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ABSTRACT This paper studies the phenomenon of sloshing in the field of automatic machines for packaging
liquid products, with specific reference to containers with planar motions. After introducing two equivalent
discrete models based on a mass-spring-damper system borrowed from the literature (one linear and one
non-linear), a novel method is proposed to evaluate the sloshing height of the liquid, namely the deviation of
its free surface at the wall of the container from the equilibrium condition. The merits of this method are that
it is easy to use, requiring no experimental evaluation of the system parameters or computationally expensive
fluid dynamic simulations, and it gives good results also for highly dynamical motions. Moreover, though
this paper focuses on cylindrical containers performing rectilinear movements, the presented technique
can be extended to containers of arbitrary shape and generic planar motions. The method is validated by
experimental tests using cylindrical containers of different dimensions and many rectilinear motion laws
with maximum accelerations up to 12 m/s2. The results are compared with those obtained by using other
methods of equal complexity available in the literature, showing the effectiveness of the proposed technique.

INDEX TERMS Sloshing, predictive models, numerical prediction, experimental analysis.

I. INTRODUCTION
The term sloshing refers to the stirring of a liquid inside a
container subject to an external excitation, such as a quick
change of velocity. In this paper, we specifically refer to
the packaging industry of liquid products, where, on the one
hand, the high productivity requires transfer motions of the
containers with high accelerations and velocities (roughly
up to 10 m/s2 and 2 m/s), and, on the other hand, it is
important to prevent liquids from overflowing and to main-
tain control on their free surface (e.g., not to dirt the inside
of the container, which is a common requirement in the
pharmaceutical packaging industry). The simplest way to
reduce liquid sloshing is to design a suitable container shape,
but this is infeasible in the packaging industry, as the cus-
tomer chooses the container shape based on market demands.
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For this reason, the problem must be solved by choosing a
suitable motion law of the container.

This problem is extensively analyzed in the literature.
As for the design of anti-sloshing motion laws, input shaping
is applied in [1]–[6] to perform rectilinear or more complex
motions of containers with different shapes, Infinite Impulse
Response (IIR) filters are exploited in [7] and Finite Impulse
Response (FIR) filters are used in [8]. A general study on
the last ones is also reported in [9] and [10]. Another com-
mon approach to designing the optimal trajectory of a con-
tainer is the solution of a constrained optimization problem,
as in [11] and [12].

An important aspect to consider to design the correct tra-
jectory for a given container filled with a liquid is the eval-
uation of the maximum sloshing height, namely the highest
point reached by the liquid free surface during motion. As a
matter of fact, the classical models known in the literature to
study the liquid behavior (mass-spring-damper and pendulum
models [13]–[17]) do not provide responses with a clear
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practical meaning: they are built with dummy masses whose
displacements can be calculated, but these are not immedi-
ately related to the actual sloshing height. A simple model-
based computational instrument able to analytically estimate
the response of the system in terms of sloshing height for
an arbitrary container trajectory would be very useful since
it would allow the motion designer to reasonably assess
whether the liquid is likely to spill out or surpass a given limit,
without experimental testing or computationally-demanding
fluid dynamic (CFD) simulations.

In some works, the sloshing height is estimated using a
very simple pendulum-based model [1], [18], but no details
are provided about the accuracy and the limits of this esti-
mation. In [19] a tuned liquid damper is introduced, and the
sloshing height is estimated through the fluid sloshing equa-
tions and with a similarity between the tuned liquid damper
and a tuned mass damper, but the analysis is developed only
for a rectangular container. The same is true for the non-linear
model presented in [20], which is described by (complex)
equations that are valid only for rectangular vessels. In [21],
a two-degree-of-freedom mass-spring-damper is introduced
and the sloshing height is computed by solving the dynamic
equations of the model: however, some experimental tests
or a finite-element model of the container is necessary to
obtain all parameters. Experimental or pseudo-experimental
results (obtained by fluid dynamic simulations) are also used
in [22] and [23], where the liquid behavior is predicted by
a model constructed by machine-learning techniques from
available data. In [24], an accurate study explicitly related to
the evaluation of the sloshing height for intermittent motions
in packaging machines is conducted by using the pendu-
lum model for rectangular containers. Here, the limits of
applicability of the pendulum model to predict the sloshing
height are discussed for different dimensions of the con-
tainer; in particular, it is shown that the maximum acceler-
ations for the validity of this model are between 1.2 m/s2

