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ABSTRACT As we all know, users and item-providers are two main parties of participants in recommender
systems. However, most existing research efforts on recommendation were focused on better serving users
and overlooked the purpose of item-providers. This paper is devoted to improve the item exposure fairness
for item-providers’ objective, and keep the recommendation accuracy not decreased or even improved for
users’ objective. We propose to set stock volume constraints on items, to be specific, limit the maximally
allowable recommended times of an item to be proportional to the frequency of its being interacted in the past,
which is validated to achieve superior item exposure fairness to common recommenders and thus mitigates
the Matthew Effect on item popularity. With the two constraints of pre-existing recommendation length of
users and our stock volumes of items, a heuristic strategy based on normalized scores and a Minimum Cost
Maximum Flow (MCMF) based model are proposed to solve the optimal user-item matching problem, whose
accuracy performances are even better than that of baseline algorithm in regular recommendation context,
and in line with state-of-the-art enhancement of the baseline. What’s more, our MCMF based strategy is
parameter-free, while those counterpart algorithms have to resort to parameter traversal process to achieve
their best performance.

INDEX TERMS Minimum cost maximum flow, popularity bias, recommendation fairness, recommender

systems, stock constraint.

I. INTRODUCTION
Even though the broad social and business acceptance of rec-

ommender systems has been achieved, a key underexplored
dimension for further improvement is the usefulness of rec-
ommendations to the participants [1]. A recommender system
usually serves two main parties of participants, the users and
the item-providers [2], thus the usefulness of recommenda-
tions should be also two-fold. On one hand, recommender
systems provide users with items of their latent interests.
On the other hand, recommender systems should also help
item-providers increase sales volume of items, especially the
unpopular ones.

Common recommenders, such as collaborative filtering,
originally proposed to make accurate prediction of unseen
user-item interactions, usually suffer the popularity bias
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problem, i.e., recommending a few popular items to a major-
ity of users [3]. Although popular items are likely to match
users’ preferences and recommendations of them contribute
to the predictive accuracy, users usually do not regard them as
very useful recommendations because they are easily aware
of these popular items somewhere else, for example from
sales leaderboard, advertisements, or friends’ conversations.
Thus as a complement, the intra-list diversity [4] is introduced
to measure how well arecommender can widen a user’s vision
of items, usually by means of offering users less popular,
unexpected but interesting items.

The popularity bias problem also hampers the sales pro-
motion of unpopular items, which is the main usefulness of
recommendations for item-providers. Just like the intra-list
diversity is used to measure how serious is the popularity
bias from the point of view of individual users, we also need
to measure this concentration problem for the purpose of
item-providers. Therefore, The Gini coefficient is borrowed
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from the economic filed to quantify the balance degree in the
numbers of recommended times of different items [5], which
is called exposure fairness in this paper.

The most straightforward approach to improve the
exposure fairness is, first generating a relatively large
recommendation list with a classical model, and then
performing post-hoc re-ranking on that recommendation
list. Abdollahpouri [6] re-ranked the generated recom-
mendation list by considering the item popularity, and
Christoffel et al. [7] simply divided each item’s recommen-
dation score by its degree of popularity with an adjustable
exponent on the shoulder, which greatly decreases the orig-
inally high recommendation scores of popular items and
thus enhances the priority of unpopular items in the rec-
ommendation lists. Dong er al. [8] proposed to linearly
aggregate the row- and column-ranking numbers of the rec-
ommendation score matrix obtained by some algorithm into
the final recommendation ranking number, where the row
and column of the matrix are corresponding to user and
item, respectively. Mansoury et al. [9] introduced a general
graph-based algorithm for improving item recommendation
fairness. The algorithm iteratively finds items that are rarely
recommended yet are high-quality and add them to the users’
final recommendation lists, which is done by solving the
maximum flow problem on the recommendation bipartite
graph. Item fairness in multi-round recommendation context
also received research attentions. Patro et al. [10] focused on
the item fairness issues arising out of incremental updates of
the platform algorithms. They formulated an ILP based online
optimization to ensure smooth transition of the exposure of
items while guaranteeing a minimum utility for every user.
Ge et al. [11] explored the problem of long-term exposure
fairness of items in dynamically changing groups of different
popularity levels. They proposed a fairness-constrained rein-
forcement learning algorithm based on Constrained Markov
Decision Process (CMDP), so that the model can dynamically
adjust its recommendation policy.

