
Received September 7, 2021, accepted September 16, 2021, date of publication September 20, 2021,
date of current version September 27, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3113891

The New TCP Modules on the Block:
A Performance Evaluation of TCP
Pacing and TCP Small Queues
CARLO AUGUSTO GRAZIA , (Member, IEEE), MARTIN KLAPEZ ,
AND MAURIZIO CASONI , (Senior Member, IEEE)
Department of Engineering Enzo Ferrari, University of Modena and Reggio Emilia, 41125 Modena, Italy

Corresponding author: Carlo Augusto Grazia (carloaugusto.grazia@unimore.it)

ABSTRACT Google and the Bufferbloat community have designed several solutions to reduce Internet
latency in recent years, involving different TCP-IP stack layers. One of these solutions is named TCP Small
Queues (TSQ) and reduces a TCP flow latency by controlling the number of packets that each TCP socket
can enqueue in the sender node. It works in conjunction with TCP Pacing (TP), which affects the actual TSQ
size as a function of the TCP rate. This paper analyzes TSQ and TP’s performance through real-system tests
over different networks’ bottlenecks, emphasizing Wi-Fi technologies, where their behavior strongly affects
the Wi-Fi frame aggregation mechanism.

INDEX TERMS Bufferbloat, latency, TCP small queues.

I. INTRODUCTION
Internet latency issues have been exposed under a magnifying
glass in recent years, involving big players like Google and
the Bufferbloat community to design novel algorithms for
several TCP-IP layers. To name one, the Bufferbloat com-
munity has developed the hybrid packet scheduler and queue
manager Flow Queue Controlled Delay (FQ-CoDel) [1].
FQ-CoDel has quickly become the standard queueing disci-
pline for many Linux-based end nodes and routers. At the
same time, even Google has designed a couple of remarkable
algorithms like TCP Bottleneck Bandwidth and Round-trip
propagation time (BBR) [2] and TCP Small Queues (TSQ).
The former is a transport layer solution, and the latter is a
cross-layering solution, considering the TCP-IP stack. Unlike
FQ-CoDel, which can be deployed on any node of the path,
BBR and TSQ are designed exclusively for the end nodes.

To the best of our knowledge, there is a lack of scientific
contributions related to TSQ and TP. In particular, we report
a lack in the performance analysis of TSQ in conjunction
with these new TCP-IP solutions involving all the stack lay-
ers. The TSQ module alone is reported in a few scientific
contributions [3]–[6] involving wired networks, but without
investigating the main purpose of the mechanism, i.e., to

The associate editor coordinating the review of this manuscript and

approving it for publication was Barbara Masini .

reduce latency without reducing the throughput. For what
concerns wireless environments, instead, other few scientific
contributions [7]–[9], dealing with LTE and Wi-Fi technolo-
gies, report some insight on latency reduction by tuning the
TSQ size. Unfortunately, these previous works deal with old
Linux kernels, in which TSQ was operating statically by
imposing an amount of data to be enqueued, instead of con-
trolling the amount of data to be enqueued dynamically based
on the current data delivery rate. Moreover, none of these
cited works accommodate a broader analysis of TSQ and
TP’s interaction in real and up-to-date environments. Indeed,
to properly investigate the TSQ impact on latency reduction,
a complete system involving TCP BBR and FQ-CoDel must
also be considered concerning the bottleneck position in the
network path. The sole literature contributions combining
TSQ and TP, to the best of our knowledge, are [10] and [11]:
in the former, the authors analyzed the CPU impact of these
solutions, discussing software bottlenecks more than network
bottlenecks, while in the latter, the authors investigated the
behavior of different TCP congestion controls regarding an
hybrid bottleneck network which involves only Wi-Fi 6 envi-
ronments.

