system from the format of a chaotic
system into the format of a T-S fuzzy system involves no loss
of system characteristics. The phase portraits of the rescaled
system are used to confirm that the rescaled T-S fuzzy system
is correct according to the original system (1). System phase
trajectories are shown in Figure 2.

Taking the advantage of the Chen system, the master states
of the secure communication are modelled as follows:

ẋm(t) = −(a+1am)xm(t)+ (a+1am)ym(t)
ẏm(t) = (−τ +1τm − 20zm(t))xm(t)

+ (c+1cm)ym(t)
żm(t) = 5xm(t)ym(t)− (b+1bm)zm(t)

(10)

where xm(t), ym(t), and zm(t) are states of the master system.
The system parameter are maintained as a = 35, b = 3,
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FIGURE 1. System states: (a) state on x-axis, (b) state on y-axis, and
(c) state on z-axis.

c = 28, and τ = a − c.1am,1bm,1cm, and 1τm are
the system parameters variation values of a, b, c, and τ ,
respectively.
Assumption 4: The system (10) can work with its

own characteristics if the disturbance on each axis and
the parameter variations are all bounded as follows:
|1axm(t)| ≤ a1m, |1aym(t)| ≤ a2m, |1τxm(t)| ≤
τ1m, |1cym(t)| ≤ c1m, |1bzm(t)| ≤ b1m, respectively. Where
a1m, a2m, c1m, τ1m, and b1m are all positively defined.
The slave system mathematical modeling with the control

inputs is presented as follows:

ẋs(t) = −(a+1as)xs(t)+ (a+1as)ys(t)
+ uxs(t)+ dxs(t)

ẏs(t) = (−τ +1τs − 20zs(t))xs(t)+ (c+1cs)ys(t)
+ uxs(t)+ dys(t)

żs(t) = 5xs(t)ys(t)− (b+1bs)zs(t)++uxs(t)+ dzs(t)

(11)

where xs(t), ys(t), and zs(t) are states of the master system.
uxs(t), uys(t), and uzs(t) are the control inputs on the x−,
y−, and z−axes, respectively. The system parameters are

FIGURE 2. Phase trajectories: (a) yx-trajectory, (b) zx-trajectory,
(c) zy-trajectory, and (d) xyz-trajectory.

maintained as a = 35, b = 3, c = 28, and τ = a −
c.1as,1bs,1cs, and1τs are the system parameters variation
values of a, b, c, and τ , respectively. dxs(t), dys(t), dzs(t) are
the disturbance on the xs−, ys−, and zs−axes, respectively.
Assumption 5: The system (11) can work as its

own characteristics if the disturbance on each axis
and the parameter variations are all bounded as fol-
lows: |1axs(t)| ≤ a1s, |1ays(t)| ≤ a2s, |dxs(t)| ≤
d1s, |1τxs(t)| ≤ τ1s, |1cys(t)| ≤ c1s,

∣∣dys(t)∣∣ ≤

d2s, |1bzs(t)| ≤ b1s, |dzs(t)| ≤ d3s, respectively, where
a1s, a2s, d1s, c1s, d2s, b1s, d3s are all positively defined.
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Basically, the secure communication for the data transmis-
sion can be guaranteed by the support of the chaotic system
state.
Remark 4: The accuracy of T-S fuzzymodeling depends on

the antecedent variables for the sector nonlinearity modeling
method and the number of the linearization points for the
linearization method, respectively. The antecedent variables
and linearization points are all experimentally chosen by the
designer.

The operation of the secure communication in this paper is
as follows:

Ŝ(t) = ym(t)+ S(t)− ys(t) (12)

where S(t) is the secret signal that needs to be securely
transferred formmaster area to slave area. Ŝ(t) is the received
signal. To obtain the precise secure signal in the slave area,
the master and slave system states precisely track each other
as ym(t) = ys(t). This paper used the T-S fuzzy model to
construct the controller and observer. The MSSs are then
maintained in the form of the chaotic systems. The models of
master and slave systems are temporarily transferred to the
format of the T-S fuzzy systems as follows:

ζ̇m(t) =
2∑
i=1

φi(xm(t))[Aiζm(t)+ Eilm(t)]

ζ̇s(t) =
2∑
i=1

φi(xs(t))[Aiζs(t)+ Bius(t)+ Eils(t)]