Although the improved exposure fairness brought by these
methods may be significant in terms of improved percentage,
for example of more than 100%, the improved absolute value
is usually trivial, for example from 0.0378 to 0.0859 (see the
values of exposure fairness of original P3 and RP3 algorithms
on the Movielens data set in Table 3). It is hard to say that this
kind of improvement of exposure fairness will better serve the
purpose of item-providers. Here what we should not ignore
is that, Ren et al. [12] improve the exposure fairness to a
nontrivial absolute value, but with the cost of unacceptable
loss of recommendation accuracy.

Our main task is to significantly improve the exposure fair-
ness, and simultaneously keep the recommendation accuracy
not decreased or even improved. The main contributions of
this paper are:

(1) We propose to set stock volume constraints on items,
to be specific, limit the maximally allowable recommended
times of an item to be proportional to the frequency of its
being interacted in the past, which is validated to achieve
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superior item exposure fairness to common recommenders
and thus mitigates the Matthew Effect on item popularity.

(2) For the purpose of users, two heuristic user-item
matching strategies are proposed to minimize the loss of
recommendation accuracy brought by item stock volume con-
straints. Among them, the parameterized strategy is validated
to achieve better recommendation accuracy than the baseline
algorithm in regular recommendation scenario, and it has an
advantage of relatively low time complexity.

(3) A Minimum Cost Maximum Flow based model is
designed to solve the optimal user-item matching problem
with constraints. The recommendation accuracy of this strat-
egy is in line with state-of-the-art enhancement of the baseline
algorithm, but it is parameter-free and get rid of parameter
traversal process of its counterpart enhancements to achieve
their best performance.

Il. RELATED WORKS

Generally speaking, the primary goal of a recommender sys-
tem is to enhance the engagement of users by providing
them with items of potential interests. Although the use-
fulness of recommendation results is usually evaluated by
accuracy measures (how accurate they are), the literature
has introduced different evaluation measures of the quality
of recommendation results from different perspectives [13].
The most frequently-used and extensively-studied types of
beyond-accuracy measures are coverage, novelty, diversity
and fairness.

However recently, many bias types have been recently
discovered and categorized into bias in data, bias in model and
bias in results, respectively arising from three different stages
of the recommendation feedback loop [3], deteriorating the
recommendation quality in terms of the above-mentioned
beyond-accuracy aspects and challenging to achieve qualified
recommendations. Among these bias types, popularity bias is
the most prominent one due to its highly adverse effects on
beyond-accuracy recommendation quality. In the literature,
many methods have been developed for mitigating the bias
problems in recommendations. These debiasing approaches
can be divided into three main categories, pre-, in-, and
post-processing methods, according to the three stages they
participate in the recommendation process [14].

Since the data of user interactions are observational rather
than experimental, the imbalance in user-item interaction data
becomes one of the main factors accounting for popularity
bias. Pre-processing approaches usually aim to reduce such
inequalities by altering data on which recommendation algo-
rithms are trained. For example, Park et al. [15] divide all the
items into head group and tail group, where the head group
consists of popular items with significantly larger amount
of ratings than those in the tail group. Recommendations
for tail items are produced using only ratings in the tail
group, while those for head items are estimated using all data.
Jannach et al. [16] present a practical popularity debiasing
technique that first creates synthetic user-item tuples where
the observed items are mostly unpopular and then utilizes
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them to train algorithms. Chen et al. [17] derive a general
learning framework that well summarizes most existing data
debiasing strategies by specifying some parameters of the
general framework. This provides a valuable opportunity to
develop a universal solution for debiasing, e.g., by learning
the debiasing parameters from data.

The in-processing approaches aim to modify the internal
mechanisms of recommendation algorithms to simultane-
ously consider both popularity and relevance. This task is usu-
ally accomplished using specific constraints or conducting
a joint optimization. For example, Abdollahpouri et al. [18]
propose an optimized variant of the well-known RankALS
algorithm, which contributes to producing recommendation
lists where predictive accuracy and intra-list item diversity
are balanced. Hou er al. [19] present a framework that first
constructs the neighborhoods between the items based on
their popularity instead of the magnitude of their ratings; then,
it eliminates some most popular ones to have a more bal-
anced common-neighbor similarity index. Boratto et al. [14]
propose an in-processing approach that minimizes the biased
correlation between user-item relevance and item popular-
ity for fairly treating the items along the popularity tail.
Berbague et al. [20] propose a solution to balance between
the recommendation accuracy and coverage by making an
overlapped clustering, where each user is assigned to a main
cluster from which he gets his recommendations and to sec-
ondary clusters as a candidate neighbor.