and 2.3 m/s2.
To the authors’ knowledge, there is no proof in the liter-

ature that the mass-spring-damper or the pendulum model
may effectively be used to predict the sloshing height for
highly dynamical motions. Accordingly, the main objectives
and contributions of this work to advance state of the art are
the following:
• it provides a computational method for the prediction
of the maximum sloshing height of a liquid carried
by a container subjected to highly dynamical motions:
the method is simple yet accurate, namely it does not
rely on experimental tests or measurements on the real
system, it does not require computationally-expensive
CFD simulations, and it is fairly precise for container
accelerations up to (roughly) 10 m/s2;

• it validates the merits of the aforementioned
sloshing-height-prediction method by an extensive
experimental campaign, and by comparison with other
computational procedures of equal complexity available
in the literature.

For our analysis, we will consider low-viscosity liquids
(e.g., water) since these are the ones that suffer the most
severe sloshing phenomena and, thus, represent a worst-case.
Moreover, we will focus on cylindrical containers performing
fast rectilinear motions since these are the most common
in automatic packaging machines. However, extensions to
arbitrary planar motions and generic container shapes will
also be discussed.

The paper structure is as follows. Section II introduces two
equivalent discrete models for sloshing description. A new
model-based method to computationally evaluate the slosh-
ing height is described in Section III. Section IV shows the
results of the experimental tests performed to assess the pro-
posed technique, also comparing with other methods avail-
able in the literature. Finally, Section V draws conclusions.

II. SLOSHING MODEL
The sloshing phenomenon is well-known in the literature.
An analytical development, based on continuum models,
is available in [13] and [14], under the following assumptions:
the fluid is incompressible, irrotational and non-viscous; cap-
illarity and surface tensions are neglected (which is reason-
able for practical applications in the gravitational field); the
container is rigid and waterproof, and it undergoes planar
translations. For the sake of simplicity, we will focus on
cylindrical containers performing rectilinear motions, though
themethod for sloshing-height estimation that wewill present
in Section III can be extended to containers of any shape
performing arbitrary planar motions. The analysis of the
homogeneous response of the continuum model provides the
so-called sloshing modes. The natural frequency associated
to the generic mode mn is [13]:

ωmn =

√
gξmn
R

tanh
(
ξmnh
R

)
(1)

where R is the radius of the container, h is the filling height,
g is the gravity acceleration, and ξmn (representing a root
of the derivative of the Bessel function with respect to the
radial coordinate r) is a constant parameter known for every
sloshing mode. The values of ξmn are tabulated in [25];
m denotes the circumferential modes and n the radial ones.
Reference [13] shows that circumferential modes greater
than one are always negligible. Radial modes have a more
relevant contribution to the overall response; however, also
radial modes greater than one are usually negligible in many
practical applications.

Different equivalent mechanical models can be used for a
discrete, and thus simpler, description of sloshing. All of them
are based on the following assumptions [13]:
• they must have the same total mass, moment of inertia,
and center of mass of the original system;

• they must exhibit the same modes;
• the liquid must exert the same wrenches on the container
wall.
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We can identify three different dynamic regimes for the
motion of the liquid free surface, with each one of them
corresponding to a different model [13], [16], [17]:
• linear motion: valid for limited accelerations of the con-
tainer and correspondingly limited liquid oscillations,
in which the free surface remains approximately planar;

• weakly non-linear motion: for oscillations with greater
amplitude and closer to the natural frequencies of the
system; in this situation, the phenomenon of rotary
sloshing appears, which causes the liquid to move out
the motion plane of the container;

• strongly non-linear motion: valid when the free sur-
face is subjected to very high accelerations and impacts
against the container walls.

The more complex the motion of the free surface that we
want to describe, the more complex the equivalent model.
In many practical cases, linear or weakly non-linear models
are reasonably accurate so that we will focus on them.