The contribution of this paper is (i) the description of
the TSQ and TP, contextualized in the latest Long-Term
Support (LTS) version of the Linux kernel 5.10-lts with the
other involved TCP-IP solutions on both wired and wireless

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 129329

https://orcid.org/0000-0003-0534-995X
https://orcid.org/0000-0002-2947-204X
https://orcid.org/0000-0002-8417-4416
https://orcid.org/0000-0002-1094-1985


C. A. Grazia et al.: New TCP Modules on Block: Performance Evaluation of TP and TSQ

FIGURE 1. TCP-IP linux stack.

scenarios, and (ii) a real-test analysis of the TSQ and TP
performance under different network technologies. The paper
is structured as follows: Section II describes the latest TCP-IP
Linux stack and Section III illustrates the testbed used to
collect our data. Finally, Section IV shows the results and
Section V concludes the paper.

II. TCP-IP LINUX STACK
The current and up-to-date TCP-IP Linux stack is depicted
in Figure 1.We report the threemain blocks involved in a TCP
flow transmission with the whole TCP transport block on the
left, the Queueing Layer corresponding to the TCP-IP net-
working layer in the middle and the host-to-network Driver
block on the right. The TCP congestion control algorithm role
did not change recently, so the TCP socket is still calculating
the congestion window (CWND) and dealing with the ACK
reception according to the algorithm used. The most signifi-
cant change in recent years has been in the way packets are
delivered by the TCP socket, now regulated by TSQ and TP,
also shown in Figure 1. Once the TCP socket delivers the
packets, they are enqueued in the lower layers. The Queueing
Layer, depicted in the middle of Figure 1, deploys a standard
FQ-CoDel algorithm, which is the default solution in recent
kernels withmany Linux distributions [1]. Once the scheduler
delivers the packets, they move to the last block, where the
driver firmware implements the last hardware queue before
moving to the physical medium channel. Once a packet is
physically transmitted, a completion signal is cross-passed to
the TSQ algorithm.

Algorithm 1 TCP Pacing Rate
Input: TCP_SOCKET sk, int baseRTT ;
1: int rate = mss * sk→cwnd / baseRTT ;
2: if sk→cwnd < sk→ssthresh / 2 then
3: rate *= tcp_pacing_ss_ratio; // SlowStart phase
4: else
5: rate *= tcp_pacing_ca_ratio; // Cong.Avoid. phase
6: end if

A. TP AND TSQ
The most significant change experienced by the TCP-IP
stack in recent years has been the introduction of
TP and TSQ. The cooperative work of these two
TCP submodules strongly impacts the way packets
are delivered by the TCP socket, affecting the TCP
RTT and the system latency. TP is controlled by two
system variables, i.e., tcp_pacing_ss_ratio and
tcp_pacing_ca_ratio, used in the slow start and
the congestion avoidance phases, respectively, as reported
in Algorithm 1. The TCP socket’s final TCP-paced rate
to deliver data is then adjusted with a pacing ratio that
changes according to the TCP transmission phase. By default,
tcp_pacing_ss_ratio is equal to 2 in the slow-start
phase, and tcp_pacing_ca_ratio is equal to 1.2 in the
congestion avoidance phase. This means that the TCP flow
doubles the slow-start phase rate and increases it by 20%
in the congestion-avoidance phase. This mechanism allows
probing for more bandwidth without forming excessive bursts
of packets in the path’s network queues.

Algorithm 2 TCP Small Queue
Input: TCP_SOCKET sk;
1: int limit;
2: limit = max(2 * sk→pktsize, sk→tcp_pacing_rate �

10);
3: limit = min(limit, tcp_limit_output_bytes);

On the other hand, the TCP paced rate is used to calculate,
in conjunction with the TSQ mechanism, the number of
packets that a TCP socket can enqueue in the sender stack.
This quantity is a dynamic value described in Algorithm 2.
According to the algorithm, the TSQ limit is always higher
than a minimum amount of 2 packets and lower than a maxi-
mum amount oflimit_output_bytes bytes (128KBby
default). The dynamic limit moves through these two bounds
and is the amount of data that corresponds to a latency equal
to 1 ms by default. Algorithm 2 clarifies this behavior: the
dynamic amount of data that can be enqueued is calculated