The post-processing techniques usually aim to re-rank a
recommendation list that has already been generated or create
a new one following some specific constraints. These are the
most utilized approaches for mitigating popularity bias since
they can be easily applied to the output of any recommen-
dation algorithm, which is also why we focus on developing
a post-processing method to counteract potential popularity
bias in this study. For example, Abdollahpouri et al. [21]
introduce an approach that first calculates weight scores for
items based on their popularity and then utilizes them to
punish popular items during re-ranking recommended item
lists. Likewise, Yalcin and Bilge [22] follow a similar strategy
and presents two robust popularity debiasing methods for
recommending to groups of users rather than individuals.
Abdollahpouri et al. [23] also present the xQuad algorithm
that is an enhanced re-ranking approach and helps balance
the trade-off between long-tail item coverage and ranking
accuracy more robustly. Wu et al. [24] exploited a balance
factor to adjust the influence of a personalized ranking vec-
tor and a unified non-personalized ranking vector based on
PageRank. By this, it can reduce the impact of item popularity
on recommendations and then generate more diverse and
novel recommendations to users.

As seen from the presented literature, many recent studies
consider biases towards popular items in the recommenda-
tions and try to deal with this issue for achieving more
qualified recommendations. However, as emphasized in the
previous section, the popularity of an item does not always
mean that individuals strongly desire it. Therefore, more
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comprehensive analyses are required to investigate potential
bias towards blockbuster items and develop novel practical
methods to mitigate its adverse effects on recommendations.

Ill. PROBLEM DESCRIPTION AND NOTATIONS

A. NOTATIONS

In an implicit rating based recommender system with m users
and nitems, uoru; (1 < i < m)is used to denote a user, v or v;
an item (1 < j < n), and the adjacency matrix A = (a; j)mxn
represents the historical user-item interaction records. The
matrix element g; ; is 1 if there exists an observed user-item
interaction, indicating that user u; declared explicitly his/her
preference on item v; in the past, and the element is 0 if
otherwise. The sum of row i is called the degree of user u;,
denoted by deg(u;), which is an indicator of the user’s activity
level in the system. The sum of column j is called the degree
of item v;, denoted by deg(v;), which represents the item’s
popularity degree among all users.

Given the user-item adjacency matrix A as input, a recom-
mendation algorithm will output the user-item score matrix
S = (8i,j))mxn, Where the element s; ; is the predicted score of
user ;’s preference on item v;. The recommendation list of
each user is constituted by the items with top / recommenda-
tion scores. Of course, the interacted items are excluded from
the recommendation list. The final recommendation results
of all users can also be represented by the recommendation
matrix R = (7 j)mxn, Where r;; = 1 if item v; is recom-
mended to user u;, otherwise zero. Clearly, the sum of every
row of matrix R must equal the recommendation length [. All
the notations used in this paper are listed in Table 1, some of
which will be defined in the remaining part.

B. ITEM STOCK VOLUME CONSTRAINTS

The recommendation process is essentially selecting a subset
of items to fill into the vacancies of the recommendation list
of every user. Given user number m and recommendation
length [, the total number of vacancies in all users’ recom-
mendation lists is m * /. In order to limit the recommendation
frequency of popular items and promote the exposure of less
popular items, we set the maximally allowed recommenda-
tion frequency of a specific item v;, called stock volume gj,
to be proportional to its degree as follows,

deg (vj)
> i1 deg (vi)

The value is rounded up to an integer, because the total
stock volume of all items must be no less than the vacancy
number in the recommendation lists of all users.

By constraining the stock volume of every item, the relative
popularity of different items will remain almost unchanged
before and after recommendation process, and the Matthew
effect on item popularity will be prevented from being aggra-
vated, with the hypothesis that all the item recommendations
shares the same conversion rate. Of course if the varying
conversion rate is available, we can incorporate it as the
weight of recommendation in the following fairness measure.

gi=|mxlx*
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TABLE 1. The notations used in this paper.

Notation Definition

m Number of users

n Number of items

i,k Counter

U, Ui Some user

v, U5 Some item

A = (aij)mxn User-item adjacent matrix

deg(u), deg(u;)
deg(v), deg(v;)
S = (8ij)mxn

Degree of some user

Degree of some item

Matrix of recommendation scores, but s;; is set
tobe Oif a;; = 1.