A distinct consideration about damping modeling is in
order. In fact, damping is largely due to viscosity, which is
neglected when solving the analytical problem of continuum
models. For this reason, damping is usually taken into account
by using empirical formulas. In our analysis, we will use
the formulation found in [13], expressed for a generic radial
mode n as:

ζn = 0.92

√
µ/ρ√
gR3

·

[
1+

0.318
sinh (1.84h/R)

(
1+

1− h/R
cosh (1.84h/R)

)]
(2)

where µ and ρ are, respectively, the dynamic viscosity and
density of the liquid.

A. LINEAR DISCRETE MODEL
There are two linear models that are commonly used
to describe sloshing: the pendulum model (Fig. 5 in the
Appendix A) and the mass-spring-damper model (Fig. 1(a)).
In this paper, we use the latter since it gives more accurate
results as the container acceleration and the corresponding
liquid oscillation amplitude increase (as will be shown in
Section IV). In both models, there is a fixed mass m0 (with
moment of inertia I0) in the lower part of the container, and
a number of mobile sloshing masses, with the generic one
beingmn. In the mass-spring-damper model, these masses are
connected to the container by springs with stiffness kn and
dampers with damping constant cn. Each mass represents a
radial mode, while circumferential modes greater than one are
neglected. If the container only moves along the horizontal
x axis, the motion of mn is described by:

ẍn + 2ζnωnẋn + ω2
nxn = −ẍ0 (3)

where the natural frequency and the damping ratio are given
by (1) (setting m = 1 and dropping the corresponding
subscript for brevity) and (2), respectively. The term ẍ0 is the
acceleration of the container, and xn is the displacement of
the nth sloshing mass.

FIGURE 1. Linear mass-spring-damper model (a) and representation of
the free surface of the liquid (b).

The value of the nth sloshing mass mn is obtained by
equating, for each mode, the sloshing force acting on the
container wall calculated with the continuum model to the
sloshing force computed by the equivalent discrete model, for
an harmonic excitation, namely [13]:

mn =
2mf R

ξ1nh
(
ξ21n − 1

) tanh(ξ1nh
R

)
(4)

where mf is the total mass of the fluid. In the linear model,
the vertical displacement of the liquid center of mass may
be neglected, and the free surface remains approximately
planar.1 This means that the shape of the free surface can be
described with a plane whose equation in polar coordinates
(r , θ) is:

η =
∑
n

ηn
r
R
cos(θ ) = η

r
R
cos(θ) (5)

where η is the sloshing height at a generic point of the free
surface, ηn is the sloshing height at the container wall in the
motion plane associated with the n-th mode, and the total
sloshing height at the container wall (Fig. 1(b)) is:

η =
∑
n

ηn

B. NON-LINEAR DISCRETE MODEL
The non-linear model used in this Section is borrowed
from [15]. In this case, the free surface shape is no longer
planar, but it is obtained by the study of the forced response
to an harmonic excitation applied to the continuum model:

η =
∑
n

ηn
J1
(
ξ1n

r
R

)
J1(ξ1n)

cos(θ ) = η6 (r) cos(θ ) (6)

where J1 is the Bessel function of order 1, and η6 is:

η6 =
∑
n

ηn
J1
(
ξ1n

r
R

)
J1(ξ1n)

This boundary condition leads the nth sloshing mass, still
given by (4), to be constrained to move on a paraboloid

1Under these conditions, one can compute heights h0 and hn
in Fig. 1(a) [13]: these formulations are not reported, since they have
no role in the following study.
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surface, with a non-linear spring of order w (which gives an
elastic force equal to knx2w−1n ) connecting it to the axis of the
cylindrical container (Fig. 2(a)).

FIGURE 2. Non-linear equivalent model (a) and representation of the free
surface of the liquid (b).

Reference [15] reports the motion equations of mn along
both horizontal axes, x and y. However, experimental tests
show that the effect of rotary sloshing (i.e., the movement
of the sloshing mass in the direction y perpendicular to the
excitation) has minor importance, so that, for the sake of
brevity, we focus here only on the motion along the x axis,
namely:

ẍn + 2ωnζn
(
ẋn + C2

n x
2
nẋn
)
+ C2

n

(
xnẋ

2
n + x

2
nẍn
)

+ω2
nxn

[
1+ αnx2w−2n

]
+
ẍ0
R
= 0 (7)

Here xn = xn/R, ωn and ζn are still given by (1) and (2),
αn is a dimensionless constant of the non-linear spring, and
Cn = ξ1ntanh (ξ1nh/R). Following the instructions given
in [15], we choose a cubic spring (with w = 2) and the
constant αn in the interval [1/2, 2/3]. These values work
well for the dimensions of the containers used in the tests
described in Section IV, even if these dimensions differ from
the ones of the containers used in [15]. Equation (7) reduces
to (3) if linearized.

