
Received June 30, 2021, accepted September 2, 2021, date of publication September 20, 2021,
date of current version September 30, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3113892

Software-Defined Workflows for
Distributed Interoperable Closed-Loop
Neuromodulation Control Systems
PRADEEBAN KATHIRAVELU 1, PARISA SARIKHANI1, PING GU1,
AND BABAK MAHMOUDI1,2 (Member, IEEE)
1Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, USA
2Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

Corresponding author: Pradeeban Kathiravelu (pradeeban.kathiravelu@emory.edu)

This work was supported in part by the National Institutes of Health under Grant 1R01EB028350, and in part by the Emory Synergy Award.

ABSTRACT Closed-loop neuromodulation control systems facilitate regulating abnormal physiological
processes by recording neurophysiological activities and modifying those activities through feedback
loops. Designing such systems requires interoperable service composition, consisting of cycles. Workflow
frameworks enable standard modular architectures, offering reproducible automated pipelines. However,
those frameworks limit their support to executions represented by directed acyclic graphs (DAGs). DAGs
need a pre-defined start and end execution step with no cycles, thus preventing the researchers from using
the standard workflow languages as-is for closed-loop workflows and pipelines. In this paper, we present
NEXUS, a workflow orchestration framework for distributed analytics systems.NEXUS proposes a Software-
Defined Workflows approach, inspired by Software-Defined Networking (SDN), which separates the data
flows across the service instances from the control flows. NEXUS enables creating interoperable workflows
with closed loops by defining the workflows in a logically centralized approach, from microservices
representing each execution step. The centralized NEXUS orchestrator facilitates dynamically composing
and managing scientific workflows from the services and existing workflows, with minimal restrictions.
NEXUS represents complex workflows as directed hypergraphs (DHGs) rather than DAGs. We illustrate a
seamless execution of neuromodulation control systems by supporting loops in a workflow as the use case
of NEXUS. Our evaluations highlight the feasibility, flexibility, performance, and scalability of NEXUS in
modeling and executing closed-loop workflows.

INDEX TERMS Closed-loop simulations, neuromodulation control systems, workflow orchestration.

I. INTRODUCTION
Designing, prototyping, and experimenting with neuromodu-
lation control systems require implementing closed-loop ana-
lytic pipelines using interoperable modules. These systems
can be modeled as several interacting services in compu-
tational environments [1]. Workflow languages and frame-
works such as Common Workflow Language (CWL) [2] and
Workflow Description Language (WDL) [3] revolutionize
how eScience services interact with each other [4]. However,
workflows are traditionally defined as a set of processes with
a pre-defined start and a definite end service [5]. On the other
hand, the control systemworkflows consist of feedback loops
and are often without an explicit start and end step. Such

The associate editor coordinating the review of this manuscript and

approving it for publication was Ailong Wu .

workflows with closed-loops can be represented by directed
graphs (DGs) that consist of directed cycles (dicycles). How-
ever, DG support from classic workflow frameworks and
languages is marginal, if at all existent. This state of affairs
prevents standard open-source workflow frameworks from
modeling and implementing closed-loop neuromodulation
control systems. Hence, we highlight how the representation
of directed acyclic graphs (DAGs) in workflow languages
commonly used in eScience is restrictive for various emerg-
ing research works on designing intelligent closed-loop neu-
romodulation systems that could leverage such automation
and interoperability facilitated by a workflow framework.

A. WORKFLOW ORCHESTRATION
With the proliferating number of workflow languages,
researchers develop many scientific applications in various

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 131733

https://orcid.org/0000-0002-0335-0458
https://orcid.org/0000-0001-7935-2858


P. Kathiravelu et al.: Software-Defined Workflows

workflow languages. Enabling communication and coor-
dination across existing workflows to compose a com-
plex workflow is currently not a trivial undertaking due
to incompatibility across workflow languages and the lack
of an orchestrator that spans multiple scientific workflow
frameworks. Furthermore, a workflow composed of several
workflows can be more flexibly represented by a directed
hypergraph (DHG) than a DG or a DAG [6]. However, such a
dynamic representation is hindered by workflow definitions
that tightly couple how the data flows between the services
and the control of the services that compose the workflow.

B. HYBRID CLOUD ENVIRONMENTS
Hybrid cloud infrastructures consisting of workflows seam-
lessly running on both cloud and local clusters have become
more prevalent in recent days. The increasing reach of cloud
computing has prompted many researchers to deploy their
services in cloud environments to access them remotely and
compose workflows from them. Major cloud providers such
as Amazon Web Services (AWS), Google Cloud Platform
(GCP), and Microsoft Azure provide their infrastructure
and a platform to deploy and expose services (as well as
the lightweight services known as microservices) quickly.
Serverless cloud computing services such as AWS Lambda,
Google Cloud Functions, and Apache OpenWhisk manage
the resources for the end-users, thus letting the users focus
entirely on the service deployment and management, rather
than also having to configure the platform and infrastruc-
ture [7]. Cloud providers offer commercial hybrid cloud
deployments such as Google Anthos [8] following the same
on-demand payment policy of the cloud. Despite these
advancements in the industry, scientific workflows are still
developed in a single workflow language and deployed in
a single infrastructure due to the cost, complexity, interop-
erability challenges, and potential vendor lock-in of such
commercial offerings. Composing a complex workflow com-
prising smaller workflows developed in diverse frameworks
deployed across various cloud infrastructures and research
clusters remains a challenging undertaking. This problem is
more prominent in the context of closed-loop neuromodula-
tion systems, where there is a need for interfacing scalable
neural data processing workflows in the cloud with local
experimental and clinical settings.

C. CONTAINERIZATION
Containerization technologies such as Docker and Singu-
larity are used in developing the services to be portable,
lightweight, and modular [9]. Containerization minimizes
manual configuration efforts necessary to replicate a scien-
tific research experiment [10]. Thus, containerized services
are used in composing interoperable workflows to facilitate
reproducible scientific research. Orchestration frameworks
such as Kubernetes help researchers seamlessly compose
and manage workflows from containerized microservices
deployed across various infrastructures and platforms [11].

D. MOTIVATION
Given the above premises and state-of-the-art research on
workflow orchestration, hybrid cloud environments, and con-
tainerization, we aim at addressing the following research
questions in this paper:
(RQ1) Can we formulate a flexible and dynamic work-

flow composition rather than building statically defined
tightly-coupled workflows?

(RQ2) Can we compose workflows of more diverse def-
initions from existing services as well as workflows
developed in various workflow languages and stand-
alone microservices and represent them by a DHG?

(RQ3) Canwe compose workflows from services andwork-
flows implemented in various frameworks and deployed
across multiple cloud and local infrastructures?

(RQ4) Can we develop and efficiently run closed-loop exe-
cutions for various scientific use cases, such as neuro-
modulation control systems from existing physiological
model services and workflows?

E. CONTRIBUTIONS
This paper aims to answer the identified research questions.
The main contributions of this paper are:

(C1) A Software-Defined Workflows approach, inspired
by Software-Defined Networking (SDN), which sepa-
rates the workflows’ control flows from the data flows
to enable a dynamic workflow composition (RQ1).

(C2) Amodular distributed approach to workflow compo-
sition that decouples complex workflows as workflows
of workflows and allows representing complex work-
flows with dicycles as DHGs (RQ1 and RQ2).

(C3) A scalable and interoperable workflow orchestration
framework that allows composing complex workflows
from diverse workflow languages, service instances
developed in various programming languages, and web
service engines (RQ3).