SN = (sf\]] )mxn  Row-normalized matrix of S

R = (Tij)mxn Matrix of recommendation results, where r;; =
1 if item v; is recommended to user u;, other-
wise zero

! Length of recommendation lists, or initial va-
cancy number of the recommendation list of
every user

L Vector of remaining vacancy numbers of the
recommendation lists of m users

L(i) Remaining vacancy number of the recommen-
dation list of user u;

qj Initial stock volume of item v;

Q Vector of remaining stock volumes of n items

Q) Remaining stock volume of item v;

1 Vector consisting of all one elements

Next let us justify the feasibility of this constraint on item
stock volume in a real-world recommendation context. In the
service recommendation scenarios like dining, accommoda-
tion, fitness, haircuts, massages, medical services and so on,
stock constraint is a special factor that decides how many
customers can receive a service with an assured level of
quality. For example, a restaurant often has a constraint on
the number of customers who can be served during the dining
hours. If too many customers arrive at a restaurant, their
dining experience will be unpleasant or in the worst case,
some customers will be very disappointed [25].

C. PROBLEM FORMALIZATION

In the regular recommendation scenario, there exists only
constraint on the user side (the recommendation length) and
no constraint on the item side, thus the recommendation lists
of different users are generated independently of each other.
That is to say, recommending which items to one specific
user has nothing to do with the recommendation list of other
users. In this paper, the item stock volume is introduced as one
constraint on the item side. These two constraints together
break the independency of different recommendation lists.
The arising problem is, in order to achieve the best recom-
mendation quality, how to match the items with limited stock
volume into different users’ recommendation lists of fixed
length? For example, some regular algorithm is supposed
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to recommend a specific item to many users, but the stock
volume of this item is fewer than the amount of these users.

This is an optimal user-item matching problem with con-
straints, where the optimization objective is undoubtedly the
overall recommendation accuracy, and the two constraints
are user’s recommendation length and item’s stock volume.
Since user’s future feedback is unknown during the recom-
mendation generation phase, the most simple and intuitive
alternative for the recommendation accuracy is the sum of
recommendation scores of all matched user-item pairs in the
recommendation lists.

Empirical results [26] show that there exists a strong pos-
itive correlation between the recommendation scores and
the user degrees (item degrees, respectively). That is to
say, almost all the users are regarded to prefer popular
items to unpopular ones by common recommenders, and
the recommendation scores on popular items of large-degree
users is usually much larger than that of small-degree
users. Therefore, following the above optimization objective,
the large-degree users will almost run out the stocks of popu-
lar items, and the small-degree users who also prefer popular
items have to be recommended less preferable unpopular
items. Since the small-degree users are the absolute majority
in the system, this will cause unacceptable loss of recommen-
dation accuracy.

In order to eliminate the influence of user degree on the rec-
ommendation scores, we propose to use the user-normalized
scores instead of original scores for the user-item matching
priority. Specifically, the user-normalized score of every item
is defined by the original score divided by the sum of all
items’ scores of the same target user,

' D k=1 Sik

By means of the score normalization process, every user
holds the same amount of recommendation stakes to be
assigned to all the candidate items (the sum of normalized
scores is one unit for every user). However, the distribution of
stakes among items varies from small- to large-degree users.
The stakes of small-degree users are concentrated on a small
number of popular items, such that although small-degree
users enjoy higher priority in the user-item matching process,
the number of priority times is very few for each small-degree
user. In this way, most stocks of popular items will be
exhausted by small-degree users, and the large-degree users
have to be recommended less popular items.

In summary, the optimization problem of user-item match-
ing with constraints is formulated as

max E rijsi-}’

1<i<m
I<j<n

n
s.t. Zi’ij=l, I<i<m
J=1

m
dorj<q, 1<j<n

i=1
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IV. USER-ITEM MATCHING STRATEGY

To solve the optimal user-item matching problem with con-
straints, we propose two kinds of priority strategies, one is
the simplest greedy strategy and the other one is the elaborate
Minimum Cost Maximum Flow based strategy.

A. THE GREEDY STRATEGY

The essence of our greedy user-item matching strategy is
“Largest Normalized-Score First”. For this strategy, we sort
all the non-interacted user-item pairs (u;, v;) in descending
order of normalized scores, and check each pair one by one
in this order. For a specific user-item pair, if there is some
vacancy in the corresponding user’s recommendation list
and the corresponding item’s stock volume is not exhausted,
we fill the item into the recommendation list of the user,
and decrease the corresponding vacancy number and stock
volume by one. Once the recommendation lists of all users are
fully occupied by items, we stop the above checking process.
Algorithm 1 presents the detailed steps of this greedy strategy.

B. THE MCMF-BASED STRATEGY

As one important contribution of this paper, we build a
Minimum Cost Maximum Flow (MCMF) model to solve
the optimal user-item matching problem with constraints.
The MCMF problem is a well-known network flow problem,
which finds various applications in the fields of transporta-
tion, logistics, telecommunication, network design, resource
planning, scheduling, and many other industries [27]. Next
we give a brief review on the MCMF problem. The terminol-
ogy follows from the reference [28].

