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ABSTRACT In this paper, an adaptive tracking control scheme is proposed for a class of uncertain systems
with external disturbances existing in every state equation and output equation. The output disturbance
considered here does not need to be generated by a known different equation. It leads to the system about
coordinate changes variables used for virtual controls design no longer meet the triangular requirement of the
backstepping approach. Thus the traditional backstepping techniques cannot be used in the controller design.
This problem has been solved by the proposed robust adaptive control scheme. In addition, the effect caused
by the disturbance in state equation can be compensated for by selecting appropriate design parameters in
every step. It is shown that the proposed adaptive control scheme can ensure all signals in the closed-loop
system bounded.

INDEX TERMS Adaptive control, output disturbance, backstepping, tracking control.

I. INTRODUCTION
Backstepping technique is a popular approach for the con-
troller design and stability analysis of the strict feedback
systems [1], [2]. The system control law can be established
by the recursive design of a series of virtual control sig-
nals. Especially for the strict feedback systems with uncer-
tainties, some problem solving skills has been constantly
proposed to improve the backstepping method. As we all
know, uncertainties widely exist in practical systems. There
are many reasons for the uncertainty of the system, such
as unknown parameters, non-smooth nonlinearities, actuator
failures, external disturbance, modelling error and so on. For
the linearized unknown parameters in the state equations,
update laws can be constructed by tuning functions. To the
uncertainties caused by non-smooth nonlinearities input,
the approximation or smooth inverse are usually constructed.
A backlash-like model was built to approximate backlash
input. By estimating the linearized parameters in backlash-
like model and the unknown upper bound of the disturbance-
like term, an adaptive backstepping control scheme had been
proposed in [3], [4]. To make full use of the structural infor-
mation of dead-zone actuator nonlinearity, an smooth inverse
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of dead-zone was built and an output feedback adaptive con-
trol scheme was developed by backstepping approach [5].
In [4]–[6], the unknown external disturbance was considered.
This disturbance is only allowed to exist in the last state equa-
tion and bounded by an unknown constant. An estimator was
constructed to realize the online estimation of this unknown
upper bound. Thus the effect caused by external disturbance
can be compensated for. Two kinds of actuator failures includ-
ing partial loss and total loss of effectiveness were considered
in [7], [8]. Different faults were represented as changes of lin-
earized parameters. Then the adaptive failure compensation
control scheme was developed by estimating these unknown
parameters. The unmodeled dynamics were considered in
the controller design of nonlinear systems by backstep-
ping. The output feedback control schemes were proposed
in [9]–[12]. It is worth noting that these unmodeled dynamics
exist in the output signal and are assumed to be generated by
differential equation. The system stability analysis relies on
such an assumption. In [13], [15], unknown modelling errors
were considered in the controller design. An output feed-
back control scheme were proposed by backstepping in [15].
Compared to [15], modelling errors considered in [13] can
exist every state equation and is non-triangular. This leads
to the triangle requirement of the backstepping method no
longer being met. A new method to overcome this problem
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was proposed. Based on this method, the backstepping is
improved and an adaptive robust control scheme is developed.

Throughout the control problem of uncertain systems,
the available results for strict feedback system with unknown
output disturbance are still limited. The main difficulty
is that the triangle structure of controlled system will be
destroyed when the output disturbance is introduced in coor-
dinate changes. In other words, the system about coordinate
changes variables zi used for virtual controls design no longer
meet the requirement of the backstepping approach. To this
problem, we address the controller design by backstep-
ping technique for a class of strict feedback systems with
the output disturbance in this paper. To solve the above
main difficulty, the uncertainties caused by the derivative
of the unknown output disturbance are not considered in
every step of the controller design. Instead, their effects
will be separated two different parts by using Young’s
inequality in every step. The first part can be dealt with
by changing feedback gain parameters. The other part will
be accumulated to the last step for compensation by select-
ing appropriate design parameters. A sufficient condition
composed by a series of inequalities have been established
to judge the design parameters being appropriate or not.
The main contribution of this paper can be summarized as
follows:

• Different from the existing results [9]–[12], the output
disturbance considered in this paper is more general.
It does not need to be generated by a known different
equation.