(13)

where m and s are used to represent the master and slave
notations, respectively. The control input appears on the slave
side. The tracking errors are described as follows:

e(t) = ζm(t)− ζs(t) (14)

Taking the derivative of both sides of Eq. (14) yields:

ė(t) =
2∑
i=1

φi(xm(t))[Aiζm(t)+ Eilm(t)]

−

2∑
i=1

φi(xs(t))[Aiζs(t)+ Biu(t)+ Eils(t)] (15)

Due to
2∑
i=1
φi(xm(t)) = 1 and

2∑
i=1
φi(xs(t)) = 1, the distur-

bance and uncertainty of the synchronization system can be
calculated as a unique term. The calculation is represented as
follows:

ė(t) =
2∑
i=1

φi(xm(t))[Aiζm(t)]−
2∑
i=1

φi(xs(t))[Aiζs(t)

+Biu(t)]+ Ei(lm(t)− ls(t)] (16)

As shown in remarks 2 and 3, the approximated matrices
are chosen as Bi = I3×3 and Ei = I3×3. By referring l =
lm(t) − ls(t), the derivative tracking error equation (15) can

be calculated as a new model as follows:

ė(t) =
2∑
i=1

φi(xm(t))[Aiζm(t)]−
2∑
i=1

φi(xs(t))[Aiζs(t)]

−Biu(t)+ Eil (17)

This paper uses fixed-time sliding-mode control for syn-
chronizing the master and slave systems. To soften the effects
of disturbance and uncertainty, a new disturbance observer is
proposed for the synchronization system.
Remark 5: To obtain the precision tracking of master and

slave systems, the states on x−, y−, and z−axes of these
system need to precisely track each other. The precision of
tracking control is dependent on the synchronization control
algorithm.

The preliminaries of mathematical operations are given in
the next following section below.

B. PRELIMINARY MATHEMATICAL CALCULATIONS
This section presents some preliminary mathematical calcu-
lations of fine and fixed-time stability. The beginning con-
cepts for the system are as follows:

ẋ(t) = f (t, x) (18)

Definition 1 ([41]): Finite-time stability concept where
x ∈ RP is the state vector. System (18) is called finite-time
stable if the origin is Lyapunov stable and exists in an open
neighborhood D ∈ RP, and positive T (x(0)) is the settling
time with:  lim

t→T (x0)
x(t)→ 0

x(x0) = 0
(19)

Theorem 1: System as follows:

s = −κsign(s) (20)

consists of a finite-time stable as

Ts < Tmax =
|s(0)|
κ

(21)

Proof: Lyapunov candidate should be selected as follows:

V (t) =
1
2
s2(t) (22)

Taking derivative for both sides of Eq. (22) have

V̇ (t) = s(t)ṡ(t) (23)

or

V̇ (t) = −κs(t)sign(s(t))

= −κ |s(t)|

= −κV 0.5(t) (24)

Taking integration for both sides of Eq. (24) corresponding
to the time from zero to settling time Tmax yields

V (Tmax)∫
V (0)

dV (t)
V 1/2(t)

= −

V (Tmax)∫
V (0)

κdt (25)
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or

2V
1
2 (Tmax)− 2V

1
2 (0) = −κTmax (26)

or

Tmax =
|s(0)|
κ

(27)

Remark 6: The stability of finite-time was introduced to
the synchronization control system to look for the finite-time
sliding phase.
This complete proof of Theorem 1.
Definition 2 ([42]) Fixed-Time Stability Concept:
If the system (18) is globally finite-time stable and the

settling time is limited by a constant value, as follows:{
T (x(0)) < Tmax

Tmax > 0,
∀ζ (0) (28)

System (18) is then called fixed-time stable.
Theorem 2: The equation

ṡ(t)=−γ1 |s(t)|
a1
b1 sign(s(t))− γ2 |s(t)|

a2
b2 sign(s(t)) (29)

Have fixed time stability Tmax =
1
γ2

b2
b2−a2

+
1
γ1

b1
(a1−b1)

.