129330 VOLUME 9, 2021



C. A. Grazia et al.: New TCP Modules on Block: Performance Evaluation of TP and TSQ

through sk→tcp_pacing_rate � 10, which is a 10-bit shift
of the current pacing rate, that corresponds to the amount
of data transmitted in 1 ms at the current paced rate. This
mechanism helps the sender congestion control mitigate the
queueing delay occurring inside the node and accurately
calculate RTTs. Concluding, the bit shift quantity changes the
latency introduced by TSQ, while the TP ratio changes the
TSQ limit size. It is important to notice that BBR operates
with a customized TCP pacing mechanism used in its finite
state machine. BBR, indeed, is the sole congestion control to
ignore the global TP module and does not react to the global
tcp_pacing_ratio variable changes. BBR deploys a
specific finite-state machine, reported in Figure 2, where
the pacing rate is computed as a function of the bottleneck
bandwidth. BBR estimates the parameters in the finite-state
machine, in kernel-space, and cannot be modified by the user.

FIGURE 2. Linux TCP BBR block.

B. QUEUEING LAYER AND DRIVER
The default structure of FQ-CoDel, reported in Figure 1,
works as follows: a separate software queue serves each TCP
flow, and each queue is managed by the CoDel algorithm to
control the latency and is served in a round-robin fashion.
The default CoDel threshold is set at 5 ms, which means
that packets with sojourn time greater than the threshold will
be dropped at the dequeue stage. The queueing discipline
in novel Linux systems is managed, by default, with the
tc tool, which allows configuring the characteristics of the
networking layer. The Queueing layer and the Network Inter-
face Card (NIC) Driver blocks are strongly coupled in their
behavior, and Figure 1 represents a simple scenario in which a
single hardware queue is present. The driver also implements
the Byte Queue Limit (BQL) for all the hardware queues,
which is the last algorithm to control the global latency of the
system [12]. The BQL mechanism tries to store enough data
to avoid starvation and, simultaneously, to avoid accumulat-
ing excessive data increasing the latency. The BQL algorithm
is not tested in our paper, and the drivers’ default configura-
tions are maintained. A considerable change imposed by the
usage of a wireless Atheros NIC equipped with the ath9k
driver, as is the case of our tests, is that it implements the
FQ-CoDel mechanism directly in the firmware, disabling the
queueing discipline layer when the driver is used [13]. Thus,
it impacts the maximum aggregation size of the NIC due to
the 5 ms limit imposed by FQ-CoDel.

FIGURE 3. Physical testbed.

TABLE 1. Bottlenecks configuration.

III. TESTBED
To validate the performance of TSQ and TP, we designed
the testbed reported in Figure 3. Our testbed is composed
of 3 nodes, resembling a classical internet connection with
Wi-Fi access for the Client C and a wired backhaul for the
Server S. In the middle between C and S there is the Router
R or Access Point AP, which interconnects the endpoints and
implements a wired testbed or a wireless one, respectively.
A Gigabit Ethernet supports the connection between S and
R/AP. In contrast, the connections between R/AP and C are
a Gigabit Ethernet and an IEEE 802.11n, both configured
with PCIe devices. These embed the BCM5761 chipset in
the wired testbed and the AR9580 chipset in the wireless
one. The bottleneck segment is software-defined to be local
(the link between C and R) or remote (the link between S
and R) in the wired testbed. The difference between local and
remote bottlenecks resembles different possible laboratories
and home connections, allowing us to focus on widely differ-
ent possible real networks by only controlling the few testbed
nodes. To deploy a configurable wired bottleneck, we used
the tc Linux package and implemented a hierarchical token
bucket (HTB) queueing discipline, coupled with the default
FQ-CoDel on the Router interfaces. It is important to notice
that tc allows for traffic shaping through HTB, i.e., impos-
ing a specific delivery rate for an interface, without com-
promising the scheduling and AQM algorithms behaviors,
running in cascade to HTB. This is not true if the bottleneck
is modeled also imposing specific delay or packet losses
thorough thenetem queueing discipline, whichmust be used
in mutual exclusion to the other queueing disciplines such
as FQ-CoDel. Anyway, this is not the case in our discussion
since we focus only on the bottleneck bandwidth characteris-
tic.We defined 5 possible different bottleneck configurations,
summarized in Table 1. Instead, the bottleneck is the physical
wireless interface in the wireless testbed, reflecting a standard
Wi-Fi home access networkwith aGigabit Ethernet backhaul.
All the nodes run an Arch Linux distribution with a 5.10-lts
Linux kernel version.1

1Tests and scripts are available at: netlab.unimore.it/sw/TSQ-NtwL.zip.