A network is a directed graph G = (V, E) with a source
node s and a sink node ¢. Each directed edge (u,v) € E is
associated with two constants, the capacity cap(u, v) indi-
cating the upper bound of the flow f(u, v) allowed on the
edge, and the cost per unit flow on the edge, denoted by
cost(u, v). Clearly, the capacity and the cost of an edge are
positive values. The value of a network flow f is defined as
value (f) = Z(S’W)EEf (s, w) — Z(W,S)eEf (w, s), and the
cost of flow f is cost (f) = Z(S’w)eEf (s, w) x cost (s, w) —
Z(W’s)eEf (w, 8) X cost (w, s). A Minimum Cost Maximum
Flow of a network G = (V, E) is a maximum flow with the
smallest possible cost.

To relate the optimization problem of user-item matching
to the MCMF problem, the most important work is to con-
struct a flow network G = (V, E) to model the optimization
objective and the constraints of the user-item matching prob-
lem, which is defined as follows. The node set is

V= {s, 1} U{ui}i<i<m U {vj}

where u; and v; represent users and items of the recommender
system, consistent with the aforementioned notations.
The directed edge set is

E = {(s,ud)}i<j<m Y {(vj’t)}ISan

U {(ui )} aij=o.

I1<i<m,1<j<n

1<j<n
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Algorithm 1 Largest-Normalized-Score-First
Input:
user-item adjacent matrix A, normalized score matrix SN,
Vector L of users’ initial numbers of recommendation
vacancy, vector Q of items’ initial stock volume.
Output:
recommendation matrix R such that R x 1 = L and RT x
1<0.

1: Initialize R as zero matrix.

2: Sort the m x n elements of row-normalized score matrix
SV in descending order, and assume that the k-th largest
element in this order is originally in row i, column j; of
matrix SV.

3: fork = 1tom x ndo

4: if L = 0 then /*the recommendation lists of all users

are fully occupied*/

5: break;

6: endif

7. if L(ix) > 0 and Q@) > O then /*there is available

vacancy in the recommendation list of the user and
there is remaining stock volume for the item*/

8: R(ir, ji) = 1; /*fill the item in the list of the user*/
9: L(ix) = L(ix)—1; /*decrease the remaining vacancy
number of the user*/
10: O@x) = Q@) — 1; /*decrease the remaining stock
volume of the item*/
11:  endif
12: end for

13: return R;

In other words, there is a directed edge from the source
node to each user node, a directed edge from each item node
to the sink node, and a directed edge between every user-item
pair without interaction in the past.

The capacity on each directed edge is defined as

cap (Mi,Vj) =1,
1<i<m, 1<j<n.

cap (s, uj) =1,
cap (Vj, l‘) = gj,

The edge capacity between every user-item pair is set to
be 1, indicating the user-item matching rule that each item can
occupy at most one vacancy of the recommendation list of a
specific user. The edge capacity from the source node to each
user node is defined by the length of recommendation lists,
and the edge capacity from each item node to the sink node
is defined by the stock volume of the item, corresponding to
the two constraints of the optimization function.

The cost on each directed edge is defined as

cost (u,-, vj) =100 (1 — {s{%]),
cost (s, uj) = cost(vj,t) =0,1<i<m,1<j<n,

where the normalized score si.v -is rounded up to two decimals,
such that the values of capacity and cost of this network are

all positive integers.
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After construction of the directed flow graph, we relate
the original optimization problem to the MCMF problem.
One benefit of making the connection between the user-item
matching problem and the MCMF problem is that it pro-
vides an approach for taking advantage of existing works
that have already been done on finding the optimal solu-
tion. The MCMF problem has been thoroughly studied
and many efficient MCMF algorithms are available in the
literature [28], [29].

The value of the maximum flow of this network is clearly
m * [, since we get the initial stock volumes of items by
rounding up the values. The objective of minimizing the cost
of the maximum flow is essentially the optimization objective
of maximizing the sum of normalized scores of matched
user-item pairs.

To compute a minimum cost maximum flow in graph G =
(V, E) from s to t, we employ the Capacity Scaling algorithm
and the MCMF problem can be solved in polynomial time
[28]. The solution of the MCMF problem yields the result of
the optimal user-item matching problem. The recommenda-
tion list of a target user is consisted of items with nonzero flow
on the corresponding user-item edges in the optimal solution
of the MCMF problem.