Proof: The Lyapunov candidate can be chosen with one
dimension as follows:

V (s(t)) =
1
2
s2(t) (30)

Ignoring the time (t) for softening the writing and taking
the derivative of both sides of Eq. (30) yields

V̇ (s) = sṡ

= s[−γ1 |s|
a1
b1 sign(s)− γ2 |s|

a2
b2 sign(s)]

= −γ1s
2 a1+b12b1 − γ2s

2 a2+b22b2

= −γ1V (s)
a1+b1
2b1 − γ2V (s)

a2+b2
2b2

= [−γ1V (s)
a1+b1
2b1
−
a2+b2
2b2 − γ2]V (s)

a2+b2
2b2 ≤ 0 (31)

If V̇ (s) ≤ 0 system (18) is globally bounded. When
V (δ) 6= 0 have

1

V (s)
a2+b2
2b2

dV (s)
dt
= −γ1V (s)

a1+b1
2b1
−
a2+b2
2b2 − γ2 (32)

or
1

V (s)
a2+b2
2b2

dV (s)
dt
=−γ1V (s)

a1+b1
2b1
−
a2+b2
2b2 −γ2

1

γ1V (s)
b2a1−b1a2

2b1b2 + γ2

dV (s)
b2−a2
2b2

dt
=

b2 − a2
b2

(33)

Integrating (33) over the time from zero to T yields

V (s(∞))∫
V (s(0))

dV (s(t))
b2−a2
2b2

γ1V (s(t))
b2−a2
2b2

[ (b2a1−b1b2)b1(b2−a2)
+1]
+ γ2

=
b2 − a2
2b2

Tmax (34)

or

Tmax <
1

b2−a2
b2

V (1)∫
V (0)

dς
γ2

+
1

b2−a2
b2

V (∞)∫
V (1)

dV (s)
b2−a2
2b2

γ1V (s)
(b2a1−b1b2)

2b1b2
+
b2−a2
2b2

=
1
γ2

b2
b2 − a2

+
1
γ1

b2
b2 − a2

b1(b2 − a2)
(b2a1 − b1b2)

(35)

or

Tmax =
1
γ2

b2
b2 − a2

+
1
γ1

b1
(a1 − b1)

(36)

This complete proof of Theorem 2.
Remark 7: The stability of fixed-time was used to look for

reaching phase control.
All details of proposed control algorithms are shown in the

next sections.

III. DISTURBANCE AND UNCERTAINTY REJECTION
BASED ON FIXED-TIME SLIDING-MODE CONTROL FOR
THE SECURE COMMUNICATION OF CHAOTIC SYSTEMS
To delete the disturbance and perturbations of system param-
eters variations, an improvement of DOB is constructed for
the slave system via the control input channel. The illness of
the previous disturbance observer in [30] was proven in our
recent paper [4]. The first derivative disturbance observer can
be softened by a new observer in this paper. Otherwise, to sup-
press these perturbations perfectly, the fixed-time sliding-
mode control was designed for the synchronization system.
These control methods took advantages to perform secure
communication for data transmission. This section presents
in detail the proposed control algorithms as follows:

A. DISTURBANCE OBSERVER FOR A
SYNCHRONIZATION SYSTEM
The proposed disturbance observer of Chen [30] is reconsid-
ered in this paper, and a significantly improved method is
given to solve the problem of the first derivative disturbance
conjunction. The mathematical model of the new disturbance
observer is given for the general system as

ẋ(t) = ax(t)+ bu(t)+ cd(t) (37)

where x(t) is the system state vector; u(t) is the control
input vector, and d(t) is the disturbance value. a, b, and c
are the approximated matrices of the state, control input,
and disturbance values, respectively. The DOB mathematical
model is shown as:

ṗ(t) = −Ldcp(t)− Ld [ax(t)+ bu(t)+ cq(t)]
q(t) = Ldx(t)

d̂(t) = L−1(
α

Ts+ 1
) · (p(t)+ q(t))

(38)

where Ld is observer gain. L−1(·) is meant to be the inversed
Laplace operation. (·) is the convolution operation.
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Remark 8: In previous papers, [30]–[33] ignored the high
frequency disturbance value. By using Eq. (38), the low and
high frequencies of disturbance values are all rejected.

