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ABSTRACT In the field of Compressed Sensing, estimation of sparsity level is very essential as the
sparsity level determines the minimum number of (i) measurements to be obtained of a sparse signal during
acquisition and (ii) iterations to be performed for many of the greedy techniques for the perfect recovery of
the sparse signal from the obtained measurements. In this paper, we propose a Maximum Likelihood (ML)
estimator to estimate the instantaneous sparsity level during acquisition and an ML sequence (MLS)
estimator of sparsity levels during recovery. As the sparsity level varies in time due to the continuous birth of
newer supporting components and death of existing supporting components, this paper models the sparsity
level variation as a stochastic birth-death process. The real-world applications of the proposed estimators
are presented on the compression of aircraft vibration signals and the estimation of wireless channels.
The simulation results on real-world and model-generated data demonstrate the performance merits of the
proposed estimators compared to other existing methods.

INDEX TERMS Dynamic compressed sensing, markov birth-death process, maximum likelihood sequence
estimation, time-varying sparsity level estimation.

I. INTRODUCTION
In recent years, Compressed Sensing (CS) [1]–[5] has
emerged as a powerful technique for acquiring high-
dimensional sparse signals with fewer measurements than
what is dictated by classical Shannon-Nyquist theory.
An N−dimensional sparse signal is said to be k−sparse
when it is composed of k � N active (or supporting
or significant) components belonging to a certain class of
orthogonal basis such as the Fourier, cosine, wavelets, etc.
The collection of indices of those active components forms
the support S and the cardinality of the set S is the sparsity
level k .
In the CS acquisition process, m samples or measure-

ments are obtained using m × N−dimensional random or
deterministic sensing basis, where m < N , and m ≥

ck log(N/k) for some constant c [4], [5]. In the CS recovery
process, the N−dimensional sparse signal is reconstructed
from those m CS measurements using either convex relax-
ation based algorithms [6]–[8] or greedy techniques [9], [10]
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with the prior knowledge of the sensing basis involved during
acquisition. The basic theoretical concepts underlying CS can
be found in [11].

A. NEED OF SPARSITY LEVEL ESTIMATION
The objective of CS is to minimize the number of measure-
ments during acquisition and the reconstruction error during
recovery. As the sparsity level dictates the number of mea-
surements during acquisition and the number of iterations for
many of the greedy techniques during recovery, the efficiency
of acquisition and recovery hinges on the knowledge of the
sparsity level. Researchers have thus far assumed that the
sparsity level is known beforehand [12]–[15] and is time-
invariant [16]. In many practical scenarios, sparse signals are
characterized by the time-varying sparsity level whose value
is seldom known a priori [17]–[20]. The wireless channel
with time-varying tap coefficients and distribution (tap distri-
bution is the support, whereas the number of tap coefficients
is the sparsity level) is a typical example of a real-life sparse
system. While applying CS to such systems, it is essential to
know the time-varying sparsity level during acquisition and
recovery.
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A practical CS acquisition system obtains each measure-
ment using a separate Integrator and Dump (I&D) circuit,
which multiplies the input sparse signal with an independent
sensing basis (typically either a Gaussian or a Bernoulli
signal) and integrates it for a fixed duration. There arem such
separate I&D circuits working in parallel to obtainm discrete
measurements at every time instant. Minimizing the num-
ber of measurements amounts to minimizing the number of
I&D circuits. Hence instantaneous estimation of sparsity level
becomes essential to optimally utilize the hardware resources
during acquisition.

The discrete CS measurements are generally stored either
for off-line CS recovery as in the case of Magnetic Reso-
nance Imaging (MRI) or near real-time CS recovery as in
the case of wireless channel estimation. As the mandate of
the CS recovery hardware is to minimize the recovery error,
the instantaneous sparsity levels estimated from the obtained
measurements need to be refined.