V. PERFORMANCE EVALUATION
A. DATA SETS, EVALUATION MEASURES,

AND BASELINE ALGORITHMS

Two benchmark data sets are employed to evaluate the per-
formance of recommendation algorithms, namely, Movielens
and Netflix. Both of them are movie rating data set, where
users rate their watched movies (rephrased as items in this
paper) with an explicit integer scores from 1 to 5. For each
data set, we use only the ratings no less than 3 to construct
the nonzero elements of adjacent matrix of user-item interac-
tions. Table 2 summarizes the statistical features of the two
data sets, where the sparsity is the proportion of nonzero
elements to the total number of elements of adjacent matrix.
To evaluate the offline performance of different recommen-
dation algorithms, each data set is temporally partitioned into
two subsets: the training set containing early 80% of the
nonzero elements and the probe set later 20% of the nonzero
elements. The training set is treated as known information to
make recommendation and the probe set is used to test the
accuracy performance of the recommendation results.

The most simple recommendation fairness measure is the
aggregate diversity [30], [31] (also known as coverage [32]),
which is defined by the fraction of items recommended to
at least one user to the total number of items. This intuitive
measure may not be very robust, since the contribution to it of
an item that has been recommended just once is equal to that
of other item recommended a thousand times. To solve this
problem, Fleder and Hosanagar [5] proposed a better alterna-
tive by using the Gini coefficient to measure the balance in
the numbers of recommended times of different items,

G=1-

D @k—n—1)p@lR)
k=1

n—1
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TABLE 2. The basic statistics of two real-world networks used in this
paper, including the number of users, item and links, and the sparsity.

data set #users  #items  #links sparsity
Movielens 6000 3,600 800,000 3.8%
Netflix 9500 14,000 1,700,000 1.2%

where p (ix|R) is the probability of the k-th least recom-
mended item being drawn from the recommendation lists
generated by a recommender system. In order to be in accor-
dance with other metrics for which higher value is better,
the complement of the standard definition of Gini coefficient
is used in this paper.

Besides the above two item-provider oriented measures,
we use Precision to evaluate the quality of recommendation
results for the purpose of users, which is defined as the
fraction of accurately recommended items to the length of
recommendation lists [32].

In this paper, we use the P3 algorithm [33] (also known
as NBI [34] or ProbS [35] algorithm) as the baseline, and
several well-known P3-enhanced algorithms as comparing
counterparts, including the RP3, HHP, RAP3, PD, BD and
BHC algorithms [7], [8], [35]-[38]. The interested reader is
referred to a survey article for comprehensive review [39].

Our proposed user-item matching strategy with constraints
are generic post-processing methods which can be used to
improve any algorithms. Among many classic recommen-
dation models, the reasons of selecting P3 algorithm as the
baseline are as follows. First, P3 is intrinsically a hybrid form
of user-based and item-based collaborative filtering with
diffusion-based similarity [39]. Second, the P3 algorithm
does not require any pre-specified parameter, such as the
neighborhood size in the k-nearest neighbor collaborative
filtering. Third, the P3 algorithm has a perfect physical inter-
pretation, since it is analogous to a mass diffusion process
on the user-item network [35]. Finally, the spreading repre-
sentation of P3 in sparse networks is computationally more
efficient than the traditional matrix-based representation of
collaborative filtering methods [39].

B. PERFORMANCE OF GREEDY STRATEGY

AND ITS IMPROVEMENT

According to Table 3 and Table 4, the precision value of the
greedy strategy is about 90% of that of original P3 algo-
rithm on the Movielens data set, and 77% for Netflix. This
percentage of accuracy loss is definitely not acceptable for
practical applications. The subsequent question is that, is it
possible to regain 100% of accuracy value of the regular
recommendation scenario?

Recall that the greedy strategy degrades the priority of
large-degree users in the user-item matching process by
dividing the original scores with the sum of recommenda-
tion scores of all the items of the same target user. Then
a natural question arises, is the strength of this priority
degradation optimal? To answer this question, we replace the
constant exponent 1 of the denominator with an adjustable
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TABLE 3. Performance comparison of P3 algorithm in the constrained recommendation scenario and the performance of several P3-enhanced algorithms

in regular recommendation scenario on the Movielens data set.

Algorithm Recommendation Settings Precision Aggregate Exposure
diversity fairness
Regular 0.1949 0.0991 0.0378
Constraint, original greedy strategy 0.1757 0.6493 0.2993
P3 Constraint, greedy strategy, 6 = 0.9 0.1989 0.6693 0.3002
Constraint, MCMF strategy 0.2115 0.5689 0.2973
RP3 Regular, A\ = 0.6 0.2289 0.3485 0.0859
RAP3 Regular, A\ = 0.6 0.2082 0.2945 0.074
HHP Regular, A = 0.3 0.2238 0.2529 0.0715
BHC Regular, A\ = 0.8 0.218 0.3115 0.0914
BD Regular, A\ = 0.7 0.2297 0.3507 0.0932
PD Regular, A\ = —0.7 0.2283 0.332 0.0828

TABLE 4. Performance comparison of P3 algorithm in the constrained recommendation scenario and the performance of several P3-enhanced algorithms

in regular recommendation scenario on the Netflix data set.