VOLUME 9, 2021 129331



C. A. Grazia et al.: New TCP Modules on Block: Performance Evaluation of TP and TSQ

FIGURE 4. Throughput and RTT on different wired bottlenecks: TSQ vs. NoTSQ.

FIGURE 5. TCP RTT: Different wired bottlenecks with TCP BBR or CUBIC.

IV. RESULTS
Our tests are performed using the Flent [14] tool, running
four TCP uploads from C to S for 30 seconds with a con-
current ping flow. The core parameter changed between
each test is the TSQ size; indeed, we developed a Linux
kernel patch1 to allow us to change the standard TSQ dynamic
size of 1 ms of data at the current rate, with a value

from 1 to 8 ms of data at the current rate. We also allowed
the possibility to disable the TSQ mechanism, naming this
strategy NoTSQ in our results. The TCP congestion control
algorithms used in our tests are TCP Cubic and TCP BBR to
evaluate the TSQ performance in the presence of a loss-based
and a delay-based variant, respectively. Moreover, we also
evaluated two possible queueing disciplines, FQ-CoDel

129332 VOLUME 9, 2021



C. A. Grazia et al.: New TCP Modules on Block: Performance Evaluation of TP and TSQ

FIGURE 6. Throughput and RTT of TCP BBR and CUBIC on a remote bottleneck.

and PFIFO,2 which is a priority scheduler with three pos-
sible software queues. PFIFO is still the default queueing
discipline in several Linux distribution and networking nodes,
like the Raspberry PI model 4, waiting for FQ-CoDel to
replace it incrementally.We did not focus on the FQ queueing
discipline, historically associated with BBR; this is because,
before the kernel version 4.17, BBR could not deploy a proper
TP mechanism by itself and was recommended to be used in
conjunction with FQ. The use of FQ indeed helps in terms
of global TCP Pacing, adding an extra CPU usage for this
task as shown in [10]. Anyway, in our analysis, we focus on
network performance, where throughput and latency need to
be controlled through the default packet schedulers or AQM
techniques offered by current Linux kernels. As a matter of
fact, the usage of FQ is not common anymore since, from the
4.17 kernel, BBR effectively implements its pacing system
without needing FQ anymore.

A. WIRED RESULTS
We first introduce the results obtained with the wired version
of our testbed of Figure 3. All the wired tests have been per-
formed using the standard TSQ configuration or the NoTSQ
one with the mechanism disabled.

2The queueing discipline name in the tc package is pfifo_fast.

Figure 4 shows the throughput and the latency of a simple
TCP Cubic stream from C to S, with PFIFO used as queueing
discipline in the two possible bottlenecks tested: L100M and
R100M. We used PFIFO instead of FQ-CoDel to enhance
the sole impact of TSQ on the latency reduction. All our
results are in candlestick format; the top and the bottom of
the boxes represent the 90th and the 10th percentiles of the
data, respectively, while the solid line into the box represents
the median data value. One clear evidence of Figure 4 is
the remarkable impact of TSQ when the bottleneck is local,
because the dominant latency contribution is the queueing
delay caused by the sender node queues, which is limited by
the TSQ mechanism. It is important to note that this remark-
able latency drop is performed maintaining the throughput
close to 96 Mbit/s, like in all the other configurations. On the
other hand, when the bottleneck is remote, the presence of
TSQ only marginally mitigates the end-to-end latency.

Considering that TSQ does not impact a wired bottleneck
throughput, we now focus only on the TCP RTT perfor-
mance of all the five wired bottlenecks tested in Figure 5.
Moreover, we also include the impact of a different TCP
congestion control and a different queueing discipline, BBR,
and FQ-CoDel. Figure 5a is an extension of Figure 4 that
embraces also the L10M, R10M and LR1000M bottleneck
configurations, focusing on the TCP RTT instead of the

VOLUME 9, 2021 129333



C. A. Grazia et al.: New TCP Modules on Block: Performance Evaluation of TP and TSQ

FIGURE 7. Throughput and RTT of TCP BBR and CUBIC on a local bottleneck.