B. RELATED LITERATURE
Recent approaches to sparsity level estimation [21]–[23]
require additional measurements to estimate the sparsity
level, where those measurements are not useful for the
recovery of the sparse signal. Sparse Gaussian Sensing
Matrix (GSM) based sparsity level estimation is given in [24],
[25] where the knowledge of signal statistics is required for
constructing the sparse GSM, that is seldom known a priori.
In the context of cognitive radio spectrum sensing, sparsity
level estimation using the Monte Carlo simulations is given
in [26], and computationally intensive eigenvalue method is
presented in [27] assuming that the sparsity level is time-
invariant. The estimation based on the trace of the covariance
matrix of the measurements is given in [28] assuming that the
signal statistics are known a priori.
There exist literature on tracking of dynamic sparse

signals [17], [20] which assumes that sparse signals are
slow-varying and the amplitude of each supporting compo-
nent varies according to a predefined Gauss-Markov model
exhibiting temporal correlation. They recover sparse signals
by estimating the support and do not involve sparsity level
estimation. Kalman filtering on CS recovery is proposed
in [17] where support is estimated using convex optimization
based CS recovery. Dynamic Compressed Sensing Approx-
imate Message Passing (DCS-AMP) based tracking is pro-
posed in [20], where in addition to amplitude modeling,
the support is modeled using the Discrete Markov process.
These support estimation techniques require a longer execu-
tion time and are suitable only during recovery and not during
CS acquisition.

Recently, the Deterministic Binary Block Diagonal
(DBBD) matrix-based sensing [29] and Kronecker-based
recovery [30] are developed for acquiring sparse signals.
Though the sensing matrix has deterministic binary entries
and reduces the hardware complexity, the recovery perfor-
mance is degraded under noisy settings due to the structure of
DBBD. As each row of the DBBDmatrix has no overlapping

ones with any other rows and accumulates the neighboring
significant components’ energy, the support estimation of the
underlying sparse signals becomes difficult.

Considering the above, there remain issues in sparsity
level estimation such as (i) doing away with or minimiz-
ing the additional measurements [21]–[23], (ii) overcoming
the assumption that the knowledge on sparse signal statis-
tics [24], [25], [28] is available a priori, and (iii) adapting to
the time-varying signal statistics. In addition to this, practical
implementation aspects of sparsity level estimators in the CS
acquisition and recovery systems are not being addressed in
the literature thus far, to the extent of our knowledge.

We present practically implementable sparsity level esti-
mators that track the time-varying sparsity level using the
same set of measurements acquired for use during recovery.
We estimate the signal statistics on the fly from the obtained
measurements and adapt our CS acquisition system according
to the instantaneous signal statistics and sparsity level. The
proposed CS recovery system performs better by exploiting
the temporal characteristics of sparsity level variation.

C. KEY CONTRIBUTIONS
As the sparse signal varies in time, there are inclusions
of newer basis functions or deletions of the existing basis
functions. These inclusions/deletions of basis functions,
i.e., births/deaths of the supporting components, result in the
variation in the sparsity level lending itself to be modeled
using a birth-death process. Hence the time-varying sparsity
level is modeled as a discrete-valued Markov birth-death
process and is used for the sparsity level estimation.

We use a composite sensing basis to acquire sparse sig-
nals where the first few measurements are obtained using a
deterministic sparse Binary basis and the rest using a random
Gaussian basis. All the acquired measurements are used for
recovering the sparse signal. Here the Binary basis is used
for estimating the statistics of sparse signal, and the number
of measurements obtained using Binary basis is limited due to
its weaker isometry bounds [1]. The knowledge of statistics
thus obtained is used to estimate the instantaneous sparsity
level with the help of measurements obtained using a ran-
dom Gaussian basis. Thus no additional measurements are
required for estimating the sparsity level.