III. SLOSHING HEIGHT COMPUTATION
Motion equations for the linear or the non-linear model can
be solved numerically for every input acceleration ẍ0 of the
container, thus giving the evolution in time of the displace-
ments xn of the sloshing masses, but these are not physical
parameters. For this reason, it is more interesting to calculate
the sloshing height η at the container wall, which is a real,
measurable quantity. In the following, we propose a new
technique to do so. The method is innovative since:
• it is purely model-based;
• it is real-time capable;
• it can be applied to both the linear and the non-linear
discrete model;

• it is valid for both linear and weakly non-linear motions
(see Section IV);

• it can be applied to every container shape, though here
we focus on cylindrical ones.

Indeed, the approach proposed in [21] involves some exper-
imental tests or a finite-element model of the container,
whereas the formulations used in [19] and [20] are only valid
for rectangular container. Also the methods based onmachine
learning algorithms shown in [22] and [23] require experi-
mental tests or complex fluidodynamic simulations of the liq-
uid behavior. In [18] and [1], the sloshing height is estimated
by using the pendulum model (reported in Appendix A), but
the latter does not give accurate results for increasing values
of the container acceleration (see Section IV).
Our computational procedure is based on the assumption

at the basis of the discrete models, namely the equality of
mass and center of mass between the continuum model and
the discrete ones.

Consider a container with section � filled with liquid up
to height h. In any one of the discrete models represented
in Figs. 1 and 2, the horizontal displacement of the center of
mass is given by:

xGmf =
∑
n

xnmn + 0 · m0 =
∑
n

xnmn (8)

When the container is moved along the x axis, the liquid
free surface during sloshing is described by a general shape
η(x, y, η) in the continuum model, with the position of the
center of mass along x being given by:

xG =
1
�h

∫∫
�

∫ h/2

−h/2−η(x,y,η)
x dzd� (9)

If the shapes of the container and the liquid free surface are
known, one can obtain the value of η by equating (8) and (9).
Though in this paper we consider only cylindrical con-

tainer, (8) and (9) are applicable to containers with an arbi-
trary shape (as long as a suitable discrete model to describe
the system, i.e., to compute xn, is available).

A. LINEAR DISCRETE MODEL
In the linear model the free surface is assumed to be planar
and given by (5), so that (9) yields:

xG =
1

πR2 h

∫ R

0

∫ 2π

0

∫ h
2

−
h
2−η

r
R cos(θ)

r2 cos(θ)dzdθdr

=
Rη
4h

By substituting this result back in (8) and considering that
mf = πR2 hρ, the sloshing height at the wall of the container
can be obtained as a function of the displacements xn of
sloshing masses:

η =
4
∑

n xnmn
πR3ρ

= 8
∑
n

xn
ξ1n

(
ξ21n − 1

) tanh(ξ1n hR
)

(10)

Appendix A shows that, for small oscillations, the estima-
tion given by the pendulummodel is analogous to that offered
in (10). However, this is no longer true for increasing values of
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the container acceleration and liquid oscillation amplitudes,
for which the pendulum-model formula is no longer accurate,
whereas (10) still is (see Section IV).

B. NON-LINEAR DISCRETE MODEL
Here, we consider the simplified model described by (7).
Using the free-surface shape given in (6), (9) gives:

xG =
1

πR2 h

∫ R

0

∫ 2π

0

∫ h
2

−
h
2−η6(r)cos(θ)

r2 cos(θ )dzdθdr

=
R
h

∑
n

ηn

ξ21n

Substituting this result back in (8) yields:

η =

∑
n ξ

2
1nxnmn

πR3ρ

= 2
∑
n

ξ1nxn
ξ21n − 1

tanh
(
ξ1n

h
R

)
(11)