ICMP ping RTT. The introduction of TSQ reduces by two
orders of magnitude the TCP RTT in L10M and L100M,
where the bottleneck is imposed on the local network through
the HTB filter. In the LR1000M, instead, where the interfaces
are not software-limited, and the HTB filter is disabled every-
where, the TCP RTT reduction introduced by TSQ is of one
order of magnitude, which is again a remarkable result.

Moving from Figure 5a to Figure 5b, only the TCP con-
gestion control is changed from CUBIC to BBR. In this case,
the impact of TSQ is still observable but with a smaller impact
of 10 ms and 3 ms in the L10M and L100M configurations,
respectively. Even in this case, removing the bottlenecks with
the LR1000M configuration leads to a smaller TSQ impact
of a couple of ms. Finally, Figure 5c reports the results of
BBR in conjunction with FQ-CoDel, which is very similar
to the effects of CUBIC with FQ-CoDel, not reported here.
The differences with Figure 5b are the maximum latency
in the R10M configuration and in the L10M with NoTSQ,
in which FQ-CoDel imposes a maximum queueing delay at
the bottleneck that results in a global TCP RTT of 10 ms.

To conclude the discussion on wired bottlenecks, we also
present Figures 6 and 7, which include the same tests of
Figure 4, adding also BBR as a congestion control algorithm.
Figure 6 reports the throughput and the RTT of CUBIC

and BBR on a remote bottleneck operating at 100 Mbit/s
with a PFIFO queueing discipline; even though throughput
performance is similar, the RTT is remarkably different, and
the shape of the curves helps to understand the big difference
between the two congestion controls. TCP CUBIC operates
by waiting for the loss feedback from the network, filling the
bottleneck queue up to the packet drops. Indeed, the shape
of the RTT curve presents several peaks corresponding to the
maximum queueing delay when the bottleneck queue is full
and some minimum peaks corresponding to the new starting
congestion window of CUBIC in response to the loss. The
behavior of BBR, instead, is different due to the model-based
nature of the congestion control. It is possible to notice the
draining spikes happening every 10 s, which correspond to
the probe_RTT phase of BBR reported in Figure 2. Since
the bottleneck of Figure 6 is remote, the presence or not of
TSQ moving from Figure 6a to Figure 6b does not impact
the results. The situation is different in Figure 7, where
the bottleneck is local, and packets get accumulated in the
sender’s NIC. If the TSQ algorithm is not active (Figure 7a),
the behavior of the system is logically equivalent to the case
of a remote bottleneck since there is no way to control the
number of packets at the NIC, and both TCPCUBIC and TCP
BBR operate like in Figure 6a. If the TSQ is active, instead,

129334 VOLUME 9, 2021



C. A. Grazia et al.: New TCP Modules on Block: Performance Evaluation of TP and TSQ

FIGURE 8. Throughput and RTT on the ath9k wireless bottleneck.

TCP CUBIC completely changes its behavior because TSQ
forbids TCP CUBIC to accumulate packets in the bottleneck
queue (which is the local NIC’s queue). The result is that TCP
CUBIC, and any loss-based TCP variant generally, would
operate ruled by the TSQ interrupts, maintaining a minimum
NIC’s queue usage like the BBR congestion control.

B. Wi-Fi RESULTS
The TSQ mechanism has been shown to break the frame
aggregation logic of Wi-Fi technologies in [8], so we investi-
gate the impact of different TSQ sizes in conjunction with
different TP ratios and different base-RTT flows. We con-
figured 3 different TP ratios by changing the congestion
avoidance pace variable tcp_pacing_ca_ratio, from
the default value of 1.2 to 1.3 and 1.4, naming these
configurations 2p, 3p, and 4p, respectively. For what

concern, instead, the different RTT flows, we changed the
base RTT through the netem package at the AP with three
possible flows configurations, at 1, 10, and 100 ms of
base RTT.