During CS recovery, real-time recovery of sparse signals is
not the mandate; whereas, minimizing the recovery error is.
Hencewe propose a sequence estimationmethod that exploits
the birth-death model mentioned above to output the most
probable sequence of sparsity level estimates for use during
near real-time recovery. The following is the summary of our
contributions:

1) Modeling of time-varying sparsity level using a gener-
alized discreteMarkov birth-death process and estimat-
ing the model parameters.

2) Statistical characterization of the sparsity level varia-
tion using the concept of survival time.

3) Obtaining the Maximum Likelihood (ML) estimator
of instantaneous sparsity level, estimating signal and
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noise statistics required for the ML estimator, and
deriving the performance bounds for the ML estimator.

4) Refining the sequence of ML estimates by exploiting
its Markovian property to obtain the most probable
sequence of sparsity level estimates.

5) Implementation aspects of sparsity level estimator in
CS acquisition and recovery systems.

The proposed method is shown to have improved perfor-
mance compared to other existing methods in terms of the
standard measures through both analysis and simulations.

In essence, the paper obtains the ML estimate of
time-varying sparsity level during acquisition and refines it
using the Viterbi algorithm during recovery. Since the pro-
posed technique makes no assumptions regarding the signal
or noise statistics, it morphs into a joint estimation problem,
as detailed in the subsequent sections.

The rest of the paper is structured as follows. Section II
presents the CS acquisition model and introduces the Markov
birth-death framework for modeling the time-varying spar-
sity level. Section III derives the sparsity level estimator
along with the estimators for signal and noise statistics.
Further refinement of the ML estimates using sequence
estimation procedure for use during CS recovery is pre-
sented in Section IV. The practical implementation aspects
of the proposed CS acquisition system aiding the ML
estimation and Viterbi algorithm for MLS estimation in
the recovery system are given in Section V. Simulation
results comparing the recovery performance of the proposed
ML-MLS algorithm against the existing methods are pre-
sented in Section VI. Real-world applications of the pro-
posed estimators on compression of aircraft vibration signal
and estimation of a wireless channel are also presented in
Section VI.
The operators commonly used in this paper are ‖.‖p, Pr[.],

E{.}, and VAR{.} referring to `p norm, probability, expecta-
tion, and variance, respectively. The operators b.e, b.c, and
d.e, round the argument to nearest integer, greatest preced-
ing integer and least succeeding integer, respectively. The
notations R and Z indicate domain of reals and integers,
respectively. The notationO represents the order of complex-
ity. The notation x ∼ N (µ, σ 2) indicates x is a Gaussian
random variable having mean µ and variance σ 2 whereas,
x ∼ B(0, λ) indicates x is a Bernoulli random variable such
that Pr[x = 0] = λ and Pr[x = 1] = 1− λ.

II. MODELING OF CS ACQUISITION SYSTEM AND
TIME-VARYING SPARSITY LEVEL
Consider a continuous time dynamic sparse signal x(t) which
has an N−dimensional sparse vector representation s(t) =
{sj(t)}Nj=1 = {s1(t), s2(t), . . . , sN (t)} using an orthogonal
sparsifying basis set 9 = {ψj(t)}Nj=1 at t th time as given
below.

x(t) =
N∑
j=1

sj(t)ψj(t), (1)

where sj(t) is the component or coefficient of the jth

basis ψj(t).
The sparse representation vector s(t) has very few active

components with time-varying support and amplitude and is
given as,

s(t) = diag(κ(t))ś(t), (2)

where
1) ś(t) = {śj(t)}Nj=1 is an N−dimensional Gaussian ampli-

tude vector,

2) κ(t) = {κj(t) ∈ {0, 1}}Nj=1 is a Bernoulli vector, and
sj(t) = śj(t) when κj(t) = 1 and sj(t) = 0 when
κj(t) = 0.