(C4) A use case implementation of the workflow
orchestration for closed-loop neuromodulation control
systems (RQ4).

This paper proposes NEXUS, a flexible workflow orches-
tration framework that supports distributed analytics systems.
We elaborate on modeling neuromodulation control systems
as a use case of NEXUS. NEXUS incorporates template gen-
eration to convert a service that runs once into a service
that runs in a dicycle while taking inputs from a centralized
workflow management service that we call the Orchestrator.
NEXUS aims to be flexible in both infrastructure-specific and
application-specific aspects. From the infrastructure perspec-
tive, NEXUS supports services running across multiple exe-
cution environments such as Docker, Singularity, and directly
on the operating system – locally as well as on a cloud
platform.

F. PAPER ORGANIZATION
The rest of the paper elaborates on NEXUS as a work-
flow orchestration framework for distributed closed-loop

131734 VOLUME 9, 2021



P. Kathiravelu et al.: Software-Defined Workflows

analytic pipelines. Section II presents the Software-Defined
Workflows approach and the NEXUS workflow patterns.
Section III presents the NEXUS architecture, algorithms, and
prototype implementation. Section IV evaluates the NEXUS
framework with a sample use case. Section V presents the
state-of-the-art and related work. Finally, Section VI con-
cludes the paper with a summary of the research and future
work.

II. THE NEXUS APPROACH
We design NEXUS as a workflow orchestration framework
for closed-loop neuromodulation control workflows. This
section introduces our novel Software-Defined Workflows
approach and how NEXUS uses it to compose dynamic work-
flows.

A. SOFTWARE-DEFINED WORKFLOWS
NEXUS consists of a modular architecture to natively sup-
port using services from multiple frameworks to compose
workflows. It uses standard REST interfaces for its commu-
nications across service instances and between the service
instances and the orchestrator. Leveraging standard REST
interfaces and separating the data flow and control flow,
NEXUS enables distributed workflows of various complexity
beyond typical DAG workflows. Such a RESTful extension
to scientific workflow frameworks also facilitates communi-
cations across workflow frameworks while enabling loosely
coupled workflow definitions, providing dynamic workflow
definitions.
NEXUS supports all the workflow patterns, including

workflows with no loop (DAGs) and DGs consisting of sim-
ple or nested loops. NEXUS does not aim to replace any
workflow languages or specifications. Instead, it seeks to
fill a crucial void on developing closed-loop workflows in a
distributed environment. NEXUS orchestrator can compose
DHG workflows from scratch or exploit existing workflow
definitions in standard workflow languages. Since CWL and
WDL are commonly used workflow languages, NEXUS uses
them as its primary workflow languages. It leverages com-
plete and reference implementations of CWL and WDL such
as Toil [12], CWL-Airflow [13], and Cromwell [14] to make
DAG executions from the orchestrator. By default, NEXUS
extends and exploits Cromwell [15] as its core workflow
framework for WDL and CWL. We also tested NEXUS with
CWL workflows executed with Toil, composed using Rabix
front-end workflow composer. As standard WDL and CWL
workflow frameworks offer a unified interface, NEXUS can
coherently manage workflows with any of them without
custom configurations. Therefore, NEXUS leverages a wide
range of workflow frameworks with CWL andWDL support.

The NEXUS orchestrator lets the underlying workflow
framework execute the DAG workflows. However, workflow
frameworks cannot manage the DHG workflows indepen-
dently by their design. The workflows with loops are repre-
sented by a DG or a DHG rather than a DAG. The orchestrator
executes such workflows dynamically in a coordinated

manner across multiple frameworks and infrastructures, thus
supporting distributed workflows. By decoupling workflows
as data and control flows, NEXUS facilitates building flexible
distributed closed-loop analytic systems. We highlight such
systems deviate from typical DAG workflows managed by
standard workflow frameworks.

At the core of NEXUS is its Software-Defined Work-
flows approach that defines workflows dynamically, rather
than following the static workflow definition approach of
CWL or WDL (which do not change after the execution).
This approach makes sense in typical DAG workflow sce-
narios, as those workflows have start and end steps and
do not execute long enough to warrant a dynamic change.
However, a complex workflow with a loop represented in
a DHG can run longer as it traverses through its dicycles
and runs the services in multiple iterations. During this
time, a service instance may become less responsive, or the
workflow definition could change dynamically. Any changes
made to the workflow definition (typically specified in a
file) must be dynamically represented in the workflow exe-
cution. A Software-Defined Workflows approach facilitates
such a hot deployment of workflow definitions by manag-
ing and propagating the control of the workflows from the
orchestrator.

FIGURE 1. The separation of control flow from the data flow.

The Software-Defined Workflows approach separates the
control and data flows as Figure 1 shows, to compose its
workflows. The data flows with the large stream of actual
data between the nodes in the data plane, abiding by the
control logic mandated through the control plane. The control
flows are between the nodes and the control plane through
a northbound interface. The inspiration for such separation
comes from SDN [16] where the control of the network
switches is separated and unified into a logically centralized
controller. SDN proposes a standard northbound interface
such as OpenFlow [17] in the network switches to communi-
cate with the controller. Leveraging the interface between the
control plane and the data plane nodes, SDN and Software-
DefinedWorkflowsmanage how the nodes send data between
each other dynamically.

Such a separation of control enables dynamically modify-
ing the workflows without changing the static definition of
each service or workflow that is part of the complex workflow
in runtime without downtime. NEXUS consists of a logically

VOLUME 9, 2021 131735



P. Kathiravelu et al.: Software-Defined Workflows

centralized service called the orchestrator that initiates the
control flows that instruct how the data flow must happen.
The orchestrator thus ensures services are chained according
to the workflow specification.

B. NEXUS NOTATION
NEXUS supports incorporating loops into existing DAG
workflows or build DHG workflows from stand-alone ser-
vices through its Software-Defined Workflow definitions.
Table 1 summarizes the notation that we use in this paper to
elaborate the NEXUS workflows.

TABLE 1. NEXUS notation.

FIGURE 2. Converting the workflow with a loop into a NEXUS workflow.

Figure 2 illustrates a sample DG workflow (Figure 2a) and
its NEXUS representation (Figure 2b). Here NEXUSmodifies
only a part of the workflow that includes the dicycle, leaving
the first part of the workflow intact. Equation 1 denotes the
Figure 2a workflow.

W = A→ B→ (C + D)→ E → F ↔ G (1)

Figure 2b illustrates that the control flow in the transformed
workflow is free from loops, whereas the data flow occurs
orthogonally between the services. In the NEXUS transfor-
mation of DG workflows, the services without the loop and
the segment of the DAG workflow are left unmodified.

A dicycle or a closed-loop breaks the tenet of a standard
workflow that is expected to be represented by a DAG. The
orchestrator as a node eliminates the loop from the control
flow managed by the workflow manager, restoring the work-
flow representation in the control flow, thus enabling it to
run in sequence regardless of the loop present in the original
workflow representation. Nevertheless, unlike a DAG, a DG
workflow with cycles may execute forever without an end
step. As such, there should be an explicit exit condition to
exit the loop, which we define to be met at the N th itera-
tion. NEXUS describes this workflow with a closed-loop in
its representation as Equation 2. The orchestrator starts the
services F and G, defined as continuous ‘‘for loops’’ that take
input from the other service (G and F) from their previous
execution. Such a data transfer is handled orthogonally to the
control flow managed by the workflow framework, thus not
breaking the DAG workflow definitions.