We have:

d̂(s) =
α

Ts+ 1
[p(s)+ q(s)] (39)

or

(Ts+ 1)d̂(s) = α[p(s)+ q(s)] (40)

Subtracting both sides of Eq. (40) by the disturbance in the
Laplace domain leads to:

d(s)− (Ts+ 1)d̂(s) = d(s)− α[p(s)+ q(s)] (41)

or

d̃(s)− Tsd̂(s) = d(s)− α[p(s)+ q(s)] (42)

Substituting Eq. (39) into Eq. (42) yields:

d̃(s)−Ts
α

Ts+ 1
[p(s)+q(s)] = d(s)−α[p(s)+ q(s)] (43)

Eq. (43) can be simplified as:

d̃(s)+
α

Ts+ 1
[p(s)+ q(s)] = d(s) (44)

or the disturbance error is described as follows:

d̃(s) = d(s)−
α

Ts+ 1
[p(s)+ q(s)] (45)

Going back to the time domain representation of distur-
bance, the error is now modeled as follows:

d̃(t) = d(t)− L−1(
α

Ts+ 1
) · [p(t)+ q(t)] (46)

The disturbance error goes to zero if

d̂(t) = L−1(
α

Ts+ 1
) · [p(t)+ q(t)] (47)

At this point, the disturbance observer error goes to zero if
the term of d̂(t) is compensated by the control channel as in
Eq. (38). The details of the sliding mode control are provided
in the following section, below. By applying the concept
of the improved disturbance observer to the synchronization
system, the DOB of the synchronization system is:

ṗi(t) = −LdEpi(t)− Ldi[
2∑
i=1

φi(xm(t))[Aiζmi(t)]

−

2∑
i=1

φi(xs(t))[Aiζs(t)]− Biu(t)+ Eiqi(t)]

qi(t) = Ldiei(t)
ˆl i(t) = L−1(

αi

Tis+ 1
) · (pi(t)+ qi(t))

(48)

where i = 1÷ 3 is the number of disturbance input channels
on the x−, y−, and z−axes, respectively.
By using Eq. (48), we have:

ṗi(t)+ q̇i(t) = −LdEpi(t)− Ldi[
2∑
i=1

φi(xm(t))Aiζmi(t)

−

2∑
i=1

φi(xs(t))Aiζs(t)− Biu(t)+ Eiqi(t)]

+Ldiėi(t) (49)

Combining Equations (17) and (49) yields:

ṗi(t)+ q̇i(t) = −LdiEipi(t)− Ldi[
2∑
i=1

φi(xm(t))Aiζmi(t)

−

2∑
i=1

φi(xs(t))Aiζs(t)− Biu(t)+ Eiqi(t)]

+Ldi[
2∑
i=1

φi(xm(t))Aiζmi(t)

−

2∑
i=1

φi(xs(t))Aiζsi(t)− Biu(t)+ Eil i]

= LdiEil − LdiEi(pi(t)+ qi(t))

= LdiEi[l i − (pi(t)+ qi(t))] (50)

Taking the Laplace transform for the disturbance observer
equation of Eq. (50) leads to:

ˆl i(s) =
αi

Tis+ 1
(pi(s)+ qi(s)) (51)

Solving Eq. (51) yields:

(Tis+ 1)ˆl i(s) = αi(pi(s)+ qi(s)) (52)

Using the Laplace transform of the disturbance to subtract
both sides of Eq. (52) yields:

l i(s)− (Tis+ 1)ˆl i(s) = l i(s)− αi(pi(s)+ qi(s)) (53)

or

l i(s)−
ˆl i(s) = Tis

ˆl i(s)+ l i(s)− αi(pi(s)+ qi(s)) (54)

By referring ˜l i(s) = l i(s)−
ˆl i(s), Eq. (54) can be simplified

as follows:

˜l i(s) = Tis
ˆl i(s)+ l i(s)− αi(pi(s)+ qi(s)) (55)

Substituting Eq. (51) into Eq. (54) leads to:

˜l i(s) = Tis
αi

Tis+ 1
(pi(s)+ qi(s))+ l i(s)− αi(pi(s)+ qi(s))

= (Tis+ 1− 1)
αi

Tis+ 1
(pi(s)+ qi(s))+ l i(s)

−αi(pi(s)+ qi(s))

= −
αi

Tis+ 1
(pi(s)+ qi(s))+ l i(s) (56)

Combining Equations (51) and (56), if the estimated is
selected as Eq. (50), the disturbance tracking error value in
Eq. (56) is equal to zero.
Remark 9: The development of the basic nonlinear distur-

bance observer with the support of the low-pass-filter sup-
presses all the low and high frequency disturbances to zero.
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B. FIXED-TIME SLIDING-MODE CONTROL BASED
ON THE DISTURBANCE OBSERVER FOR THE
SYNCHRONIZATION SYSTEM
This paper used a fixed-time reaching phase and finite-time
sliding phase to construct the sliding mode controller for a
synchronization system. The sliding surface is selected as:

s(t) = e(t)+ λ

t∫
0

e(τ )dτ (57)