For example, κ(t) = [1, 0, 1, 1, 0, . . . .., 0, 1] indicates that
the 1st , 3rd , 4th, and N th components of s(t) or in other
words the 1st , 3rd , 4th, and N th basis functions of 9 are
active at t th time instant. Thus the sparse representation of
x(t) is s(t) = [ś1(t), 0, ś3(t), ś4(t), 0, . . . .., 0, ´sN (t)] with the
support S(t) = {1, 3, 4,N } and the sparsity level k(t) = 4.

A. CS ACQUISITION MODEL
The CS acquisition model acquires x(t) for every T seconds
to obtain an m−dimensional measurement vector y(nT ) =
{yi(nT ) : n ∈ Z}mi=1 using m random or deterministic sensing
basis functions {φi(t)}mi=1 of basis 8. An ith measurement
yi(nT ) is obtained as given below:

yi(nT ) =
∫ nT

t=(n−1)T
φi(t)x(t)dt + ϑi(nT ), (3)

where
1) φi(t) is either a Gaussian signal or distributed impulses

for a duration of T seconds and it repeats after T sec-
onds.

2) ϑi(nT ) ∼ N (0, σ 2
ϑ ) is the i

th component of measure-
ment noise vector ϑ(t).

Without loss of generality, the CS acquisition model
is represented in discrete domain now onwards for better
understanding.

B. DISCRETE CS ACQUISITION MODEL
The discrete version of Equations (1),(2),(3) is given as,

x(n) = 9s(n), (4)

s(n) = diag(κ(n))ś(n), (5)

y(n) = 8x(n)+ ϑ(n), (6)

where continuous time t is substituted with discrete time step
n. The discrete sparse signal x(n) = {xj(n)}Nj=1 has N samples
in every time step of duration T seconds and has a sparse rep-
resentation s(n) = {sj(n)}Nj=1 : sj(n) ∼ N (µsj , σ

2
sj ) when pro-

jected onto an N × N orthogonal signal basis matrix 9. The
discrete version of sensing basis is the m × N−dimensional
sensing matrix 8 = {φi,j}mi=1,

N
j=1 : φi,j ∼ N (0, σ 2

φ ) when it
is Gaussian distributed and φij ∈ {0, 1} when it is binomial
distributed.
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FIGURE 1. Time-varying support of a real-world vibration signal.

Substituting Equation (4) in Equation (6), the discrete CS
acquisition model becomes,

y(n) = 89s(n)+ ϑ(n). (7)

We devise 8 as a composite matrix such that

8 =

[
8BSM9

−1

8GSM9
−1

]
, (8)

where 8BSM is the deterministic sparse Binary Sensing sub-
Matrix (BSM) and 8GSM is the random Gaussian Sensing
sub-Matrix (GSM). Their multiplication with inverse of spar-
sifying basis i.e., 9−1 results in direct acquisition of sparse
representation s(n). Thus Equation (7) becomes,

y(n) =
[
8BSM
8GSM

]
s(n)+ ϑ(n). (9)

The reason for devising 8 as a composite matrix is to
maximize the sparsity level estimation performance using
BSM and recovery performance using GSM and is explained
in Section III.

C. DISCRETE MARKOV BIRTH-DEATH MODELING OF
SPARSITY LEVEL
Any real-world sparse signal has time-varying support due to
inclusions (births) and deletions (deaths) of the signal basis
functions, as shown in Fig. 1. In this figure, the sparse nature
of the support spectrum of a vibration signal of an aircraft [31]
using the Discrete Cosine Transform (DCT) basis is shown.
The figure captures the time evolution of the active cosine
harmonics using different colored tracks. Here it may be
noted that there are (i) clusters of active basis functions
centered about certain resonant frequencies, as shown in the
zoomed portion of the plot, (ii) large spectral gaps between
these clusters which reveal sparsity in the DCT domain, and
(iii) inclusion and deletion of the DCT basis functions with
time, as revealed by the discontinuous lines. Thus the support
and its cardinality, i.e., the sparsity level, vary with time and
can be modeled as a birth-death process.