Figure 8a shows the results of four TCP CUBIC uploads
with our eight different TSQ configurations and the three
possible pacing ratios, while Figure 8b shows the results of
the same test with a standard pacing ratio and three possi-
ble base-RTT. In this set of experiments, we selected only
TCP CUBIC since TCP BBR ignores the global TP variable
changes. These two plots are presented together to highlight
the relation between TP and RTT, which both affect the
number of packets that the TCP socket can enqueue and,
consequently, the throughput. Theoretically, from the combi-
nation of Algorithms 1 and 2, halving the RTT has the same
effect of doubling the TP rate.

VOLUME 9, 2021 129335



C. A. Grazia et al.: New TCP Modules on Block: Performance Evaluation of TP and TSQ

The values reported in green in Figure 8 are almost the
same, due to a slightly different base-RTT of the first exper-
iment, under 1 ms. In Figure 8a, it is possible to see that
increasing the pacing rate (blue and red) has the effect of
increasing the throughput on the Wi-Fi path and increasing
the latency as well. This result is justified by Algorithm 2;
indeed, the higher is the TP rate, the larger is the number of
packets enqueued in the NIC, which allows for larger aggre-
gates increasing the throughput, despite a latency increment.
Once the initial TSQ value is greater than 4TSQ, increasing
the TP ratio has the sole effect of increasing the latency
since the Wi-Fi bottleneck has already been saturated with
the maximum available frame aggregation.

In Figure 8b, on the other hand, it is possible to see that a
higher RTT has the same effect as a pacing reduction. This
effect can be observed moving from 1 ms of base RTT to
10 ms of base RTT, where the former configuration registers
higher throughput with respect to the latter. With a base
RTT of 100 ms instead, the delivery rate is too low, and
the final throughput result is not optimal, even relaxing the
TSQ constraints. This effect is justified because the high RTT
forces a low rate, considering Algorithm 1. Consequently,
even relaxing the TSQvalue inAlgorithm 2 does not allow the
rate to grow enough to form larger aggregates and discover
higher throughputs available on the Wi-Fi channel.

V. CONCLUSION
In this paper, we evaluated that TSQ alone significantly
impacts latency when the bottleneck is local. The reason is
due to the nature of TSQ, which limits the amount of data
that each socket can enqueue, or, in other words, limits the
bottleneck queue size if the bottleneck is the sender’s NIC.
The latency reduction effect is mitigatedwhen algorithms like
BBR and FQ-CoDel are deployed, but it is still observable.
These results pose the TSQ mechanism in a critical position
when dealing with network performance. Network simulators
will have to include this mechanism to maintain high fidelity
results compared with real systems. Nevertheless, the TSQ
has a different impact on a localWi-Fi bottleneckwith respect
to a local wired bottleneck; the latency reduction is coupled
with a non-optimal throughput if the limit imposed by TSQ is
too strict. Simultaneously, TP and the base RTT roles impact
the Wi-Fi performance because they modify the TSQ limit,
and the higher the TP, or the smaller the base RTT, the higher
the throughput will be.

REFERENCES
[1] T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys, and

E. Dumazet. (Jan. 2018). FlowQueue-CoDel. [Online]. Available:
https://tools.ietf.org/html/rfc8290

[2] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
‘‘BBR: Congestion-based congestion control,’’ Commun. ACM, vol. 60,
no. 2, pp. 58–66, 2017.

[3] A. Saeed, N.Dukkipati, V. Valancius, V. Lam, C. Contavalli, andA.Vahdat,
‘‘Carousel: Scalable traffic shaping at end hosts,’’ in ACM SIGCOMM,
2017, pp. 404–417.

[4] B. Stephens, A. Singhvi, A. Akella, and M. Swift, ‘‘Titan: Fair packet
scheduling for commodity multiqueue NICs,’’ in Proc. USENIX Annu.
Tech. Conf., 2017, pp. 431–444.

[5] B. Briscoe, A. Brunstrom, A. Petlund, D. Hayes, D. Ros, I.-J. Tsang,
S. Gjessing, G. Fairhurst, C. Griwodz, and M. Welzl, ‘‘Reducing internet
latency: A survey of techniques and their merits,’’ IEEE Commun. Surveys
Tuts., vol. 18, no. 3, pp. 2149–2196, 3rd Quart., 2016.