Algorithm Recommendation Settings Precision Aggregate Exposure
diversity fairness
Regular 0.136 0.0493 0.0068
Constraint, original greedy strategy 0.1042 0.5278 0.1204
P3 Constraint, greedy strategy, 6 = 0.9 0.1418 0.5566 0.124
Constraint, MCMF strategy 0.1473 0.5956 0.1232
RP3 Regular, \ = 0.5 0.1533 0.652 0.0414
RAP3 Regular, A\ = 0.2 0.1542 0.7699 0.0676
HHP Regular, A = 0.2 0.156 0.3311 0.0217
BHC Regular, A = 0.8 0.1512 0.2673 0.017
BD Regular, A\ = 0.7 0.1596 0.5965 0.0478
PD Regular, A = —0.7 0.1494 0.6674 0.0351

parameter 6, that is to say, the original recommendation
scores are divided by the sum of recommendation scores of
the target user with exponent 8 on the shoulder,

0 _ Sij
Yo Qe sik)?

By traversing this parameter 6 from 0 to 1 to obtain the best
recommendation accuracy, we enhance the original greedy
strategy to a parameterized version. For a specific value of
parameter 6, the user-item matching process is similar to the
original greedy strategy.

According to Table 3 and Table 4, the best precision value
of the parameterized greedy strategy is larger than that of
original P3 algorithm. What is more, the aggregate diversity
is almost 7 times of the original value on the Movielens data
set, and more than 11 times for Netflix; the exposure fairness
is almost 8 times of the original value on the Movielens data
set, and more than 18 times for Netflix.

N

C. PERFORMANCE OF THE MCMF STRATEGY

Table 3 and Table 4 also present detailed performance com-
parison between the P3 algorithm with the MCMF strategy,
and six state-of-the-art P3-enhanced algorithms in the regular
recommendation scenario on the Movielens and Netflix data
sets, where the values of their intrinsic parameters are set to be
associated with the best recommendation precision. For the
P3 algorithm in the constrained recommendation scenario,
the MCMF model achieves the best accuracy performance
among all the user-item matching strategies (even better
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than the parameterized greedy strategy), thus we call it the
P3-MCMF algorithm as a whole for later discussion.

Compared with six state-of-the-art P3-enhanced algo-
rithms in the regular recommendation scenario, the
P3-MCMF algorithm achieves the recommendation precision
of more than 90% of the best value of all the enhanced algo-
rithms; its exposure fairness value is more than three times
(two times, respectively) of the best values of all the enhanced
algorithms on the Movielens (Netflix, respectively) data set;
As for the aggregate diversity, the P3-MCMF algorithm
achieves much better performance on Movielens and a little
worse performance on Netflix, compared with the best values
of all enhanced algorithms. Since the aggregate diversity is a
very coarse measure of recommendation fairness, its trivial
loss does not matter for practical applications.

Recall that these six counterpart algorithms are already
enhanced versions of the P3 algorithm, with much better
recommendation performance. Take the RP3 algorithm as an
example. Compared with the P3 algorithm on Movielens,
the precision is improved about 17%, the aggregate diver-
sity is improved about 250%, and the exposure fairness is
improved more than 100%. Although the six P3-enhanced
algorithms are inspired by different motivations, they have
similar recommendation performance in regular recommen-
dation scenario (for example the precision is about 0.22 and
the exposure fairness is below 0.1 on the Movielens data
set), which indicates that further performance improvement
will be a very difficult task. However, our MCMF strategy
successfully cracks this problem.
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FIGURE 1. The precision against the exposure fairness of six typical P3-enhanced algorithms (the red dots) with the change of their intrinsic

parameter A, compared with the counterparts of our P3-MCMF algorithm (the blue dot) on the Movielens data set. The length of
recommendation lists is 20.
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FIGURE 2. The changes of the precision value and the Gini coefficient of recommendation scores in the recommendation lists of length 20,
with the exponential parameter of the parameterized greedy strategy for P3 and five P3-enhanced algorithms on Movielens.