The variation in the support is modeled by appropriately
changing the entries of the Bernoulli vector κ(n) given in
Equation (2). The value of difference (κj(n) − κj(n − 1))
represents the birth, or death, or survival of the jth component
depending on whether it is +1, −1, or 0, respectively. Due
to this difference, the sparsity level k at the nth time step is a

generalized discrete Markov birth-death process and is given
as,

k(n) = k(n− 1)+
N∑
j=1

(κj(n)− κj(n− 1))

︸ ︷︷ ︸
sparsity level variation

. (10)

The probabilities Pr[(k(n) − k(n − 1)) = d] = pd : d >
0, d < 0, and d = 0 are associated with birth, death and
survival of the supporting components. In particular, the prob-
ability that the sparsity level remains unchanged between two
time steps p(d=0) = p0 determines the degree of sparsity level
variation.

D. STATISTICAL CHARACTERIZATION OF THE SPARSITY
LEVEL VARIATION
The sparsity level variation can be either slow, moderate, fast,
or rapid. The sparse signals exhibit slow and gradual varia-
tions in the sparsity level under steady-state conditions and
rapid variations during transients and bursty behavior. The
idea of survival time L̃ is introduced here to statistically quan-
tify the degree and duration of invariance of the sparsity level
in time akin to similar concepts in the context of modeling
time-varying wireless channels in digital communications.
Definition 1: Survival time L̃ is the statistical average

number of time steps for which the sparsity level is practically
time-invariant and is given by Equation (11).
As the probability that the sparsity level remains unchanged
for l time steps is pl0(1−p0), the average time steps for which
the sparsity level remains unchanged is p0/(1−p0). Thus the
survival time L̃ is,

L̃ =
⌊

p0
1− p0

⌉
. (11)

Intuitively, larger survival time indicates slow variation
and smaller survival time indicates rapid variation of the
sparsity level. To exemplify, herewe classify the sparsity level
variation as (i) slow when 0.9 ≤ p0 < 1 (̃L ≥ 9), (ii)
moderate when 0.8 ≤ p0 < 0.9 (4 ≤ L̃ < 10), (iii) fast
when 0.6 ≤ p0 < 0.8 (2 ≤ L̃ < 5), and (iv) rapid when
p0 < 0.6 (̃L ≈ 1), respectively.

An example simulation of time-varying sparsity level k(n)
for four different values of p0 is shown in Fig. 2. It is observed
that, as p0 decreases, the survival time L̃ becomes smaller,
and the rate of change of sparsity level increases, i.e., when
(i) p0 = 0.98{̃L = 49}, (ii) p0 = 0.9{̃L = 9}, (iii) p0 =
0.75{̃L = 3}, and (iv) p0 = 0.5{̃L = 1}, the sparsity level
variations are slow, moderate, fast, and rapid, respectively.

III. MAXIMUM LIKELIHOOD (ML) SPARSITY LEVEL
ESTIMATION
We derive an ML estimator to estimate the instantaneous
sparsity level when the measurements are obtained using a
composite matrix. For the sake of brevity, we ignore the time
index n in this section.
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FIGURE 2. Simulation of time-varying sparsity level using markov
birth-death process.

Each GSM measurement yi is given by,

yi =
∑
j∈S

φi,jsj + ϑi.

Since each φi,j ∼ N (0, σ 2
φ ) of 8GSM is i.i.d Gaussian and

is independent of sj,∀j, the mean and variance of yi are given
as,

E{yi} = 0 and VAR{yi} = kσ 2
φσ

2
s + σ

2
ϑ ,

where σ 2
s =

1
k

∑
j∈S (µ

2
sj + σ 2

sj ) is the mean energy of
supporting components. Since each yi is sum of k random
components, the probability density function (pdf) of yi fol-
lows aNormal distribution according to central limit theorem,
i.e.,

yi ∼ N (0, kσ 2
φσ

2
s + σ

2
ϑ ).