One of the assumptions of the linear model is the irrele-
vance of the vertical displacement of the center of gravity, but
this assumption is no longer valid for the non-linear model.
This means that we can equate not only the displacement of
the center of gravity along the x direction but also the one in
the vertical direction z. By doing so, we obtain the same result
expressed in (11) as further proof of the model coherence.
Therefore, only one equation is sufficient to find (11), and it
is irrelevant whether the conservation of the center of gravity
along x or z is imposed.
By comparing (10) and (11), we notice that the contri-

bution of every mode in the two formulations differs for
the scale factor 4/ξ21n. In particular, by only considering the
fundamental mode (i.e. n = 1), the relation found for the
linear model (10) always overestimates the sloshing height by
4/ξ211 = 1.18 compared to (11), since ξ11 = 1.84118, [25].
For higher modes, ξ1n is greater than 2 (ξ12 = 5.33144,
ξ13 = 8.53632, . . . ). So, for equal displacements of the
sloshing masses, higher modes have a larger contribution
in the non-linear model than in the linear one; however,
higher-mode effect is often negligible, since the values of mn
rapidly drops for modes greater than one.

So far, we have considered container motions only along
the x axis for the sake of simplicity. The extension of our
results to arbitrary planar motions of a cylindrical container
subjected to excitation also along the y direction is reported
in Appendix B.

IV. EXPERIMENTAL RESULTS AND VALIDATION
The method described in Section III for sloshing-height esti-
mation was tested by using the experimental setup shown
in Fig. 3(a), comprising cylindrical containers with differ-
ent diameters (27mm, 50mm, 92mm) filled with a constant
volume of water (15.2 ml, 80.5 ml, 500 ml, respectively),
because the liquid height (above a certain minimum value)
has a small influence on the system response. The water was
mixed with a minimal amount of blue dye to better observe

FIGURE 3. Experimental setup (a) and frames taken from recorded videos
when the container is at rest (b) or in motion (c).

the liquid movement. The quantity of dye was so small that
it changed the physical properties of the liquid (density, vis-
cosity, and surface tension) in no appreciable way.

The containers were moved by a linear transport system
produced by Beckhoff, called XTS, implementing a 1m-long
rectilinear rest-to-rest movement for all trajectories. The time
evolution of the liquid sloshing was recorded by a camera
mounted on theXTS cart, thus moving with the container. The
frames analyzed in the recorded videos are similar to those
shown in Fig. 3.
Several trajectories were assigned to the three container

types, the liquid response was recorded, and the correspond-
ing sloshing heights were compared with those obtained by
the numerical method presented in Section III. In particular,
the latter was applied to four models:
• linear mass-spring-damper model (L-MSD): the dis-
placement of the sloshing mass was found by solv-
ing (3), and the result was introduced into (10) to obtain
the sloshing height;

• non-linear mass-spring-damper model (NL-MSD): the
displacement of the sloshing mass was found by solv-
ing (7), and the result was introduced into (11) to obtain
the sloshing height;

• linear pendulum model (L-PEN): the angle described
by the sloshing mass with the axis of the container was
found by solving (14), and the result was introduced into
(13) to obtain the sloshing height;

• non-linear pendulum model (NL-PEN): the angle
described by the sloshing mass with the axis of the
container was found by solving (12), and the result was
introduced into (13) to obtain the sloshing height.

In all cases, the numerical problem requires solving a (linear
or non-linear) ODE ((3), (7), (14) and (12), respectively),
with initial conditions xn(0) = ẋn(0) = 0 (MSD models) or
θn(0) = θ̇n(0) = 0 (PENmodels). In this paper, we integrated
all ODEs by the MATLAB function ode45 (based on an
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FIGURE 4. Comparison between the results obtained, in terms of sloshing height, by numerical computations and experiments. The maximum
acceleration and velocity of the container and the maximum sloshing height predicted by the numerical models and measured in the experiments
are shown in Tables 1, 2 and 3. For smaller containers, motion laws with lower duration are chosen to produce higher excitation accelerations and,
thus, larger sloshing.

explicit Runge-Kutta (4,5) formula), with specified relative
and absolute error tolerances equal to 1e − 8. For all the
models (linear and non-linear, mass-spring-damper and pen-
dulum) solving the motion equation to find the evolution in
time of the sloshing height only requires a few hundredths of
a second. For this reason, for both the linear and the non-linear
mass-spring-dampermodel, 3 sloshingmasses are considered
to find the responses shown in Fig. 4; as a matter of fact,
adding a sloshing mass to the simulation means solving an
additional ODE, with a negligible time increment.