The most important significance of our P3-MCMF have to traverse their intrinsic parameter to get the best
algorithm is that, it is parameter-free and thus achieves this performance.
superior performance without the time cost of parameter opti-

After the above performance comparison, a natural ques-
mization, while all the above existing enhanced algorithms

tion is raised, can we adjust the parameter of some typical
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P3-enhanced algorithms, to get the similar exposure fairness
value while sacrificing the accuracy to the same level? To
answer this question, we plot the precision against the expo-
sure fairness of six typical P3-enhanced algorithms, com-
pared with the counterparts of our P3-MCMF algorithm on
the Movielens data set in Fig. 1. Each red dot is corresponding
to a specific value of the intrinsic parameter A of the enhanced
algorithm, from 0.1 to 1.0 with step length of 0.1, and the blue
dot is for the performance of the P3-MCMF algorithm.

From Fig. 1 we can see that, the P3-MCMF algorithm
regains more than 90% of the best precision values of typi-
cal P3-enhanced algorithms. Even if we let the precision of
P3-improved algorithms aligned with that of the P3-MCMF
algorithm, the exposure fairness value of the former is still
worse than that of the latter, and vice versa. That is to say,
the performance of the parameter-free P3-MCMF algorithm
is always better than those of the parameterized P3-enhanced
algorithms. What is more, the parameter-free characteristic
of the P3-MCMF algorithm is a tremendous advantage in the
practical applications.

D. ANALYSIS OF TIME COMPLEXITY

The greedy user-item matching strategy consists of two steps:
the sorting step of mn elements of normalized matrix SV
whose time complexity is O(mnlog(mn)), and the one by one
checking step of mn user-item pairs whose time complexity
is O(mn), thus the overall time complexity of greedy strategy
is O(mnlog(mn)). According to [28], the time complexity of
our MCMF strategy is O(m?n? log mlog(mn)).

In summary, each of our two user-item matching strategies
has its own advantage and disadvantage. The MCMF strategy
is parameter-free, has the best accuracy performance, but its
time complexity is higher than its greedy counterpart; The
greedy strategy is more time efficient, but it has additional
parameter-traversal cost and its accuracy performance has a
gap to the best value.

VI. CONCLUDING REMARKS AND FUTURE WORK

The popularity bias is a ubiquitous problem confronted by
common recommenders, and many research efforts were
devoted to mitigate this problem and thus improve user
experience. In fact, popularity bias is not welcome to not
only users but also item-providers. While this problem of
recommending a few popular items to a majority of users is
usually regarded as a user-oriented problem, item-providers
also suffer a lot from it and anchor their hope on recommender
systems to give fairer exposure chance to different items,
especially unpopular ones.

This work was devoted to solve the problem of recommen-
dation fairness, which is measured by the Gini coefficient
of numbers of recommendation times of all items in the
system. The approach is to limit the allowed recommenda-
tion frequency of each item to be proportional to its degree.
Although this approach is very effective and robust in sig-
nificantly improving the recommendation fairness and thus
better serves the purpose of item-providers, the following
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recommendation accuracy loss and the decrease of user expe-
rience cannot be ignored. To solve this subsequent problem,
we proposed a heuristic strategy and an elaborate MCMF
model to solve the user-item matching problem with con-
straints, both of which regain more than 100% of the precision
value of the baseline algorithm in regular recommenda-
tion context. Even compared with several state-of-the-art
enhanced algorithms, the precision value of our P3-MCMF
algorithm has no significant difference. Another important
advantage of our proposed P3-MCMF algorithm is that it is
parameter-free and thus achieves this superior performance
without the time cost of parameter optimization, while most
existing enhanced algorithms have to traverse their intrinsic
parameter to get the best performance.

In the greedy user-item matching strategy, by reducing the
positive correlation between recommendation scores and user
degrees via score normalization process, the recommendation
accuracy and the distribution uniformity of recommenda-
tion scores are both improved. Then a natural question is
raised, what is the relationship between these two measures?
To answer this question, Fig. 2(a) plots the changes of the
precision value and the Gini coefficient of recommendation
scores in the recommendation lists of length / = 20, with the
exponential parameter of the parameterized greedy strategy
for the P3 algorithm on Movielens. We can see a very inter-
esting phenomenon that, the two measures achieve their own
optimal values at (almost) the same value of the exponential
parameter. To see whether this is a common phenomenon in
recommender systems or not, we regard the above-mentioned
five P3-enhanced algorithms with optimal values of intrinsic
parameters as baseline algorithms, and present the same plots
in Fig. 2(b)-(f). This consistence between the peaks of the two
measures still holds. Our next work is to explore the mecha-
nism behind the consistence of these two peak values, and try
to make use of it to further improve existing recommendation
algorithms or design new recommendation models.
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