Taking the derivative of both sides of Eq. (57) has:

ṡ(t) = ė(t)+ λe(t) (58)

Solving Eq. (58) with ṡ(t) = 0 yields:

ėj(t) = −λjej(t) (59)

Taking integration for both sides of Eq. (59) corresponding
to the time from zero to settling time Tmax yields:

tjmax = e−λjtmax (60)

The sliding phase is designated as follows:

ṡj(t) = −a1jsign
αj
β1j (sj(t))− a2jsign

α2j
β2j (sj(t)) (61)

where s(0) = s0 and signk (s(t)) = sign(s(t)k ). If a1j >
0, a2j > 0, α1j/β1j > 1, and α2j/β2j < 1, by applying
Theorem 2, the settling time is calculated as follows:

Tsi < Timax =
α1i

a1i(α1i − β1i)
+

β1i

a2i(β2i − α2i)
(62)

where Tsj is settling time value of the sliding mode surface
jth. Applying the concept of the SMC to the synchronization
system yields:

ṡ(t) =
2∑
i=1

φi(xm(t))[Aiζm(t)]−
2∑
i=1

φi(xs(t))[Aiζs(t)]

+Biu(t)+ Ei(lm(t)− ls(t)]+ λe(t) (63)

Solving Eq. (63) with the first derivative sliding surface is
equal to zero with no disturbance value yields:

ueqj(t) = [BTi,jBi,j]
−1BTi [

2∑
i=1

φi(xm(t))[Ai,jζmj(t)]

−

2∑
i=1

φi(xs(t))[Ai,jζsj(t)]+ λi,jej(t)] (64)

where i = 1 ÷ 2. j = 1 ÷ 3 is the number of the row of the
matrix. The switching control is selected as follows:

uswj(t) = [BTi,jBi,j]
−1BTi,j[a1jsign

α1j
β1j (sj(t))

+ a2jsign
α2j
β2j (sj(t))] (65)

where

sign(s(t)) =


1 if s(t) > 0
0 if s(t) = 0
−1 if s(t) < 0

(66)

FIGURE 3. Secure communication system.

FIGURE 4. Synchronization signals: (a) xm(t) and xs(t), (b) ym(t) and ys(t),
(c) zm(t) and zs(t).

The control values are shown in Equations (64) and (65)
and the disturbance compensations are shown in Eq. (48). All
proposed control algorithms are now applied to synchronize
the chaotic system. The proposed control methods need to
satisfy the convergence condition. This paper used the Lya-
punov theorem to prove the stability of proposed algorithms.
The details are shown in the following section.
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FIGURE 5. Synchronization errors: (a) the errors in the 10 seconds and
(b) the errors in the first 0.01 second.

Remark 10: Take note that, if the disturbance and uncer-
tainty can be completely suppressed, the switching control
gains can be chosen as small values to reduce the chattering.

C. STABILITY ANALYSIS
The necessary condition is used to define the stability of the
system with equivalent control value, which is used to satisfy
the condition as:

ė(t) =
2∑
i=1

φi(xm(t))[Aiζm(t)]−
2∑
i=1

φi(xs(t))[Aiζs(t)

+Biueq(t)]+ Eil (67)

or

ė(t) =
2∑
i=1

φi(xm(t))[Aiζm(t)]−
2∑
i=1

φi(xs(t))[Aiζs(t)

+Bi([BTi Bi]
−1BTi [

2∑
i=1

φi(xm(t))[Aiζm(t)]

−

2∑
i=1

φi(xs(t))[Aiζs(t)]+ λe(t)])]+] (68)

or

ė(t) = −λe(t) (69)

The tracking error value goes to zero when the time goes to
infinity if the λ is positively defined. The sufficient condition
is selected as follows:

Vj(t) =
1
2
s2j (t)+

1
2
d̃2j (t) (70)

FIGURE 6. Synchronization sliding surfaces: (a) the surfaces in the first
10 seconds and (b) the surfaces in the first 0.1 second.