W = A→ B→ (C + D)→ E → O→ (F + G)

∃N ∈ Z+,∀n ∈ Z+, n ≤ N
f n = F(G(f (n−1)))

gn = G(F(g(n−1))) (2)

The services F and G run in a loop until a predefined exit
condition is met or an update is sent from the orchestrator as
a trigger event. The communication between the orchestrator
and the services happens through a REST interface. The
orchestrator functions as a RESTful web server while the
service nodes act as lightweight REST clients. The changes
and overhead to the service nodes are kept marginal through
this loosely coupled lightweight implementation. The orches-
trator uses its RESTful interface to send and receive updates
as ‘‘events’’ (lightweight control messages) to indicate the
completion of the iteration to start the next iteration and
update the workflow.

Typical workflow frameworks such as Cromwell support
running the workflow either locally or in a cloud environ-
ment. They do not let the users split the execution across
multiple environments, such as a hybrid cluster, where a
fraction of the workflow consisting of a few services runs
locally, and the rest runs in the cloud. Similarly, they do
not support multi-cloud workflow execution that spans mul-
tiple cloud and edge environments. NEXUS makes such an
inter-infrastructure workflow possible through its decoupled
workflows.

Equation 3 depicts the workflow shown by Figure 3a.
Adopting (2), NEXUS specifies this workflow as Figure 3b
as illustrated by (4). This notion supports merging two or
more workflows by chaining the first workflow’s outputs to
another workflow as input parameters. As long as the final
output(s) from the previous workflow can be chained to the
input(s) of the following workflow, this design facilitates the
inter-infrastructure composition of complex workflows from
workflows running in different local and cloud environments.

W = A→ B→ (C + D)→ E ↔ F → (G+ H )→ I

(3)

131736 VOLUME 9, 2021



P. Kathiravelu et al.: Software-Defined Workflows

FIGURE 3. Converting a DG workflow with a dicycle into a NEXUS
workflow.

W = A→ B→ (C + D)→ E → O→ (F + G+ H ),

(G+ H )→ I

∃N ∈ Z+,∀n ∈ Z+, n ≤ N
en = E(F(e(n−1)))

f n = F(E(f (n−1))) (4)

In NEXUS workflows that separate the data and control
flows, the {data + control}, {control} flow segments define
the workflow. The NEXUS workflow (4) can be depicted
by two subworkflows A → B → (C + D) → E and
(G + H ) → I connected by the orchestrator to manage the
loop in the middle. The subworkflows can run across multiple
infrastructures, loosely connected via the orchestrator for
control flows. The data flows between services that interact
with the orchestrator utilize their RESTful interfaces in the
Internet scale. If all the service nodes are local, they could
leverage the memory or the file system to pipe the output of
a service as an input to the next service. NEXUS leverages
standard REST interfaces to the services and other similar
mechanisms for data flows spanning various infrastructures.

C. NEXUS WORKFLOW PATTERNS
Figure 4 presents the synchronous workflow patterns of
NEXUS. Here, each service waits for the output from its input
services. Thus, every service executes once in each iteration
step and exactly once in DAG workflows as in Figure 4a.
Such a classic DAG workflow can be expressed in a standard
workflow language such as CWL orWDL and run seamlessly
in an existing workflow framework such as Toil [12] or
Cromwell [14].
NEXUS ‘‘unrolls’’ a workflow, such as the one Figure 4b

illustrates, as a for loop of a DAG that executes on a work-
flow framework such as Cromwell. The NEXUS orchestrator
invokes the converted workflow in a for loop. Equation 5

FIGURE 4. Synchronous variants of NEXUS workflows.

refers to a simple loop with no split and merge.

W = A→ B→ C → A→ . . . (5)

φn represents the nth iteration of the service 8, ∀n ∈ Z+,
8 ∈ { A, B, C, . . . }, φ ∈ {a, b, c, . . . }. Many workflow
frameworks initialize a new service instance for each execu-
tion step and terminate upon completion. That means, in a
loop, a service 8 will have several instances than the initial
service instance of8. This approach of new service instances
per execution makes the service node lose the context and
local variables in a loop, as new instances of 8, φn service
instance for the nth iteration of the workflow. In such a case,
φn instances are instantiated across each iteration i of the
loop. That means all the computed variables must be passed
to the next nodes rather than storing any internally for the next
iteration. Similarly, each service instance will consume time
to initialize, thus adding up time in a DG. However, by pre-
serving the same instance of a service instance across loops,
the context of previous iterations can be saved, as shown
by Equation 6. This approach minimizes the overhead of
initialization time in NEXUS.

8 = φn,∀n ∈ Z+ (6)

We define nth iteration ofW as wn, ∀n ∈ Z+.

wn
= Cn

◦ Bn ◦ An(w(n−1)) (7)

Equation 8 illustrates the same workflow as a series of
functions, where i represents the initial input. When n = 1,
w(n− 1) = w(0) = i.

W = wN
◦ w(N−1)

◦ . . . ◦ w1(i), ∃N ∈ Z+. (8)

Equation 2 can be expanded to represent the workflow of
Figure 4b.

n = 1 H⇒ a1 = A(i)

n > 1 H⇒ an = A(e(n−1))

bn = B(a(n−1))

cn = C(a(n−1))

dn = D(c(n−1), b(n−1))

en = E(d (n−1), b(n−1)) (9)

However, such a DG representation does not consider that
the output can be split between the nodes. The output from A

VOLUME 9, 2021 131737



P. Kathiravelu et al.: Software-Defined Workflows

can all be sent to B and C or can be split between B and C if
the output is composed of two separate outputs, for example,
two output files, each respectively providing input to B and
C. Therefore, a DHG representation optimizes the process by
explicitly and natively indicating which outputs are identi-
cally sent. That is, if the output A → B = A → C, it can
be represented by a directed hyperedge that connects [A, {B,
C}], in a pair of {source, [destinations]}. A split output is
represented by multiple edges rather than a hyperedge that
connects a source to multiple destination service nodes.

Moreover, NEXUS limits its focus to hyperedges that
can be represented by {source, [destinations]}, eliminating
potential hyperedges that connect multiple services as in
A → B → C , as they are natively represented by two
different edges A→ B and B→ C . Thus, the NEXUS hyper-
edge definition mandates a lack of middle service between
the source and destination in a hyperedge.
NEXUS supports DHG workflows using the most straight-

forward means first. A workflow that a DAG can represent
is always represented as such to enable portability between
workflow frameworks and run the standard CWL and WDL
workflows as-is. For workflows that cannot be defined by a
DAG but only by a DG or a DHG, the workflow is deduced
to the unrolling pattern (simple loop) or decoupling the work-
flows as control and data flows. The data flows orthogonally
between the nodes when the data flows and control flows
are decoupled. The orchestrator manages the control flow
between the decoupled nodes that construct the loops and
adjacent nodes. The orchestrator manages only a subset of
nodes in a workflow that can be expressed as a combination
of two or more DAG workflows. However, such an unrolling
becomes infeasible for workflows with nested loops like the
one presented in Figure 4c. The orchestrator coordinates such
complex workflows entirely.