• The recursive algorithm for the selection of design
parameters has been established. It is also a suf-
ficient condition to maintain the stability of the
system.

The paper is organized as follows. In section 2, our control
problem is introduced. In section 3, our control scheme is
proposed. Finally, the simulation is given in section 5 and the
paper is concluded in section 6.

II. PROBLEM STATEMENT
The following uncertain nonlinear system is considered to
illustrate our design ideas.

ẋ1 = x2 + d1(t)

ẋ2 = x3 + d2(t)
...

ẋn = bu+ θ f (x)+ φ(x)+ dn(t)

y = x1 + dy(t) (1)

where x = (x1, x2, · · · , xn) is the system state, y is the output,
and u is the input. b and θ are unknown parameters, f (x) and
φ(x) are known nonlinear functions. di(t) (i = 1, · · · , n)
denotes external disturbance in the differential equation of
system states. di(t) is bounded by an unknown positive con-
stant Di. dy(t) is the unknown output disturbance.

To design the adaptive tracking control scheme by back-
stepping, the following Assumptions on disturbance are
made.
Assumption 1: The output disturbance dy(t) satisfies

|Sdy(t)| ≤ Dy (2)

where S represents the differential operator d
dt and Dy is an

unknown constant.
Assumption 2: The unknown parameter b is not equal

to zero and sign(b) is known. Without loss of generality,
we assume that b is positive.
Assumption 3: The reference signal yr (t) and its nth deriva-

tive are known and bounded.
Remark 1: Two kinds of external disturbances includ-

ing output disturbance and disturbance in state equation ẋi
are considered in (1). Different form the disturbance di(t),
the output disturbance is not required to be bounded by an
unknown constant. The only requirement is that its derivative
is bounded.

Our control purpose is to design the adaptive control law
for system (1) by using backsteppting techniques. Then the
tracking performance can be achieved under the effect of the
unknown output disturbance.

III. DESIGN OF ADAPTIVE CONTROLLERS
In order to obtain the adaptive control law by backstepping,
the following coordinate transformations are made.

z1 = y− yr = x1 + dy(t)− yr
zi = xi − αi−1 − y(i−1)r (i = 2, · · · , n) (3)

Step 1: The derivative of z1 is

ż1 = ẋ1 − y(1)r + Sdy(t)

= x2 + d1(t)− y(1)r + Sdy(t)

= z2 + α1 + d1(t)+ Sdy(t) (4)

The virtual control α1 can be chosen as

α1 = −k1z1 (5)

where design parameter k1 is a positive constant. The follow-
ing Lyapunov function V1 is considered.

V1 =
1
2
z21 (6)

With (1) and (3)-(6), the derivative of V1 is

V̇1 = z1ż1
= z1(z2 + α1 + d1(t)+ Sdy(t))

= −k1z21 + z1z2 + z1d1(t)+ z1Sdy(t) (7)

Notice that

z1d1(t) ≤
z21
4ε21
+ ε21d

2
1 (t)

z1Sdy(t) ≤
z21
4δ21
+ δ21(Sdy(t))

2 (8)
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where ε1, δ1 are positive constants. The derivative of V1 can
be rewritten as

V̇1 ≤ −k1z21 + z1z2 +
z21
4ε21
+ ε21d

2
1 (t)

+
z21
4δ21
+ δ21(Sdy(t))

2

= −(k1 −
1

4ε21
−

1

4δ21
)z21 + z1z2

+ ε21d
2
1 (t)+ δ

2
1(Sdy(t))

2 (9)

Step 2: The derivative of z2 is

ż2 = ẋ2 − y(2)r − α̇1
= x3 + d2(t)− y(2)r − α̇1

= z3 + α2 + d2(t)−
∂α1

∂x1
(x2 + d1(t))

−
∂α1

∂y
Sdy(t)−

∂α1

∂yr
y(1)r (10)

The virtual control α2 is chosen as

α2 = −k2z2 − z1 +
∂α1

∂yr
y(1)r +

∂α1

∂x1
x2 (11)

where design parameter k2 is a positive constant. The follow-
ing Lyapunov function V2 is considered.