FIGURE 7. Synchronization errors in the first 0.01 second with
ζm(0) = [0.4 0.2 −0.2] and ζs(0) = −[0.4 −0.2 0.2].

Taking derivative for both sides of Eq. (70) leads to

V̇j(t) = sj(t)ṡj(t)+ d̃j(t)
˙̃dj(t)

= s[−a1jsign
α1j
β1j (s(t))− a2jsign

α2j
β2j (s(t))]+ 0

≤ −a1j
∣∣sj(t)∣∣ α1jβ1j

+1
− a2j

∣∣sj(t)∣∣ α2jβ2j
+1
< 0 (71)

This completes the verification of the proposed method.
Remark 11: The settling of the control system is fixed-

time. The poof of the fixed-time for Eq. (55) can be found
in [43] when s(t) > 1 Eq. (55) is completely fulfilled. When
s(t) � 1, the settling-time is limited by the bandwidth of
Tjmax < 1/(a1j + a2j).

The correction of the proposed theories is verified by the
simulation and experimental studies in the next sections.

IV. AN ILLUSTRATIVE EXAMPLE
This paper focuses on the theory of circuit analysis, which
is used to verify that the finite and fixed time controls can
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FIGURE 8. Synchronization phase trajectories of the master and slave
systems: (a) the phase on x- and y-axes, (b) the phase on x- and z-axes,
(c) the phase on y- and z-axes, and (d) the phase trajectories on x-, y-,
and z-axes.

be implemented on a circuit. Due to the short distance of
communication between master and slave circuit systems,
the delay-time problem in the circuit was ignored. To achieve
the desired goals, the simulation on MATLAB should be
first given to verify that the effectiveness of the disturbance
observer with all tested disturbance has been canceled by the
proposed method. Furthermore, to illustrate the desired goal
of electronic circuit implementation, simulation on Orcad
Capture software is used to represent control synchronization

FIGURE 9. Tested and estimated disturbance values. (a) disturbances on
x-axis, (b) disturbances on y-axis, and (c) disturbances on z-axis.

with application in secure communication. The secure com-
munication system is shown as Figure 3 below.

All theories are verified as follows:

A. MATLAB SIMULATION PERFORMANCE
This section is briefly given to illustrate the effect of the
proposed disturbance observer. The control parameters are

selected as follows: λ =

 0.01 0 0
0 0.01 0
0 0 0.01

 , a11 =

50, a21 = 50, a12 = 10, a22 = 15, a13 = 10, a23 =
15, α11 = 3, β11 = 4, α21 = 7, β21 = 4, α12 = 3, β12 = 5,
α22 = 5, β22 = 5, α13 = 2, β13 = 4, α23 = 3, β23 =

2, α1 = α2 = α3 = 30,Ld =

 1 0 0
0 1 0
0 0 1

, and T1 = T2 =

T3 = 0.001. The initial conditions of MSS are ζm(0) =
[ 0.3 0.15 −0.15 ] and ζs(0) = [− 0.3 −0.15 0.15 ]. The
secure data are encrypted by a system state and transferred
to the public channel. The encrypted data can be recovered
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FIGURE 10. High frequency of the tested and estimated disturbance
values. (a) Disturbances on x-axis, (b) disturbances on y-axis, and
(c) disturbances on z-axis.

at the slave system area. The expectations of the secure
transmission are the synchronization of the master and slave
system so that the sent and received data are identical. The
performances of the proposed control algorithms is shown in
the Figures 4-12 below. First, the synchronization signals are
shown in Figure 4 below.

Synchronization was precisely obtained, and the tracking
error values on three axes are very small. The tracking error
values are shown in Figure 5 below.

The settling times of the synchronization system on the
x−, y−, and z−axes are Te1 < 0.035(s), Te2 < 0.08(s), and
Te3 < 0.08, respectively. The tracking errors are in the range
of e1(t) ∈ [−1.25 1.1 ].10−3, e2(t) ∈ [−5.14 : 6.52 ].10−4,
and e3(t) ∈ [−7.42 8.74 ].10−4, for synchronization on x−,
y−, and z−axes, respectively. The performance of sliding
surfaces are shown in Figure 6, below.
The settling times for the sliding surface reaching the zero

are mostly the same as the settling time of tracking errors.
To inform the chaotic systems after synchronization and still
maintain the original characteristics, the phase trajectories of

FIGURE 11. Sent and received signals.