III. SOLUTION ARCHITECTURE
Figure 5 depicts the architecture of NEXUS. In addition to
the orchestrator and the workflow frameworks, NEXUS con-
sists of a front-end, a parser, and an Executor. The front-
end lets the users visually compose their workflows. The
parser parses them into workflow representations and execu-
tor scripts for the Executor. TheNEXUS Executor initiates the
workflows, communicating with the NEXUS Orchestrator.
The Orchestrator and Executor start first, followed by the
services of the workflow, as represented by a DHG in the
front-end. Since DAGs and DGs are subsets of DHGs (DAGs
⊂ DGs ⊂ DHGs), supporting DHG allows a more inclusive
representation.
NEXUS utilizes its front-end to compose drag-and-drop

DHG workflows with node and edge labels as Figure 6
illustrates.NEXUS imposes specific requirements to facilitate
a complete workflow definition through its front-end. Each
node and hyperedge is labeled in a NEXUS workflow. For
example, an edge could connect a source to multiple destina-
tions, indicating that the same output is sent from the source
to various destinations.

FIGURE 5. NEXUS deployment architecture.

FIGURE 6. Visual development of a NEXUS workflow.

We develop the workflows using the front-end, which
stores the workflow definitions in an XML format. A sim-
plified XML representation of Figure 6 is shown below:

131738 VOLUME 9, 2021



P. Kathiravelu et al.: Software-Defined Workflows

In the representation, the thick edges indicate the blocking
synchronous service executions, the default behavior in a
workflow definition. A service execution waits for the new
input from the previous service node before the current node
executes, blocking the execution until then. The thin edges
are non-blocking, representing asynchronous executions. The
destination service nodes of such edges continue the exe-
cution without waiting for any input from the other service
node instances. When an updated value is available to an
asynchronous service node, it updates the local variables
accordingly for the subsequent service execution.

The workflow starts with service A. A consists of the initial
values for the first iteration, but the initial values are altered
by the input from E for the subsequent iterations. Until it gets
the input from E , A does not start the subsequent iteration.
The hyperedge e1 sends the output of A to B and C . The
service nodes B and C wait for the same output from A to
initiate their current service execution. Then e2 sends the
output of B to C andD. As earlier, C andDwait for the value
from e2 for their execution. Similarly, e3 sends the output of
C to D and E , and e4 sends the output of D to E . All the
above service nodes wait for the output from the previous
service nodes to start their current iteration. e5 sends the
output of E to B in a non-blocking manner, asynchronously,
unlike the rest of the edges. Therefore, while e5 alters the
respective values defined in B, B does not wait for this input
to continue its current iteration. e6 sends the output of E to
A synchronously as in the case of all the edges in this sample
DHG workflow except for e5. Data from e6 completes one
iteration of the workflow, starting the next iteration with A.
The parser converts the XML representation (such as the

one demonstrated above) into the representation of {source,
[destinations]}. The workflow representation and executor
scripts are then sent to the workflow engines or executed
natively by the NEXUS Executor. The Executor contains util-
ity functions to support data flow or to invoke the workflow
frameworks. The orchestrator then manages the workflows as
they are executed by the workflow frameworks or natively on
the infrastructure. The orchestrator consists of a REST inter-
face to communicate with the services. The services have a
REST interface or other standard messaging/communication
mechanism to share data among themselves. For the segments
of the DHG workflows that are managed by the workflow
composer frameworks such as Toil or Cromwell, such data
flow is handled by those frameworks, respectively.

A. THE NEXUS ORCHESTRATOR
As the orchestrator is a logically centralized entity, its perfor-
mance is crucial for the scalability of NEXUS. Separation of
control flows and data flows enables changing the paths from
the orchestrator based on dynamically changing workflow
definitions and other contextual variables. The orchestrator
propagates these changes as events, light-weight control mes-
sages. The orchestrator tracks the workflows as control flows
while letting the data flows between the service instances.
Hence, the orchestrator can dynamically change theworkflow

through the control flows with its REST interface. The REST
interface functions as the standard API for the management
of workflows. NEXUS separates the orchestrator from an
Executor that initializes the workflows. It thus facilitates
interoperability and backward compatibilitywith the standard
DAGworkflow definitions by letting the executor perform the
workflow executions entirely when the workflow definitions
meet the DAG format currently supported by the standard
workflow frameworks.

Algorithm 1 summarizes the execution of a NEXUS work-
flow from a user’s perspective. It starts with parsing the
user’s visual definition of the workflow into the Work-
flowRepresentation (wfRepresentation) and Executor Scripts
(execScripts) (lines 2 - 3). A unique workflow ID (wfID) is
generated as a hash of the workflow representation (line 4).
The NEXUS executor initializes with the values of wfID,
wfRepresentation, and execScripts to start the workflow
(line 5). Once the workflow is parsed into the executor,
the executor converts the wfRepresentation into NEXUS
workflow representation (nexusWorkflow in line 6), as Equa-
tion 4 shows.

Algorithm 1 NEXUSWorkflow Execution
1: procedure Initialize(workflow)
2: wfRepresentation, execScripts← parse(workflow)
3: F Parses workflow from the graph that user composes visually.
4: wfID← hash(wfRepresentation)
5: Executor(wfID, wfRepresentation, execScripts)
6: nexusWorkflow← convert(wfRepresentation)
7: orchestrator.setWorkflow(wfID, nexusWorkflow)
8: for service s ∈ nexusWorkflow do
9: s.serviceInit(nexusWorkflow)
10: end for
11: end procedure

The nexusWorkflow remains the same as the workflow
representation (wfRepresentation) for DAG workflows. The
executor uses the workflow definition to transform the work-
flows with loops (i.e., the subset of DHG workflows that
cannot be represented as DAGs) into NEXUS workflows
involving the orchestrator. The executor starts the workflow
execution based on these parameters and how the system is
configured, including the default workflow frameworks to
execute and the access to the execution infrastructures. The
executor then sets the workflow on the orchestrator so that
the orchestrator holds the initial definition of the workflow
(line 7). Then the executor starts the workflow by initializ-
ing the services that compose the workflow (line 8 - 10).
The workflow frameworks perform the execution directly for
DAG workflows and the workflows with a DAG component
as their startup nodes.

The workflow frameworks manage the typical DAG work-
flows without additional inputs from NEXUS. However,
workflows with a closed-loop require inputs as events from
the orchestrator to make such loops and a DHG workflow
feasible. Algorithm 2 presents the execution of each service
instance.

VOLUME 9, 2021 131739



P. Kathiravelu et al.: Software-Defined Workflows

Algorithm 2 NEXUS Service Executions
1: local variables
2: contextualVariables
3: end local variables
4: procedure serviceInit(nexusWorkflow)
5: repeat
6: if nexusWorkflow.service.input.blocking then
7: repeat
8: Wait
9: until inputFromH 6= ∅, ∀ H ∈ Hyperedges
10: end if
11: inVariables← inputFromHyperedges
12: <contextualVariables, outVariables>←
13: service(contextualVariables, inVariables)
14: RETURN outVariables
15: until (exitCondition)
16: end procedure

Every service node in a workflow consists of contextual
variables stored locally and updated with each iteration of the
service execution (lines 1 - 3). A hyperedge can denote syn-
chronous and asynchronous executions. Synchronous execu-
tion represents where the execution waits until an updated
value from a connecting hyperedge from a previous service
node is received (lines 6 - 10). The service execution does
not need to wait for such input in asynchronous executions,
unlike synchronous executions. The input variables are from
the hyperedges where the current service node is a destina-
tion (line 11). A service execution updates these variables
(local contextual variables and output variables for the sub-
sequent service nodes), considering the values received from
the other service nodes and the local contextual variables
(lines 12 - 13). The output is sent to the subsequent service
nodes through the connecting directed hyperedges where the
current node is the source (line 14). The service execution
continues until an exit condition is met, as per the workflow
definition and the current values of the variables or as an event
from the orchestrator (line 15).