[6] Y. Zhao, A. Saeed, E. Zegura, and M. Ammar, ‘‘zD: A scalable zero-drop
network stack at end hosts,’’ in Proc. CoNEXT, 2019, pp. 220–232.

[7] Y. Guo, F. Qian, Q. Chen, Z. Morley Mao, and S. Sen, ‘‘Understanding on-
device bufferbloat for cellular upload,’’ in ACM SIGCOMM, vols. 14–16,
2016, pp. 303–317.

[8] C. A. Grazia, N. Patriciello, T. Hoiland-Jorgensen, M. Klapez, M. Casoni,
and J. Mangues-Bafalluy, ‘‘Adapting TCP small queues for IEEE 802.11
networks,’’ inProc. IEEE 29th Annu. Int. Symp. Pers., IndoorMobile Radio
Commun. (PIMRC), Sep. 2018, pp. 1–6.

[9] C. A. Grazia, ‘‘IEEE 802.11n/ACwireless network efficiency under differ-
ent TCP congestion controls,’’ inProc. Int. Conf. WirelessMobile Comput.,
Netw. Commun. (WiMob), Oct. 2019, pp. 1–6.

[10] Y. Zhao, A. Saeed, M. Ammar, and E. Zegura, ‘‘Scouting the path to a
million-client server,’’ in Passive and ActiveMeasurement. Cham, Switzer-
land: Springer, 2021, pp. 337–354.

[11] C. A. Grazia, ‘‘Future of TCP on Wi-Fi 6,’’ IEEE Access, vol. 9,
pp. 107929–107940, 2021.

[12] N. Mareev, D. Kachan, K. Karpov, D. Syzov, and E. Siemens, ‘‘Efficiency
of BQL congestion control under high bandwidth-delay product network
conditions,’’ in Proc. Int. Conf. Appl. Innov. (IT), 2019, vol. 7, no. 1,
pp. 19–22.

[13] T. Høiland-Jørgensen, M. Kazior, D. Taht, P. Hurtig, and A. Brunstrom,
‘‘Ending the anomaly: Achieving low latency and airtime fairness in
WiFi,’’ in Proc. USENIX ATC, 2017, pp. 139–151.

[14] T. Hoeiland-Joergensen, C. A. Grazia, P. Hurtig, and A. Brunstrom, ‘‘Flent:
The flexible network tester,’’ in Proc. 11th EAI Int. Conf. Perform. Eval.
Methodol. Tools (ValueTools), 2017, pp. 120–125.

CARLO AUGUSTO GRAZIA (Member, IEEE)
received the Ph.D. degree from the Department
of Engineering Enzo Ferrari (DIEF), University
of Modena and Reggio Emilia (UNIMORE),
in 2016. He is currently an Assistant Professor
holding the course automotive connectivity with
UNIMORE. He has been involved in the EU
FP7 Projects E-SPONDER and PPDR-TC. His
research interests include computer networking,
with an emphasis on wireless networks, queueing
algorithms, and V2X.

MARTIN KLAPEZ received the Ph.D. degree from
DIEF, UNIMORE, in 2017. He is currently a Post-
doctoral Research Fellowwith UNIMORE. He has
collaborated with the Italian Nanoscience National
Research Center S3 and he has been involved
in the EU FP7 Project PPDR-TC. His research
interests include verge around network softwariza-
tion, public safety networks, and safety-related
V2X systems.

MAURIZIO CASONI (Senior Member, IEEE)
received the M.S. (Hons.) and Ph.D. degrees
in electrical engineering from the University of
Bologna, Italy, in 1991 and 1995, respectively.
In 1995, he was with the Computer Science
Department, Washington University in St. Louis,
MO, USA, as a Research Fellow. He is cur-
rently an Associate Professor of telecommunica-
tions with DIEF, UNIMORE, Italy. He has been
responsible at UNIMORE for the EU FP7 Projects
E-SPONDER and PPDR-TC.

129336 VOLUME 9, 2021