FIGURE 12. Encrypted data.

TABLE 1. A comparison of the proposed approach with paper [40].

the master and slave systems are shown in Figure 7 below.
The performance of different initial condition is as
follows:

With the same control parameters, the different initial con-
ditions of MSSs as ζm(0) = [ 0.4 0.2 −0.2 ] and ζs(0) =
[− 0.4 −0.2 0.2 ] leads the reaching times of the track-
ing errors to be mostly same with it in case of ζm(0) =
[ 0.3 0.15 −0.15 ] and ζs(0) = [− 0.3 −0.15 0.15 ]. The
phase trajectories of MSSs with ζm(0) = [ 0.3 0.15 −0.15 ]
and ζs(0) = [− 0.3 −0.15 0.15 ] are in Figure 8
below.
As shown in the figures above, the proposed control meth-

ods are good at synchronizing master and slave chaotic sys-
tems. To verify the performance of the disturbance observer
in Eq. (22), the tested disturbance is introduced directly to
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FIGURE 13. Synchronization states: (a) xm(t) and xs(t), (b) ym(t) and ys(t),
and (c) zm(t) and zs(t).

the synchronization system via the control input channel.
The performance of the proposed observer can be shown
in Figure 9, below.

FIGURE 14. Synchronization tracking error values: (a) e1(t), (b) e2(t), and
(c) e3(t).

The tested disturbances were mostly covered by the esti-
mated disturbance. Furthermore, the highmagnitude and high
frequency disturbances on three axes were tested on the
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FIGURE 15. Synchronization phase portraits: (a) ym, ys and xm, (b) zm,
zs and xm, and (c) zm, zs and ym.

system, and the performances of the disturbance observer
with the same disturbance observer gains are shown in
Figure 10 below.
Remark 12: The disturbance and uncertainty of the system

were summed as a unique term on each axis. Therefore,
the tested disturbances into the system are total perturbations.

FIGURE 16. Sent and received signals.

FIGURE 17. Experiment setup.

In the simulation, the disturbance was tested via input chan-
nels. In the experiment, the disturbance can be calculated by
the proposed DOB.

The synchronization system takes advantage to do a secure
transmission of the square wave signal. The sent and received
signals are shown in Figure 11 below.

The encrypted signal is in Figure 12 below.
The effectiveness of the proposed control algorithms is

compared to the previous published result in [40]. The com-
parison is shown as follows:

The control theories can be implemented on electronic
circuits in the next section.

B. ORCAD CAPTURE SIMULATION PERFORMANCE
This section presents the simulation of the above control
algorithms for electronic circuit design. The purpose of this
section is to present the mathematical calculations of the
finite- and fixed-time sliding-mode control for an electronic
circuit. The operations for sign(s0.751 ), and sign(s1.251 ) are
shown in the Appendix section. The control system param-
eters are selected as a11 = 1, a21 = 1, a12 = 1,
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FIGURE 18. System phase portraits, (a) phase yx, (b) phase zx, and (c)
phase zy.

a22 = 1, a13 = 1, a23 = 1, α11 = 3, β11 = 4, α21 =
5, β21 = 4, α12 = 3, β12 = 4, α22 = 5, β22 = 4,
α13 = 3, β13 = 4, α23 = 5, β23 = 4, α1 = α2 = α3 =

1, λ =

 100 0 0
0 100 0
0 0 100

 ,Ld =
 250 0 0

0 250 0
0 0 400

, and T1 =
T2 = T3 = 0.1, and the initial conditions of the master and
slave systems are determined by the capacitors and resistors
of differential parts. All operations of the proposed method
are shown in the Appendix. These above parameters were
used to confirm that the proposed method can be applied to
the electronic circuits. Furthermore, secure communication is
implemented as shown in the Appendix section with different
gains of DOB. The performance of the proposed algorithms
are shown as Figures 13 to 16.

The master and slave systems mostly tracked with each
other. The simulation was achieved under the ideal con-
ditions so the tracking errors are very small, as shown in
Figure 14 below.

FIGURE 19. Synchronization signals, (a) xm and xs, (b) ym and ys, and
(c) zm and zs.