Then the joint pdf of m independent random variables
{yi}mi=1 parameterised by k is given as,

pY (y; k) =
1

(2π (kσ 2
φσ

2
s + σ

2
ϑ ))

m
2

× exp

[
−1

2(kσ 2
φσ

2
s + σ

2
ϑ )

m∑
i=1

y2i

]
. (12)

Using the above defined statistical properties of sparse rep-
resentation and measurement vector, the following theorem
defines the ML estimator for the sparsity level.
Theorem 1 (ML Estimator for the Sparsity Level): Let y =

8GSM s + ϑ be the CS acquisition model obtaining mML
measurements, where (i) 8GSM = {φi,j}

mML
i=1 ,

N
j=1 is the CS

acquisition matrix containing i.i.d entries such that φi,j ∼
N (0, σ 2

φ ), (ii) s = {sj}
N
j=1 is the k−sparse vector whose mean

energy is σ 2
s , and (iii) ϑ = {ϑi}

mML
i=1 is the measurement

noise containing mML i.i.d entries such that ϑi ∼ N (0, σ 2
ϑ ).

Then a real-valued ML estimator K̂r of sparsity level k which
maximizes the joint pdf of measurements parameterised by k
and provides the estimate k̂r is given by

K̂r =
1

mML

∑mML
i=1 yi2 − σ 2

ϑ

σ 2
φσ

2
s

; (13)

Since the sparsity level k is an integer, an integer-valued
ML estimate k̂ML for the sparsity level k can be obtained from

K̂r by choosing one among the two integer valued estimates
b̂krc and d̂kre which maximizes the pdf pY (y; k) i.e.,

k̂ML = argmax
k∈{b̂kr c,d̂kre}

pY (y; k). (14)

Equation (13) reveals that the ML estimator requires the
knowledge of σ 2

s and σ 2
ϑ . The estimate of σ 2

ϑ i.e., σ̂ 2
v is

obtained from measurements as given in [32],

σ̂ 2
v =

(n+ m+ 1)‖y‖22 − ‖8
T
GSMy‖

2
2

m(m+ 1)
. (15)

The mean energy σ 2
s is not available a priori, and it has

to be computed from the measurements. However, it is not
possible to calculate the same from the statistics of GSM
based measurements as the variance of each measurement
is the same and is a product of both k and σ 2

s that are not
available a priori. Thus the difficulty of estimating σ 2

s can be
overcome by obtaining a few measurements initially using a
sparse BSM, as explained below.

A. BSM BASED CS ACQUISITION AND ESTIMATION OF
STATISTICS OF SUPPORTING COMPONENTS
The sparse BSM 8BSM has a fixed number of kb � k ones
in each row. Thus the probability of any randomly chosen
element φij = 1 in any row of 8BSM is kb/N . Using Equa-
tion (9), each sparse BSM measurement yi is a random sum
of supporting components corrupted by measurement noise,
i.e.,

yi =
N∑
j=1

φijsj + ϑi =
∑

j∈{S8i
⋂

S}
sj + ϑi, (16)

whereS8i is the support set of i
th row of8BSM and {S8i

⋂
S}

contains the set of indices which are common to both S8i and
S. Since each sj ∼ N (µsj , σ

2
sj ), every yi is a random sum of

Gaussians. Consider a special case when none of the ones
in ith row of 8BSM multiply with a supporting component in
s, resulting in the measurement having contribution from the
noise alone, i.e., yi = ϑi. There exists a finite probability of
obtaining such measurements, which can be used to estimate
the statistics of supporting components.

Since there are kb ones in each row of the BSM at prede-
termined positions and k supporting components at randomly
distributed over N possible locations, the random sum in
Equation (16) consists of an average of τs = kbk/N sup-
porting components. The mean of the random sum is µy =
E{yi} = τsµs, where µs = 1

k

∑
j∈S µsj is the mean amplitude

of a supporting component. Similarly the variance of random
sum is σ 2

y = VAR{yi} = τsσ 2
s + σ

2
ϑ .