V2 = V1 +
1
2
z22 (12)

With (1), (3) and (10)-(12), the derivative of V2 is

V̇2 = V̇1 + z2ż2

= V̇1 + z2(z3 − k2z2 − z1 + d2(t)−
∂α1

∂x1
d1(t)

−
∂α1

∂y
Sdy(t))

= V̇1 + z2z3 − k2z22 − z1z2 + z2d2(t)

−
∂α1

∂x1
z2d1(t)−

∂α1

∂y
z2Sdy(t)) (13)

To positive constants ε2 and δ2, notice that

z2d2(t) ≤
z22
4ε22
+ ε22d

2
2 (t)

∂α1

∂x1
z2d1(t) ≤

( ∂α1
∂x1

)2z22
4ε22

+ ε22d
2
1 (t)

∂α1

∂y
z2Sdy(t) ≤

( ∂α1
∂y )

2z21
4δ22

+ δ22(Sdy(t))
2 (14)

the derivative of V2 can be written as

V̇2 ≤ −(k1 −
1

4ε21
−

1

4δ21
)z21 + z2z3

− (k2 −
1

4ε22
−

( ∂α1
∂x1

)2

4ε22
−

( ∂α1
∂y )

2

4δ22
)z22 + ε

2
1d

2
1 (t)

+ δ21(Sdy(t))
2
+ε22d

2
2 (t)+ε

2
2d

2
1 (t)+δ

2
2(Sdy(t))

2 (15)

Step 3: The derivative of z3 is

ż3 = ẋ3 − y(3)r − α̇2

= z4 + α3 + d3(t)−
∂α2

∂x2
d2(t)−

∂α2

∂x1
d1(t)

−
∂α2

∂y
Sdy(t)− (

∂α2

∂x2
x3 +

∂α2

∂x1
x2)

− (
∂α2

∂y(1)r
y(2)r +

∂α2

∂yr
y(1)r ) (16)

The virtual control α3 is chosen as

α3 = −k3z3 − z2 + (
∂α2

∂x2
x3 +

∂α2

∂x1
x2)

+ (
∂α2

∂y(1)r
y(2)r +

∂α2

∂yr
y(1)r ) (17)

where design parameter k3 is a positive constant. The follow-
ing Lyapunov function V3 is considered.

V3 = V2 +
1
2
z23 (18)

Then the derivative of V3 can be written as

V̇3 = V̇2 + z3ż3 (19)

To positive constants ε3 and δ3, notice that

z3d3(t) ≤
z23
4ε23
+ ε23d

2
3 (t)

∂α2

∂x2
z3d2(t) ≤

( ∂α2
∂x2

)2z23
4ε23

+ ε23d
2
2 (t)

∂α2

∂x1
z3d1(t) ≤

( ∂α2
∂x1

)2z23
4ε23

+ ε23d
2
1 (t)

∂α2

∂y
z3Sdy(t) ≤

( ∂α2
∂y )

2z23
4δ23

+ δ23(Sdy(t))
2 (20)

the derivative of V3 can be written as

V̇3 ≤ −(k1 −
1

4ε21
−

1

4δ21
)z21 + z3z4

− (k2 −
1

4ε22
−

( ∂α1
∂x1

)2

4ε22
−

( ∂α1
∂y )

2

4δ22
)z22

− (k3 −
1

4ε23
−

( ∂α2
∂x2

)2

4ε23
−

( ∂α2
∂x1

)2

4ε23
−

( ∂α2
∂y )

2

4δ23
)z23

+ (ε21 + ε
2
2)d

2
1 (t)+ ε

2
2d

2
2 (t)+ (δ21 + δ

2
2)(Sdy(t))

2

+ ε23d
2
3 (t)+ ε

2
3d

2
2 (t)+ ε

2
3d

2
1 (t)+ δ

2
3(Sdy(t))

2

= −

3∑
l=1

[kl −
1

4ε2l
(1+

l−1∑
m=1

(
∂αl−1

∂xm
)2)

−
1

4δ2l
(
∂αl−1

∂y
)2]z2l + z3z4

+

3∑
m=1

3∑
l=m

ε2l d
2
m(t)+

3∑
l=1

δ2l (Sdy(t))
2 (21)
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Remark 2: The virtual control αi(i = 1, 2, 3) shown in (5),
(11) and (17) is linear function of variables xj and y

(j−1)
r (j =

1, · · · , i). Thus we can get that ∂αi
∂xj

and ∂αi

∂yj−1r
are all constants.