The tracking error on the x−, y−, and z−axes are in the
range of e1(t) ∈ (−40; 125 ) mV, e2(t) ∈ (−45; 122 ) mV,
and e3(t) ∈ (−40; 122 ). The Orcad simulation can show the
phase portrait for one pair of axes, with the minimal errors
of the master and slave system states obtained, and the phase
portrait can be seen in Figure 15 below.

Because the states of the master and slave systems are
mostly identical, the phase trajectories of the slave system
with the master state on the x-, y-, and z-axes are mostly
stacked onside each other. The phase trajectories are used to
verify that the master and slave systems after synchronization
still maintain the chaotic forms. The outcome of the y-axis is
used to decrypt the encrypted signal form the public channel.
The signal is securely transmitted from the master to the slave
system via the public channel with the support of the master
state on the y-axis. The transmitted and received signals are
shown in Figure 16 below.

Sent and received data are quite close to each other, which
is again used to confirm that the proposed control algorithm
is good at synchronizing two nonidentical chaotic systems.

VOLUME 9, 2021 133677



V. N. Giap et al.: Disturbance and Uncertainty Rejection-Based on FTSMC

FIGURE 20. Synchronization errors, (a) e1, (b) e2, and (c) e3.

C. EXPERIMENT WITH PROPOSED METHODS ON
ELECTRONIC CIRCUITS
This section presents the experimental results on the
electronic circuit. The control parameters are the same
as the simulation. The disturbance observer gain is

Ld =

 100 0 0
0 100 0
0 0 100

. The experimental setup is in

Figure 17 below.
The multiplications and division are achieved by the AD

633 JNZ, and the additions and subtractions were obtained
by the AD 711 JNZ chips. System phase portraits are in
Figure 18 below.

The synchronization of the chaos-based system with the
support of the proposed theories is in Figure 19 below.

The states of the MSS on the x, y, and z-axes are mostly
identical. These state errors are shown in the following
Figure 20 below.

The tracking errors are e1(t) ∈ (−200; 20 ) mV, e2(t) ∈
(−220; 40 ) mV, and e3(t) ∈ (−200; 250 ) mV. These errors

FIGURE 21. Perturbations in the circuit, (a) perturbation on x-axis,
(b) perturbation on y-axis, and (c) perturbation on z-axis.

FIGURE 22. Secure communication data.

used to represent that the proposed methods are good for
synchronization of the chaos-based system. The disturbance
and uncertainty of the system can be estimated in Figure 21
below.

To show the effectiveness of the proposed theories, the data
secure communication outcome is in Figure 22 below.
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FIGURE 23. Master system and its T-S fuzzy model calculation.

In the secure communication system, the sent data
were securely transferred from the master area to the
slave area. The received and sent data are mostly identi-
cal. This performance once again suggested that the pro-
posed methods are good regarding secure communication
control.

V. CONCLUSION
This paper proposed a new disturbance observer to delete
the perturbations of the secure communication system. The

conjunction problem of the first derivative disturbance value
was simply solved. To synchronize two different chaotic
systems, such as a pair of master and slave systems, a fixed-
time sliding mode was designed to meet the synchroniza-
tion goals. A disturbance observer and sliding-mode control
were built based on the format of the T-S fuzzy system for
master and slave systems. The proposed control algorithms
for a synchronization system provided security for a data
communication system. The proposed theories were verified
by simulations of two cases in the MATLAB and OrCAD
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FIGURE 24. Slave system and its T-S fuzzy model calculation.
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FIGURE 25. Synchronization tracking errors.

FIGURE 26. Secure communication structure.

Capture environments. Furthermore, an experimental study
was implemented for electronic circuits with high precision
of synchronization outputs. The archived outcomes exhibit
the small overshoot of the synchronization tracking errors
and small errors related to the states of the master and slave
systems. In addition, the sent data in the master area and
the recovered data in the slave area were mostly the same.
The encrypted data were strongly different from the sent
data, which confirms that the rescaled Chen chaotic system
is usable as a secure communication system and that the
proposed control algorithms are good for synchronization

systems. This topic will be further explore in our near future
work on secure communication with fractional-order T-S
fuzzy chaotic systems. The results suggests that the fixed-
time sliding mode, terminal sliding mode, or exponential
convergence control designs can be further considered in
electronics circuit experiment.

APPENDIX
This section is used to show the electronic circuits. See
Figures 23–28.
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FIGURE 27. Sliding-mode control.
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FIGURE 28. Disturbance observer structure.
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