As every yi is a random sum of maximum kb supporting
components, its probability density function (pdf) pY (yi) can
be approximated as,

pY (yi) : yi ∼ N (τsµs, τsσ 2
s + σ

2
ϑ ). (17)

Thus the estimate of statistics µs and σ 2
s of the supporting

components can be obtained from the BSM measurements,
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as given below.

µ̂s =
µ̂y

τs
; σ̂ 2

s =
σ̂ 2
y − σ̂

2
ϑ

τs
, (18)

where µ̂y and σ̂ 2
y are computed from the mb number of BSM

measurements as,

µ̂y =

∑mb
i=1 yi
mb

. σ̂ 2
y =

∑mb
i=1(yi − µ̂y)

2

mb − 1
.

Note that the estimate of σ 2
s depends on τs = kbk/N , which

in turn depends on the value of the sparsity level k that is to be
estimated. However, τs can be estimated using the following
ingenious method.

Suppose Pα is the probability that α number of ones in a
row of the BSM multiplies with supporting components of s.
ThenPα follows a Poisson distribution for very small kb and it
is given as, Pα =

exp(−τs)(τs)α

α!
. When α = 0, the measurement

yi = ϑi. Thus the probability Pr[yi = ϑi] = P0 =
exp(−τs), from which τs = − ln(P0). The probability P0
can be estimated by finding the proportion of measurements
yi such that |yi| ≤ 3σv covering 99% confidence interval.
However, there exists a finite probability Q that for some
measurements, the random sum of two or more supporting
components would resemble the measurement noise i.e.,

Q=
kb∑
α=2

(Pr[choosing α supporting components]

×Pr[magnitude of sum of those α components≤3σϑ ]);

=

kb∑
α=2

(
exp(−τs)(τs)α

α!

∫ 3σϑ

−3σϑ
pY (yi)dyi

)
. (19)

Thus the estimate of P0 is,

P̂0=
(number of yi in y such that |yi| ≤ 3σ̂ϑ )

mb
− Q, (20)

where mb is the total number of BSM measurements. There-
fore, on computingQ, the required probabilityP0 is estimated
to compute τs = − ln(̂P0) and substituting in Equation (18)
gives the estimates of statistics as,

µ̂s =
µ̂y

− ln(̂P0)
; (21)

σ̂ 2
s =

σ̂ 2
y − σ̂

2
ϑ

− ln(̂P0)
; (22)

It may be noted that Q depends on pY (yi) which is a
function of µs and σ 2

s . Thus the Equations (19)-(22) are
quite interdependent on each other. Therefore, they need to
be recursively updated starting with the initial value Q = 0.
In other words, the updated values of τs, µ̂s and σ̂ 2

s are used
in (19) to compute Q1 and the iteration proceeds through
Equations (19)-(22) till τs converges as given in Algorithm 1.

1As it is difficult to obtain a closed form expression forQ, a pre-computed
look-up table can be used for the same.

Algorithm 1 : Estimation of Statistics of Supporting Compo-
nents
Input: BSM based measurements y : {y1, y2, .., ymb}, Esti-

mate of variance of measurement noise (computed from
GSM measurements): σ̂ 2

ϑ ;
1. Compute mean and variance of the measurements:

µ̂y =

∑mb
i=1 yi
mb

, σ̂ 2
y =

∑mb
i=1(yi−µ̂y)

2

mb−1
.

2. Initialise the energy of supporting components:

σ̂ 2
s = σ̂

2
y − σ̂

2
ϑ , µ̂s = µy.

3. Compute the probability P̂σϑ that |yi| ≤ 3σ̂ϑ i.e.,

P̂σϑ =
(number of yi in y such that |yi|≤3σ̂ϑ )

mb
.