This conclusion is correct for all virtual controls.
Step n: The derivative of zn is

żn = ẋn − y(n)r − α̇n−1
= bu+ θ f (x)+ ϕ(x)+ dn(t)− y(n)r

−

n−1∑
m=1

∂αn−1

∂xm
(xm+1 + dm(t))−

∂αn−1

∂y
Sdy(t)

−

n−1∑
m=1

∂αn−1

∂y(m−1)r
y(m)r (22)

The control input u can be designed as

u = êū

ū = −knzn − zn−1 − θ̂ f (x)− ϕ(x)

−

n−1∑
m=1

(
∂αn−1

∂xm
xm+1 +

∂αn−1

∂y(m−1)r
y(m)r )+ y(n)r (23)

where design parameter kn is a positive constant. θ̂ is the
estimation of θ . ê is the estimation of e = 1

b and ẽ = e− ê is
the estimation error. Notice that

bu = bêū = b(e− ẽ)ū = ū− bẽū (24)

The derivative of z
2

2 can be written as

znżn = −knz2n − zn−1zn + θ̃ f (x)zn − bẽūzn

+ zn(dn(t)−
n−1∑
m=1

∂αn−1

∂xm
dm(t))

− zn
∂αn−1

∂y
Sdy(t) (25)

The following Lyapunov function Vn is considered.

Vn = Vn−1 +
1
2
z2n +

b
2γe

ẽ2 +
1
2γθ

θ̃2 (26)

where γe and γθ are positive constants. ẽ and θ̃ are estimation
errors of e and θ , respectively. Then the derivative of Vn is

V̇n ≤ −
n−1∑
l=1

[kl −
1

4ε2l
(1+

l−1∑
m=1

(
∂αl−1

∂xm
)2)

−
1

4δ2l
(
∂αl−1

∂y
)2]z2l +

n−1∑
m=1

n−1∑
l=m

ε2l d
2
m(t)

+

n−1∑
l=1

δ2l (Sdy(t))
2
−

b
γe
ẽ ˙̂e−

1
γθ
θ̃
˙̂
θ

− knz2n + θ̃ f (x)zn − bẽūzn

+ zn(dn(t)−
n−1∑
m=1

∂αn−1

∂xm
dm(t))

− zn
∂αn−1

∂y
Sdy(t) (27)

To positive constants εn and δn, notice that

zndn(t) ≤
z2n
4ε2n
+ ε2nd

2
n (t)

∂αn−1

∂xm
zndm(t) ≤

( ∂αn−1
∂xm

)2z2n
4ε2n

+ ε2nd
2
m(t)

m = 1, 2, · · · , n− 1

∂αn−1

∂y
znSdy(t) ≤

( ∂αn−1
∂y )2z2n
4δ2n

+ δ2n(Sdy(t))
2 (28)

we have

V̇n ≤ −
n∑
l=1

[kl −
1

4ε2l
(1+

l−1∑
m=1

(
∂αl−1

∂xm
)2)

−
1

4δ2l
(
∂αl−1

∂y
)2]z2l +

n∑
m=1

n∑
l=m

ε2l d
2
m(t)

+

n∑
l=1

δ2l (Sdy(t))
2
−

b
γe
ẽ( ˙̂e+ γeūzn)

−
1
γθ
θ̃ ( ˙̂θ − γθ f (x)zn) (29)

The update laws can be chosen as

˙̂e = −γeūzn − γele(ê− e0)
˙̂
θ = γθ f (x)zn − γθ lθ (θ̂ − θ0) (30)

where le > 0, lθ > 0 and e0, θ0 are design parameters. Notice
that

leẽ(ê− e0) ≤ le(e− ê)(ê− e0)+
1
2
le(ê− e0)2

=
1
2
le(ê− e0)[(ê− e0)+ 2((e− ê))]

=
1
2
le(ê− e0)[2e− 2ê+ ê− e0]