B. REPRESENTATIVE USE CASE
As a NEXUS use case, we build a closed-loop neuromodu-
lation control system workflow that aims to maximize the
gamma-band power of the excitatory population, in a compu-
tational model of the brain, by applying electrical stimulation
with proper parameters. Aminimalworkflowof a closed-loop
neuromodulation control system contains two main modules.
First, the plant model (PM) enables applying stimulation
signals and observing the parameter-dependent effects of
the interactions between the stimulus and the endogenous
oscillations of the nervous system. Second, the controller
(CTL) or optimizer, which is at the core of closed-loop
neuromodulation control systems, tunes the stimulation set-
tings based on measured objective values. We model this
workflow entirely with NEXUS without workflow frame-
works as it is just two nodes interacting via the orchestrator,
as Figure 7 shows.

The plant model is a biophysically grounded mean-field
model of neural populations under electrical stimulation [18]

FIGURE 7. Simplistic sample use case of a NEXUS workflow.

that can be used to efficiently study the effects of elec-
trical stimulation on large neural populations. We lever-
age Bayesian optimization [19] in closed-loop with the
mean-field model to optimize the parameters of stimulation,
i.e., amplitude and frequency, to maximize the gamma-band
power of the excitatory population. We implement Bayesian
optimization using the GPflowOpt [20] library.

Bayesian optimization is a global optimization algorithm
suitable for cases where the objective function is unknown
or expensive to evaluate. Bayesian optimization finds the
optima through a two-step and sequential decision-making
process. First, it builds a surrogate Gaussian Process Regres-
sion (GPR) model using the collected data and then suggests
the next candidate points to be evaluated by optimizing an
underlying acquisition function. We used the common upper
confidence bound acquisition function. During the burn-in
phase, the controller module, i.e., Bayesian optimization,
takes random actions over the parameter space, i.e., stimula-
tion amplitude and frequency, by sending stimulation param-
eters to the plant model. The plant model returns the objective
values, i.e., γ -band power of excitatory population, corre-
sponding to each set of stimulation parameters to the con-
troller. Next, Bayesian optimization builds a surrogate GPR
model on the collected data. Then, it suggests the next set
of parameters be evaluated on the plant model by optimizing
the surrogate-dependent acquisition function. This sequential
process of the interactions between the plant and controller
modules continues until convergence or a predefined number
of iterations.
NEXUS enables dynamically composing workflows with-

out tightly coupling the service nodes such as PM and CTL to
each other. NEXUS workflows are loosely defined and con-
nected via the orchestrator. The loose coupling and dynamic
formation of NEXUS workflows support seamless migration
of workflows from local deployments to hybrid and multi-
cloud environments. We evaluate this use case for the perfor-
mance ofNEXUS executed in hybrid clouds (one service node
instance running locally with others in cloud instances) and
multi-clouds (service nodes spanningmultiple cloud provider
instances).

IV. EVALUATION
We evaluate the performance of NEXUS for its features and
performance in a closed-loop neuromodulation task. In terms
of the computation time, we assess NEXUS against a varying
problem size and concurrency to understand how it scales.

131740 VOLUME 9, 2021



P. Kathiravelu et al.: Software-Defined Workflows

A. USE CASE PERFORMANCE
We configured the plant model (PM) and controller (CTL)
in a closed-loop to communicate via an orchestrator.
We deployed the CTL locally on an x86 laptop (2.8 GHz
CPU, 16 GB memory, and macOS Big Sur operating system)
in Atlanta, GA, USA.We deployed the PM on an HP Proliant
DL320e Gen8 (E3-1240v2) 4-LFF server (3.4 GHz – turbo
up to 3.8 GHz CPU, 16 GB memory, and Ubuntu 20.04 oper-
ating system) managed by Voxility infrastructure provider in
Bucharest, Romania. Finally, we deployed the orchestrator on
an AWS cloud instance (instance type t3.medium, 2 vCPU,
4 GB memory, and Ubuntu 20.04 operating system) in North
Virginia to orchestrate the workflows that communicate their
data updates through the orchestrator.

FIGURE 8. Performance of Bayesian optimization in searching for the
stimulation parameters that maximizes the objective value, i.e. γ -band
power over 20 iterations. The trajectory of parameters, i.e. stimulation
amplitude and frequency, collected and their corresponding γ -band
power is shows from top to bottom, respectively.

This evaluation aims to serve as a sample problem and
demonstrate distributed directed graph workflows spanning
a local server/laptop, a remote server from a cloud provider
(AWS), and a distant remote server from an infrastructure
provider (Voxility). Figure 8 illustrates the performance of
Bayesian optimization in maximizing the objective, i.e., γ -
band power over 20 iterations of interacting with the mean-
field model of a neural population under electrical stimula-
tion. The first five iterations are the burn-in phase, where
the controller takes random actions over the parameter space
and observes the objective values, i.e., γ -band power. After
initialization, Bayesian optimization suggests the subsequent
samples that should be evaluated. The trajectory of parame-
ters, i.e., stimulation amplitude and frequency, collected and
their corresponding γ -band power is depicted in Figure 8.
Figure 9 shows the mean surface of the surrogate GPR

model, where the z-axis shows the objective, i.e., γ -band
power over the parameter space. x- and y-axes show the
frequency and amplitude of stimulation which are the inputs
of the plant model.

Figure 10 shows the cumulative execution time with iter-
ations for both PM and CTL. We observe the initial time
for the burn-in phase for each iteration to be much lower.

FIGURE 9. Mean surface of the surrogate GPR model, where the z-axis
shows the objective, i.e. γ -band power over the parameter space. x- and
y-axes show the frequency and amplitude of stimulation.

After this initialization, we notice a linear execution time.
No overhead is imposed by the NEXUS orchestrator in exe-
cuting the closed-loop workflow between the PM and CTL in
a distributed manner, compared to running the workflow as a
centralized monolith in a single deployment infrastructure.

FIGURE 10. Cumulative execution time with iterations.

B. CONCURRENCY AND SCALABILITY
We then benchmark the performance and scalability of
NEXUS through a load test to emulate larger complex con-
current workflows. NEXUS exhibits high scalability in its
data plane consisting of service nodes as they are distributed
across several servers. The orchestrator processes all the
control flows from the services distributed across several
nodes. Thus, the orchestrator operates as a centralized entity.
We can extend the orchestrator to run in a distributed cluster
while it remains logically centralized. However, that requires
an additional development effort. Therefore, we evaluate a
stand-alone deployment of the orchestrator for its capability
to manage multiple workflows at once without incurring
bottlenecks, overheads, and failures. We assess how many
control flows the orchestrator can handle simultaneously by
executingmultiple service workflows at once.Wemonitor the
performance of several concurrent workflowsmanaged by the
orchestrator on an AWS cloud VM, invoked over the Internet
from the laptop and the Voxility server. We configure Apache

VOLUME 9, 2021 131741



P. Kathiravelu et al.: Software-Defined Workflows

JMeter [21] to evaluate the efficiency of NEXUS orchestrator
to manage concurrent workflows. While replacing the work-
flow with multiple REST clients to the orchestrator, we use
the same distributed cloud deployment to emulate several
large workflows.