Fig. 4 shows a few of the obtained numerical and experi-
mental results: many other tests were performed with differ-
ent durations and motion laws to validate the models. In par-
ticular, the graphs in Fig. 4 represent the evolution in time
of the sloshing height at the wall of the container in different
cylindrical vessels subjected to different movements:

• the blue line is the numerical prediction based on the
linear mass-spring-damper model (L-MSD);

• the red line is the numerical prediction based on the
non-linear mass-spring-damper model (NL-MSD);

• the yellow line is the numerical prediction based on the
linear pendulum model (L-PEN);

• the purple line is the numerical prediction based on the
non-linear pendulum model (NL-PEN);

• the green line is the trend obtained from the experiments.

More information on the trajectories used for the construc-
tions of the graphs shown in Fig.4, are listed in Table 1:

• the first column indicates the corresponding trajectory
in Fig. 4;

• the second column indicates the container to which
the motion law is applied: small, medium, or big
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TABLE 1. Characteristics of the trajectories used in the experimental
tests: container, shape of the motion law, duration, and peaks in
accelerations and velocity.

(vessels characteristics are listed at the beginning of this
Section);

• the third column indicates which kind of motion law is
used: modified trapezoidal acceleration, poly5, or a tra-
jectory derived from these by applying an input shaper
or a filter;

• the fourth column indicates the motion law duration;
• the fifth column indicates the maximum acceleration
reached during motion;

• the sixth column indicates the maximum velocity
reached during motion.

Tables 2 and 3 summarize some data extrapolated from the
graphs in Fig. 4. Both tables have the same columns, but
Table 2 refers to the liquid behavior during the container
movement, whereas Table 3 refers to the liquid motion during
the container rest phase:
• the first column indicates the corresponding trajectory
in Fig. 4;

• the second column indicates the maximum slosh-
ing height predicted by the linear mass-spring-damper
(L-MSD) model;

• the third column indicates the maximum sloshing
height predicted by the non-linear mass-spring-damper
(NL-MSD) model;

• the fourth column indicates the maximum sloshing
height predicted by the linear pendulum (L-PEN)model;

• the fifth column indicates the maximum sloshing height
predicted by the non-linear pendulum (NL-PEN) model;

• the sixth column indicates the maximum sloshing height
reached during the experiment (Exp).

The values in brackets are the relative percentage error (ε)
between the predicted value (ηpred ) and the experimental one
(ηexp), i.e.:

ε =
ηpred − ηexp

ηexp
· 100

In general, we may observe that the numerical prediction
is always fairly accurate in terms of frequency for all models,
but the sloshing height estimated by the pendulum models
loses physical meaning for highly dynamical motions. The
reason is related to (13); as a matter of fact, this formulation
is strictly valid only for small oscillations because, for large

ones, θn tends to reach values in the proximity of 90o and
so η goes to infinity. Better results are obtained with the
non-linear pendulum model than with the linear one, but
trajectories 5 through 9 and 12 (Fig. 4(e) – 4(i) and 4(l)) show
that also the non-linear pendulum model loses adherence to
reality for motions with high container accelerations. Instead,
the mass-spring-damper models, with the formulation of the
sloshing height provided in Section III, give fairly accurate
results even in these cases. In particular, by observing the
data shown in Table 2, we can see that the error in esti-
mating the maximum sloshing height made by the linear
and non-linear mass-spring-damper models is about 30% in
the worst case (but usually much smaller) and all predicted
values are reasonable. Moreover, as expected, the non-linear
model is more precise, thus giving in most cases an error
of less than 16%. We notice that trajectories 9 through 12
(Fig. 4(i) – 4(l)) are all anti-sloshing (obtained by applying,
respectively, ZVDD input shaping, IIR filters, ZV input shap-
ing, and FIR filters), so even for optimized motion laws (with
more complex trends) the mass-spring-damper model gives
good results for sloshing-height estimation.