=
1
2
le(ê− e0)[2e− ê− e0]

=
1
2
le[e− e0 + e− ê][e− e0 − (e− ê)]

=
1
2
le[(e− e0)2 − (e− ê)2]

= −
le
2
ẽ2 +

1
2
le(e− e0)2 (31)

and

lθ θ̃ (θ̂ − θ0) ≤ −
lθ
2
θ̃2 +

1
2
lθ (θ − θ0)2

and with (30), we can obtain

V̇n ≤ −
n∑
l=1

[kl −
1

4ε2l
(1+

l−1∑
m=1

(
∂αl−1

∂xm
)2)

−
1

4δ2l
(
∂αl−1

∂y
)2]z2l +

n∑
m=1

n∑
l=m

ε2l d
2
m(t)

+

n∑
l=1

δ2l (Sdy(t))
2
−
ble
2
ẽ2 −

lθ
2
θ̃2

+
b
2
le(e− e0)2 +

1
2
lθ (θ − θ0)2 (32)
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IV. STABILITY ANALYSIS
The following theorem can be established to show the bound-
edness of all signals in the closed loop system under the
proposed control scheme.
Theorem 1: Consider the class of uncertain system shown

in (1), with external disturbance di(t) in state equations, and
output disturbance dy(t) in output y. Under Assumption 1-3
and the controlling of the proposed control scheme shown
in (23) and (30) the following results can be achieved:

• All the signals in the closed-loop system are globally
bounded.

• The tracking error |y− yr | satisfies

limt→∞sup|y− yr | ≤

√
2h̄2
h̄1

M

where

h̄1 = min{k∗,
ble
2
,
lθ
2
}

h̄2 = max{
1
2
,
b
2γe

,
1
2γθ
}

k∗ = min
{
kl −

1

4ε2l
(1+

l−1∑
m=1

(
∂αl−1

∂xm
)2

−
1

4δ2l
(
∂αl−1

∂y
)2

}
l = 1, · · · , n

M = M1 +M2

M1 =

n∑
m=1

n∑
l=m

ε2l D
2
m +

n∑
l=1

δ2l D
2
y

M2 =
b
2
le(e− e0)2 +

1
2
lθ (θ − θ0)2

Proof: Firstly, the vector χ is defined as

χT = (z1, z2, · · · , zn, ẽ, θ̃ ) (33)

From (32), we have

V̇n ≤ −
n∑
l=1

[kl −
1

4ε2l
(1+

l−1∑
m=1

(
∂αl−1

∂xm
)2)

−
1

4δ2l
(
∂αl−1

∂y
)2]z2l +

n∑
m=1

n∑
l=m

ε2l D
2
m(t)

+

n∑
l=1

δ2l D
2
y −

ble
2
ẽ2 −

lθ
2
θ̃2

+
b
2
le(e− e0)2 +

1
2
lθ (θ − θ0)2

= −

n∑
l=1

[kl −
1

4ε2l
(1+

l−1∑
m=1

(
∂αl−1

∂xm
)2)

−
1

4δ2l
(
∂αl−1

∂y
)2]z2l −

ble
2
ẽ2 −

lθ
2
θ̃2

+M (34)

Clearly, the design parameter kl can be chosen to satisfy

kl −
1

4ε2l
(1+

l−1∑
m=1

(
∂αl−1

∂xm
)2)−

1

4δ2l
(
∂αl−1

∂y
)2 > 0 (35)

Remark 3: Because partial derivative ∂αl−1
∂xm

,
∂αl−1
∂y depend

on k1, · · · , kl−1, we can set kl big enough to keep the inequal-
ity (35) hold. Thus k∗ > 0 exists.
Then the derivative of Vn can be rewritten as

V̇n ≤ −k∗
n∑
l=1

z2l −
ble
2
ẽ2 −

lθ
2
θ̃2 +M

≤ −h̄1V0 +M (36)

where V0 = χTχ . With (26), the following inequality can be
obtained.

Vn ≤ h̄2V0 (37)

From (37), we know that Vn(t) is bounded. Then signals
z1, z2, · · · , zn, ẽ, θ̃ are all bounded. Furthermore, virtual con-
trol αi and input u are bounded. Thus all the signals in the
closed-loop system are globally bounded.