FIGURE 11. Execution of 1000 concurrent service workflows via the
NEXUS orchestrator.

We observe that the orchestrator manages the workflows
with several concurrent requests efficiently. Figure 11 shows
the performance with 1000 such service workflows man-
aged by the orchestrator through its REST interface. With
1000 concurrent invocations with a startup period of 1 s
for all the invocations, we observe the throughput to be
768.512 workflow invocations per minute. On average,
the service invocation from the orchestrator takes as low as
2.868 s and up to 4.037 s. The median time is 3.030 s with a
deviation of 2.654 s. The actual workflow execution time will
vary and take longer based on the time to invoke and com-
plete each service in the workflow. The overhead due to the
Internet-based NEXUS orchestrator is a fraction of a second.
Thus, the orchestrator supports distributed execution of mod-
ular workflows with no added overhead in its dynamically
defined concurrent workflows. NEXUS managed to execute
all the 1000 workflows successfully, with no data loss or
failures.

Figure 12 shows the performance with 5000 such concur-
rent workflows with a startup period of 10 s for all the invo-
cations. We observe the throughput to be 3412.39 workflow
invocations per minute. The orchestrator consumes 11.945 s
on average, 13.015 s on median, and 6.008 s of deviation.
As the requests exceeded the x-axis in the representation,
Jmeter shows an overlapping plot after the 160,000 concur-
rent requests. We note how the orchestrator manages to scale
up with the problem size. Its throughput increases with more
concurrent workflow invocations without incurring data loss
in the control flows. Although all the 1000 workflow execu-
tions succeeded with the 1000 concurrency, 4772 workflows

FIGURE 12. Execution of 5000 concurrent service workflows via the
NEXUS orchestrator.

out of 5000 succeeded with the concurrency of 5000 due to
timeouts in a few service requests.

We note that with the startup period of 1 s, NEXUS handles
the concurrency of 1000 workflows well. It starts to incur
delayed control flow responses when we increase the work-
flow execution concurrency to 5000, even with the increased
startup period of 10 s. Here, 5000 workflows are scheduled
simultaneously within 10 s for the orchestrator to manage
the control flows. The delayed response at 5000 concur-
rency leads to the failure of a few workflow executions as
a few of the services start to time out while waiting for the
orchestrator. We notice 228 failed workflow executions out
of 5000, with a 95.44% success rate compared to the 100%
success rate with 1000 concurrent workflows. This obser-
vation highlights that while the orchestrator’s performance
was sufficient to handle the concurrency of 1000 workflows
elegantly, such a stand-alone orchestrator deployment is not
adequate to manage 5000workflows simultaneously.We note
that increasing the startup time further, thus reducing the
effective concurrency, will allow the orchestrator to manage
even more workflows at once without failures.

We observed no memory or processing overhead from
the server that hosts the orchestrator in both cases since the
control flow and the events are lightweight. The orchestra-
tor did not encounter errors or failures for the concurrency
of 1000 and 5000 workflows. Our evaluations highlight how
researchers canmodel complex distributed closed-loop work-
flows efficiently with NEXUS without data loss or a loss in
workflow performance, smoothly scaling with the problem
size and concurrency.

V. RELATED WORK
In this section, we evaluate the state-of-the-art on service
interoperability and workflows.

A. INTEROPERABILITY
Global Alliance For Genomics & Health (GA4GH) [22] and
the Open Bioinformatics Foundation [23] are steering the
research and interoperability effort on workflow definitions

131742 VOLUME 9, 2021



P. Kathiravelu et al.: Software-Defined Workflows

for biomedical informatics. Popular workflow languages such
as CWL [2], WDL [24], and NextFlow [25] help develop
scientific applications in a modular fashion from interoper-
able services. Scientific research use cases include devel-
oping reproducible analysis workflows for genomics [26]
and creating bioinformatics workflows [27]. While workflow
languages and frameworks are widely used in science, their
functionality is limited to support the DAG workflows typi-
cally. They do not natively support closed-loops. NEXUS is a
workflow orchestrator that facilitates DHG workflows with
its compact model to compose workflows using workflow
languages as well as from stand-alone services.

B. OPEN-SOURCE WORKFLOW FRAMEWORKS
Among the CWL and WDL frameworks, Toil [12], CWL-
Airflow [13], and AWE [28] offer complete support for CWL,
potential to create workflows from containerized services,
scalable execution locally, as well as across the popular cloud
platforms, with auto-scaling support. Toil and CWL-Airflow
are also actively developed in Python. Toil has full support for
CWL as well as experimental support for WDL. Cromwell
has full support for WDL, and its recent versions support
CWL as well. Although Toil does not have a drag-and-drop
front-end, Rabix [29] consists of a visual editor for CWL
workflows, supporting drag-and-drop of service components
to compose workflows. Rabix could be used in conjunction
with other more complete CWL frameworks such as Toil to
get the best of both worlds: i) using Rabix as a front-end
to create simple workflows from services and then create
complex workflows from the simple workflows, ii) save the
services as CWL, and finally iii) use a CWL framework
such as Toil to deploy and execute the workflows on-premise
as well as on cloud environments. We also evaluated other
workflow frameworks such as Apache Airavata [30], Apache
Taverna [31], and Spotify Luigi [32]. However, they fall short
due to their vendor-specific implementation with restricted
support to standard workflow languages and interoperability
across existing biomedical informatics workflow definitions.

C. BUSINESS PROCESS WORKFLOWS
Business Process Execution Language (BPEL) [33] is a more
flexible alternative to define workflows, focusing on enter-
prise business processes rather than eScience workflows.
BPEL is based on classic light-weight web services, typ-
ically developed with the SOAP messaging protocol [34].
The BPEL specification is written in an XML-based Web
Service Description Language (WSDL) [35]. However, these
technologies are not commonly used in the biomedical infor-
matics domain. Furthermore, these classic web services are
executed in web service engines such as Apache Axis2 [36]
and Apache CXF [37] instead of running them with Docker
containers or locally as microservices. The dependence on
XML, SOAP, and WSDL makes adapting BPEL to con-
trol systems modeling difficult and inefficient. Research has
studied the DHG-based representation for workflows [38],
scheduling [6], and resource allocation [39]. However, such

representations limit their focus to business processes rather
than scientific workflows [40]. Due to this state of affairs,
the applicability of BPEL and research work that focuses on
business processes to control systems is largely limited. Fur-
thermore, unlike NEXUS, these approaches do not consider
such representation to facilitate composing and managing
diverse workflows from existing services and workflows in
a flexible and distributed manner.

D. SDN FOR SERVICE COMPOSITION WORKFLOWS
Previous works have elaborated how SDN can help
achieve context-aware service compositions [41]. While
those research works ensure Quality of Service (QoS) in
workflows by leveraging SDN, they also limit their focus
to DAG workflows rather than providing a flexible solution
covering workflows with dicycles. Furthermore, they are
approaches that use an SDN controller to ensure QoS, rather
than using a software-defined system in composing the work-
flows dynamically. There are also event-driven workflow
frameworks that allow the dynamic creation of workflows
based on events [42]. However, these event-driven and SDN
research works focus on DAG workflows rather than natively
supporting flexible DHG workflows.