For the sake of completeness, we also report some con-
siderations about the free response of the liquid, i.e., the
oscillation of the free surface after the container motion is
ended. It is clear from Fig. 4 that all models lose precision
at this stage. This is true in particular for the linear models,
that cannot catch the oscillations at the end of the optimized
trajectories (Traj. 9 through 12), since these are calculated
with the objective of damping the residual vibration (for these
models, this means that the mathematical response of the first
mode goes to zero so that only the oscillations of modes 2
and 3 remain). Both non-linear models perform better, but
they make much bigger mistakes in estimating the maximum
sloshing height during the rest phase of the container than
during its motion, as shown in Table 3. This is perhaps due
to the high sensitivity of the free response to initial condi-
tions, namely the exact values that liquid displacement and
velocity reach at the end of the container motion, values
that our model cannot estimate precisely. In the experiments,
rotary sloshing was more prominent when the container was
at rest, and the liquid had no longer a preferred excitation
direction. Nevertheless, the non-linear mass-spring-damper
model still seems to provide the best estimation, though in
many cases this is comparable with the one provided by the
non-linear pendulummodel due to the lower amplitude of the
free-surface vibration.

Finally, Table 4 shows the effect of each mode in the
responses computed by the mass-spring-damper models:
• the first column indicates the corresponding trajectory
in Fig. 4;

• the second column indicates the maximum sloshing
height predicted by the first mode of the linear mass-
spring-damper (L-MSD) model;

• the third column indicates the maximum sloshing height
predicted by the first mode of the non-linear mass-
spring-damper (NL-MSD) model;
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TABLE 2. Comparison of the maximum sloshing height during the movement predicted with different models and the one measured in the experimental
tests. The relative percentage error between the predicted value and the experimental one is shown in brackets.

TABLE 3. Comparison of the maximum sloshing height during the rest phase (after the container movement) predicted with different models and the one
measured in the experimental tests. The relative percentage error between the predicted value and the experimental one is shown in brackets.

TABLE 4. Comparison of the maximum sloshing height predicted by every mode for both the linear and the non-linear mass-spring-damper model. The
percentage value of max(η2) and max(η3) with respect to max(η1) is shown in brackets.

• the fourth column indicates the maximum sloshing
height predicted by the second mode of the linear mass-
spring-damper (L-MSD) model;

• the fifth column indicates the maximum sloshing height
predicted by the second mode of the non-linear mass-
spring-damper (NL-MSD) model;

• the sixth column indicates the maximum sloshing
height predicted by the third mode of the linear mass-
spring-damper (L-MSD) model;

• the seventh column indicates the maximum sloshing
height predicted by the third mode of the non-linear
mass-spring-damper (NL-MSD) model.
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The values in brackets are the percentage values of the max-
imum sloshing height predicted by the second and the third
mode with respect to the one predicted by the first mode, i.e.
100 · max(η2)/max(η1) and 100 · max(η3)/max(η1), respec-
tively (for both the linear and non-linear mass-spring-damper
model). Notice that the maximum sloshing heights in the
three modes are not reached in the same instant, so their
sum is not the maximum of the overall response expressed
in Table 2. The effects of modes 2 and 3 are always almost
negligible in the linear model, whereas they are appreciable
in the non-linear model.

V. CONCLUSION
This paper analyzed liquid sloshing in containers undergoing
fast motions in the field of automatic packaging machines.
Based on two equivalent discrete models taken from the lit-
erature, one linear and one non-linear, a new method to eval-
uate the sloshing height of the liquid was proposed for both
models. The implementation of the aforementionedmodels in
a numerical solver allows one to easily predict the system’s
response for every input law assigned to the container with-
out needing experimental tests or computationally expensive
fluid dynamic simulations, thus representing a useful tool for
the motion-law designer.

Experimental results conducted on cylindrical containers
of different dimensions proved the effectiveness of the pro-
posed computational method to predict the sloshing height in
rectilinear movements even in the case the container performs
highly dynamical motions (i.e., accelerations up to 11.8m/s2

and velocities up to 2.7 m/s). It must be observed that the
prediction of the liquid response is not always accurate during
the entire motion for very fast container movements, since the
free surface exhibits complex behaviors and it does not pre-
serve a planar or Bessel-function shape, but the estimation of
the maximum sloshing height is always rather accurate, with
errors always smaller than 30% and in most cases comprised
between 1% and 17%.