From (36) and (37), the derivative of Vn satisfy

V̇n ≤ −
h̄1
h̄2
Vn +M (38)

By solving (38), we can get

Vn(t) ≤ Vn(0)e
−
h̄1
h̄2
t
+
h̄2
h̄1
M (1− e−

h̄1
h̄2
t )

≤ (Vn(0)−
h̄2
h̄1
M )e−

h̄1
h̄2
t
+
h̄2
h̄1
M (39)

So we have

limt→∞Vn(t) =
h̄2
h̄1
M (40)

Because of

(y− yr )2 = z21 ≤ 2Vn (41)

the upper bound of |y− yr | can be established as

limt→∞sup|y− yr | ≤

√
2h̄2
h̄1

M (42)

�

Remark 4: To guarantee the stability of system (1),
the design parameters should be satisfied the following
inequalities:

k1 −
1

4ε21
−

1

4δ21
≥ 0

k2 −
1

4ε22
−

( ∂α1
∂x1

)2

4ε22
−

( ∂α1
∂y )

2

4δ22
...

kn −
1
4ε2n

(1+
n−1∑
m=1

(
∂αn−1

∂xm
)2)−

1
4δ2n

(
∂αn−1

∂y
)2 (43)
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FIGURE 1. Tracking.

FIGURE 2. State x2.

FIGURE 3. Signal v .

V. SIMULATION STUDIES
We now apply the proposed control scheme to the following
2nd-order system.

ẋ1 = x2 + d1(t)

ẋ2 = u+ f (x)θ + d2(t)

y = x1 + dy(t) (44)

where x1, x2 are system states, y is the output signal. u is
the input signal. d1(t), d2(t) are disturbances in state equa-
tions and, dy(t) represents the output disturbance. f (x) =
0.2cos(x2) is a known function. θ is an unknown parameter.

(1) Case 1: Firstly, we consider that there are no distur-
bances in state equations. Namely d1(t) = d2(t) = 0. In sim-
ulation, we take dy(t) = sin(0.1t)cos(0.1t), and θ = 0.2.
The design parameters can be chosen as: k1 = 1.2, k2 = 2,
δ1 = 0.5, δ2 = 0.5, γθ = 10, lθ = 0.01, θ0 = 0.1.

FIGURE 4. Input u.

FIGURE 5. Tracking.

FIGURE 6. State x2.

FIGURE 7. Signal v .

The reference signal yr = sin(0.1t). The initial values are
taken as: x1(0) = 1, x2(0) = 0, θ̂ (0) = 0.

The simulation results are shown in Fig.1-4. Fig.1 rep-
resents tracking error and the states x1, x2 are shown
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FIGURE 8. Input u.

in Fig.2 and Fig.3, respectively. Fig.4 shows the input
signal u.

(2) Case 2: In this case, we consider that there are dis-
turbances in state equations. In simulation, we take d1(t) =
0.1sint, d2(t) = 0.1cost , dy(t) = sin(0.1t)cos(0.1t),
and θ = 0.2. The design parameters can be chosen as:
k1 = 1, k2 = 1.6, δ1 = 0.7, δ2 = 0.7, ε1 = 0.7, ε2 =
0.7, γθ = 10, lθ = 0.01, θ0 = 0.1. The reference signal
yr = sin(0.1t). The initial values are taken as: x1(0) = 1,
x2(0) = 0, θ̂ (0) = 0.

The simulation results are shown in Fig.5-8. Fig.5 rep-
resents tracking error and the states x1, x2 are shown
in Fig.6 and Fig.7, respectively. Fig.8 shows the input
signal u.

Clearly, we can get that all signals of the systems are
bounded under the controlling of the proposed control
scheme to the above two cases.

VI. CONCLUSION
In this paper, the control problem is investigated for a class of
nonlinear system with unknown external disturbance includ-
ing disturbance in every state equation and output equation.
The uncertainties caused by disturbance in state equation and
output equation are all separated two different parts by using
Young’s inequality in every step. Then they will be com-
pensated by selecting appropriate design parameters. Finally
simulation studies are used to verify the effectiveness of the
proposed control scheme.
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