E. WORKFLOW SIMULATIONS
Researchers have developed simulations for feedback
systems and closed-loop controls for various research
domains [43]. Similarly, flexible event-driven simulators [44]
model executions driven by events. However, these simu-
lators do not execute an actual service workflow. Unlike
simulators and emulators that merely simulate or emulate
an execution, a workflow framework indeed executes the
workflow. As a workflow orchestrator, NEXUS executes the
workflows rather than simply simulating them.

VI. CONCLUSION
This paper presents NEXUS, a framework that orches-
trates complex workflows with loops, composed of services
and simple workflows. SDN inspired the Software-Defined
Workflows of NEXUS. The NEXUS orchestrator centrally
coordinates the service nodes and manages workflows
dynamically. We deployed NEXUS to run closed-loop neu-
romodulation control systems natively. Our evaluations high-
light the efficiency of designing and running complex
workflows with NEXUS, from services implemented in var-
ious programming languages and workflows of standard
languages such as CWL and WDL. We also illustrate the
potential to design control systems as decoupled workflows
spanningmultiple infrastructures and platformswithNEXUS.
We thus highlighted the scalability of NEXUS in the presence
of several concurrent workflows.

Although NEXUS can support inter-organization work-
flows, leveraging the orchestrator to build and manage work-
flows for several organizations in production requires two
additional considerations. First, we must incorporate secu-
rity measures into the orchestrator to ensure the workflow

VOLUME 9, 2021 131743



P. Kathiravelu et al.: Software-Defined Workflows

definitions are free frommalicious entities attempting to alter
an executing workflow. We also must secure the orchestrator
against denial of service attacks. Second, privacy measures
must be in place if the services are shared across organizations
to compose a workflow with NEXUS. Such extra steps enable
deploying NEXUS in a multitenant edge or a hybrid cloud
environment for multiple organizations. As future work,
we propose leveraging NEXUS to execute workflows com-
posed of services maintained by various organizations.

ACKNOWLEDGMENT
The authors are thankful to Voxility for their assistance on the
deployment infrastructure.

REFERENCES
[1] G. Decker, O. Kopp, F. Leymann, and M. Weske, ‘‘Interacting services:

From specification to execution,’’ Data Knowl. Eng., vol. 68, no. 10,
pp. 946–972, Oct. 2009.

[2] P. Amstutz, M. R. Crusoe, N. Tijanić, B. Chapman, J. Chilton, M. Heuer,
and A. Kartashov, ‘‘Common workflow language, v1. 0,’’ Figshare,
Tech. Rep., 2016.

[3] W. F. Miller and A. T.-I. Yaung, ‘‘Method, system, and program for
generating a workflow,’’ U.S. Patent 7 100 147, Aug. 29, 2006.

[4] V. Kasalica and A.-L. Lamprecht, ‘‘APE: A command-line tool and API
for automated workflow composition,’’ in Proc. Int. Conf. Comput. Sci.
Krakow, Poland: Springer, 2020, pp. 464–476.

[5] N. Keddis, G. Kainz, A. Zoitl, and A. Knoll, ‘‘Modeling production work-
flows in a mass customization era,’’ in Proc. IEEE Int. Conf. Ind. Technol.
(ICIT), Mar. 2015, pp. 1901–1906.

[6] Z. Hu, J. Li, M. Zheng, X. Zhang, H. Kang, Y. Tao, and J. Yang,
‘‘Hypergraph-based data reduced scheduling policy for data-intensive
workflow in clouds,’’ in Proc. Int. Conf. Pioneering Comput. Scientists,
Eng. Educators. Changsha, China: Springer, 2017, pp. 335–349.

[7] G. McGrath and P. R. Brenner, ‘‘Serverless computing: Design, implemen-
tation, and performance,’’ in Proc. IEEE 37th Int. Conf. Distrib. Comput.
Syst. Workshops (ICDCSW), Jun. 2017, pp. 405–410.

[8] K. Kritikos, P. Skrzypek, and F. Zahid, ‘‘Are cloud platforms ready
for multi-cloud?’’ in Proc. Eur. Conf. Service-Oriented Cloud Comput.
Springer, 2020, pp. 56–73.

[9] B. B. Rad, H. J. Bhatti, and M. Ahmadi, ‘‘An introduction to Docker and
analysis of its performance,’’ Int. J. Comput. Sci. Netw. Secur., vol. 17,
no. 3, p. 228, 2017.

[10] C. Boettiger, ‘‘An introduction to Docker for reproducible research,’’
SIGOPS Oper. Syst. Rev., vol. 49, no. 1, pp. 71–79, Jan. 2015.

[11] D. Bernstein, ‘‘Containers and cloud: FromLXC toDocker to kubernetes,’’
IEEE Cloud Comput., vol. 1, no. 3, pp. 81–84, Sep. 2014.

[12] J. Vivian, A. A. Rao, F. A. Nothaft, and C. Ketchum, ‘‘Toil enables repro-
ducible, open source, big biomedical data analyses,’’ Nature Biotechnol.,
vol. 35, no. 4, pp. 314–316, Apr. 2017.

[13] M. Kotliar, A. V. Kartashov, and A. Barski, ‘‘CWL-airflow: A lightweight
pipeline manager supporting common workflow language,’’ GigaScience,
vol. 8, no. 7, Jul. 2019, Art. no. giz084.

[14] E. Larsonneur, J. Mercier, N. Wiart, E. L. Floch, O. Delhomme, and
V. Meyer, ‘‘Evaluating workflow management systems: A bioinformatics
use case,’’ in Proc. IEEE Int. Conf. Bioinf. Biomed. (BIBM), Dec. 2018,
pp. 2773–2775.

[15] R. Tschueter, C. Herold, W. Williams, M. Knespel, and M. Weber, ‘‘A top-
down performance analysis methodology for workflows: Tracking perfor-
mance issues from overview to individual operations,’’ in Proc. IEEE/ACM
Workflows Support Large-Scale Sci. (WORKS), Nov. 2019, pp. 21–30.

[16] K. Kirkpatrick, ‘‘Software-defined networking,’’ Commun. ACM, vol. 56,
no. 9, pp. 16–19, Sep. 2013.

[17] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, ‘‘OpenFlow: Enabling innovation
in campus networks,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Apr. 2008.

[18] C. Cakan and K. Obermayer, ‘‘Biophysically grounded mean-field models
of neural populations under electrical stimulation,’’ PLOS Comput. Biol.,
vol. 16, no. 4, Apr. 2020, Art. no. e1007822.

[19] B. Shahriari, K. Swersky, Z.Wang, R. P. Adams, andN. de Freitas, ‘‘Taking
the human out of the loop: A review of Bayesian optimization,’’ Proc.
IEEE, vol. 104, no. 1, pp. 148–175, Jan. 2016.

[20] N. Knudde, J. van der Herten, T. Dhaene, and I. Couckuyt,
‘‘GPflowOpt: A Bayesian optimization library using TensorFlow,’’ 2017,
arXiv:1711.03845. [Online]. Available: http://arxiv.org/abs/1711.03845

[21] E. H. Halili, Apache JMeter: A Practical Beginner’s Guide to Automated
Testing and Performance Measurement for Your Websites. Birmingham,
U.K.: Packt, 2008.

[22] S. F. Terry, ‘‘The global alliance for genomics & health,’’ Genetic Test.
Mol. Biomarkers, vol. 18, no. 6, pp. 375–376, 2014.

[23] J. M. Hancock and M. J. Bishop, ‘‘Open bioinformatics foundation
(OBF),’’ in Dictionary of Bioinformatics and Computational Biology.
Wiley, 2004.