APPENDIX A
PENDULUM MODEL
The main assumption here is that the liquid free surface
always remains planar, so that its oscillation can be modeled
as a pendulum attached to the line normal to the liquid plane
(Fig. 5). In this case, if the container only moves along

FIGURE 5. Pendulum model.

the x axis, the motion equation is (see [8]):

θ̈n + 2ζnωnθ̇n + ω2
nsin(θn) = −

ẍ0
ln
cos(θn) (12)

and the sloshing height is:

η = Rtan(θn) (13)

In principle, (12) can be numerically integrated, for a
given excitation, even for high input accelerations ẍ0 and,
thus, large swinging angles θn. However, the larger the latter,
the less reasonable is the initial assumption of a planar liquid
free surface, and thus the less accurate are the expected
results.

The pendulum dynamics can be linearized for small dis-
placements around the equilibrium point θn = 0, thus obtain-
ing a formulation equivalent to the one introduced for the
mass-spring-damper model in (3):

θ̈n + 2ζnωnθ̇n + ω2
nθn = −

ẍ0
ln

(14)

where, for equivalence with the natural frequency in (1):

ln =
R

ξ1ntanh
(
ξ1n

h
R

) (15)

Since, for small displacements, tan(θn) ≈ sin(θn) = xn/ln,
the sloshing height, from (13), becomes:

η = xnξ1ntanh
(
ξ1n

h
R

)
(16)

Since the computation of η in (16) is not affected by the
sloshing mass mn, it is reasonable to take only the first-mode
displacement x1 into account, otherwise higher-mode dis-
placements would give unjustified large contributions. There-
fore, considering only the fundamental mode (n = 1) and
comparing (10) and (16), we obtain that (16) underestimates
the sloshing height with respect to (10) by the constant
term:

Ch =
8

ξ211

(
ξ211 − 1

)
Since ξ11 = 1.84118 [25], we haveCh = 0.9874 ≈ 1. This

proves that (10) and (13) give very similar results, but only
under the assumption of small oscillations (and thus small
container accelerations).

APPENDIX B
SLOSHING HEIGHT FOR PLANAR MOTIONS OF A
CYLINDRICAL CONTAINER
The motion equations for the complete 3-dimensional
non-linear model introduced in Section III-B, with an
excitation along both the x and the y axis (ẍ0 and ÿ0),
are [15]:

ẍn + 2ωnζn
[
ẋn + C2

n

(
x2nẋn + ynẏnxn

)]
+C2

n

(
xnẋ

2
n + x

2
nẍn + xnẏ

2
n + xnÿnyn

)
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+ω2
nxn

[
1+ αn

(
x2n + y

2
n

)w−1]
+
ẍ0
R
= 0

ÿn + 2ωnζn
[
ẏn + C

2
n

(
y2nẏn + xnẋnyn

)]
+C2

n

(
ynẏ

2
n + y

2
nÿn + ynẋ

2
n + ynẍnxn

)
+ω2

nyn

[
1+ αn

(
x2n + y

2
n

)w−1]
+
ÿ0
R
= 0

By solving these two differential equations, we may obtain
the displacement of the generic sloshing mass along the x and
y axes (xn and yn, respectively). In any instant, the sloshing
mass lies in a plane passing through the axis of the cylindrical
container andwith orientationφn with respect to the positive x
axis (see Fig. 6). The value of φn may be found by knowing
xn and yn as:

φn = atan
(
yn
xn

)

FIGURE 6. Top view of the center of gravity and sloshing mass of the
3-dimensional non-linear discrete model.

φn also indicates the plane of the maximum sloshing height
for the continuum model. Accordingly, on this plane we can
apply the same method described in Section III to calcu-
late η. In (8), we only need to replace xG with rG and xn
with rn, thus obtaining: rGmf =

∑
n rnmn. Equation (9) is

also applicable in the radial dimension to find rG by substi-
tuting x with r . Finally, considering that r2n = x2n + y2n, we
obtain:

η =

∑
n ξ

2
1nmn

√
x2n + y2n

πR3ρ
(17)
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