[24] S. Frazer. (2014). Workflow Description Language. GitHub. [Online].
Available: https://github.com/broadinstitute/wdl

[25] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo, and
C. Notredame, ‘‘Nextflow enables reproducible computational work-
flows,’’ Nature Biotechnol., vol. 35, no. 4, pp. 316–319, 2017.

[26] F. Strozzi, R. Janssen, R. Wurmus, M. R. Crusoe, G. Githinji,
P. Di Tommaso, D. Belhachemi, S. Möller, G. Smant, J. de Ligt,
and P. Prins, ‘‘Scalable workflows and reproducible data analysis for
genomics,’’ in Evolutionary Genomics. Springer, 2019, pp. 723–745.

[27] M. Milton and N. Thorne, ‘‘ACLImatise: Automated generation of
tool definitions for bioinformatics workflows,’’ Bioinformatics, vol. 36,
nos. 22–23, pp. 5556–5557, Apr. 2021.

[28] W. Tang, J. Wilkening, N. Desai, W. Gerlach, A. Wilke, and F. Meyer,
‘‘A scalable data analysis platform for metagenomics,’’ in Proc. IEEE Int.
Conf. Big Data, Oct. 2013, pp. 21–26.

[29] G. Kaushik, S. Ivkovic, J. Simonovic, N. Tijanic, B. Davis-Dusenbery,
and D. Kural, ‘‘RABIX: An open-source workflow executor supporting
recomputability and interoperability of workflow descriptions,’’ in Proc.
Pacific Symp. Biocomput. Singapore:World Scientific, 2017, pp. 154–165.

[30] S. Marru, L. Gunathilake, C. Herath, P. Tangchaisin, M. Pierce,
C. Mattmann, R. Singh, T. Gunarathne, and E.Chinthaka, ‘‘Apache aira-
vata: A framework for distributed applications and computational work-
flows,’’ in Proc. ACM Workshop Gateway Comput. Environ., 2011,
pp. 21–28.

[31] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li, and
T. Oinn, ‘‘Taverna: A tool for building and running workflows of services,’’
Nucleic Acids Res., vol. 34, pp. W729–W732, Jul. 2006.

[32] M. Erdmann, B. Fischer, R. Fischer, andM. Rieger, ‘‘Design and execution
of make-like, distributed analyses based on spotify’s pipelining package
Luigi,’’ in Proc. J. Phys., Conf., vol. 898, 2017, Art. no. 072047.

[33] D. Jordan, ‘‘Web services business process execution language version
2.0,’’ OASIS standard, vol. 11, no. 120, p. 5, 2007.

[34] F. AlShahwan and K. Moessner, ‘‘Providing SOAP web services and
RESTful web services from mobile hosts,’’ in Proc. 5th Int. Conf. Internet
Web Appl. Services, May 2010, pp. 174–179.

[35] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, ‘‘Web
services description language (WSDL) 1.1,’’ Citeseer, 2001.

[36] S. Perera, C. Herath, J. Ekanayake, E. Chinthaka, A. Ranabahu,
D. Jayasinghe, S. Weerawarana, and G. Daniels, ‘‘axis2, middleware for
next generation web services,’’ in Proc. IEEE Int. Conf. Web Services
(ICWS), 2006, pp. 833–840.

[37] N. Balani and R. Hathi, Apache Cxf Web Service Development: Develop
and Deploy SOAP and RESTful Web Services. Birmingham, U.K.: Packt,
2009.

[38] X. Sun, Z. Li, and S. Hu, ‘‘Directed-hypergraph based E-learning process
modeling supporting dynamic-personalized-combined resource optimiza-
tion,’’ in Proc. 5th Int. Conf. Digit. Home, Nov. 2014, pp. 324–330.

[39] X.-D. Sun, X.-F. Xu, and G. Wang, ‘‘Resource allocation balancing of
workflow based on directed hypergraph,’’Dianzi Xuebao(Acta Electronica
Sinica), vol. 33, no. 8, pp. 1370–1374, 2005.

[40] M. Comuzzi, ‘‘Optimal paths in business processes: Framework and appli-
cations,’’ in Proc. Int. Conf. Bus. Process Manage. Barcelona, Spain:
Springer, 2017, pp. 107–123.

[41] V. Cardellini, T. G. Grbac, A. Kassler, P. Kathiravelu, F. L. Presti,
A. Marotta, M. Nardelli, and L. Veiga, ‘‘Integrating SDN and NFV with
QoS-aware service composition,’’ in Autonomous Control for a Reliable
Internet of Services. Springer, Cham, 2018, pp. 212–240.

[42] V. Realinho, T. Romão, and A. E. Dias, ‘‘An event-driven workflow
framework to develop context-aware mobile applications,’’ in Proc. 11th
Int. Conf. Mobile Ubiquitous Multimedia (MUM), 2012, pp. 1–10.

131744 VOLUME 9, 2021



P. Kathiravelu et al.: Software-Defined Workflows

[43] D. R. Nielsen and R. Pitchumani, ‘‘Closed-loop flow control in resin trans-
fer molding using real-time numerical process simulations,’’ Composites
Sci. Technol., vol. 62, no. 2, pp. 283–298, Feb. 2002.

[44] D.M. Lewis, ‘‘A hierarchical compiled code event-driven logic simulator,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 10, no. 6,
pp. 726–737, Jun. 1991.

PRADEEBAN KATHIRAVELU received the EU
Erasmus Mundus Joint Ph.D. degree in distributed
computing from the Instituto Superior Tecnico,
Universidade de Lisboa, Portugal, and the Uni-
versite catholique de Louvain, Belgium. He is
currently a Postdoctoral Researcher with Emory
University. He is also researching and developing a
self-adaptive latency-aware framework that lever-
ages network softwarization to efficiently schedule
and execute biomedical informatics workflows,

such as radiology imaging streams and remote workstations, in research
clusters and wide-area networks ranging from hybrid clouds to the edge. His
research interests include network softwarization, software-defined systems,
cloud-assisted networks, big data integration, internet measurements, and
service-oriented architecture.

PARISA SARIKHANI received the Bachelor of
Science and Master of Science degrees in elec-
trical engineering from Shiraz University. She is
currently pursuing the Ph.D. degree with Emory
University. Her research is focused on devel-
oping precision neuromodulation therapies using
artificial intelligence. She is also using machine
learning, reinforcement learning, and optimization
techniques to better understand the functionalities
of the nervous systems and designing automated

closed-loop neuromodulation frameworks.

PING GU received the master’s degree in electri-
cal engineering and the master’s degree in com-
puter science. She is currently a Senior Systems
Software Engineer with Emory University. She
also develops systems for big data, cloud comput-
ing, linking clinical data, and images and features
on the cloud. She develops and deploys imaging
workflow pipelines to run clouds and on-premises.

BABAK MAHMOUDI (Member, IEEE) received
the Ph.D. degree in biomedical engineering from
the University of Florida.

He is currently an Assistant Professor of
biomedical informatics and biomedical engineer-
ing with Emory University School of Medicine
and Georgia Institute of Technology. After training
in electrical engineering and signal processing,
he transitioned to research in machine learning and
neural engineering. He completed a NIH NRSA

Fellowship in translational neurology at the Emory University prior to
joining the Faculty of the School of Medicine. His research has focuses on
developing artificial intelligence platforms to better understanding the brain
function and develop precision diagnostic and therapeutic technologies for
neurological and psychiatric disorders.

VOLUME 9, 2021 131745