3. Initial estimate of τs is, τs = − ln(̂Pσϑ ).

4. Begin iteration:
4.1 Compute the probabilityQ, a function of τs, µs, σ 2

s ,
Q =

∑kb
α=2

(
exp(−τs)(τs)α

α!

∫ 3σ̂ϑ
−3σ̂ϑ

pY (yi)dyi
)
.

4.2 Compute P̂0 = P̂σϑ − Q.
4.3 Update the estimate of τs and compute the statistics

of supporting components.

τs = − ln(̂P0), µ̂s =
µ̂y
τs
, σ̂ 2

s =
σ̂ 2y −σ̂

2
ϑ

τs
.

4.4 go to 4.1 until τs converges.

End iteration;
Output: Estimate of statistics of supporting components: µ̂s

and σ̂ 2
s

B. CONSTRUCTION OF BSM
The number of ones kb i.e. the sparsity level in each row and
the number of rows mb i.e., the number of BSM measure-
ments are the two parameters involved in constructing the
BSM. To determine the minimum number of BSM measure-
ments required for obtaining an accurate estimate of sparsity
level of the underlying sparse signal, one can minimize the
variance of τs. The Taylor series approximation of variance
of τs as a function of kbN is given as,

VAR{τs} = VAR{− ln(̂P0)} (23)

≈

σ 2
P̂0

µ2
P̂0

=

(
1− kb

N

)k(
1−
(
1− kb

N

)k)
mb(

1− kb
N

)2k (24)

=

1−
(
1− kb

N

)k
mb
(
1− kb

N

)k , (25)

where µP̂0 and σ
2
P̂0

are the mean and variance of P̂0, respec-
tively. The optimum value of kb that minimizes VAR{τs}
satisfies ∂VAR{τs}

∂kb
= 0, which results in,(

1−
kb
N

)k
−
k
2
ln
(
1−

kb
N

)
− 1 = 0,

136692 VOLUME 9, 2021



T. S. et al.: ML Estimation of Time-Varying Sparsity Level for Dynamic Sparse Signals

which upon simplification using the fact that kb
N � 1

gives,

kb ≈ N (1− exp(−1.6/k)) (26)

From Equation (26), it is observed that the optimum value
of kb is different for different k . As the sparsity level k(n) for
the current time step is not known, kb(n) is computed using
the previous estimate k̂ML(n− 1).
The size of mb is determined such that BSM spans all the

supporting components which are distributed across N posi-
tions for the purpose of estimating the statistics σ 2

s . Hence the
deterministic BSMmatrix is designed by stacking kb numbers
of b Nkb ×

N
kb
c Identity matrices horizontally. Thus each row of

deterministic BSM has kb ones and there are b Nkb c rows which
spans all the components of sparse signal.

As the structure of BSM (i.e., kb) changes according to
k(n), the BSM has to be transmitted to the recovery pro-
cess in every time step along with the acquired measure-
ments for recovery. However, the deterministic construction
of BSM avoids transmitting such overhead as recovery
process also performs instantaneous sparsity level esti-
mation from the obtained measurements as done during
acquisition.

C. PROPERTIES OF k̂ML ESTIMATOR
1) Unbiased estimator.
2) The variance of the ML estimator k̂ML is,

VAR{̂kML}=σ 2
k̂ ≈

2(kσ 2
φσ

2
s + σ

2
ϑ )

2

mML(σ 2
φσ

2
s )2

+
1
12
; (27)

3) The Cramer Rao Lower Bound (CRLB) for the integer
parameter k is given by,

CRLB(̂kML) ≈
2(kσ 2

φσ
2
s + σ

2
ϑ )

2

mML(σ 2
φσ

2
s )2
; (28)

It is observed from Equation (28) that, in the absence of
measurement noise, the variance of ML estimator approaches
the lower bound 2k2/mML which determines the spread in
the ML estimate. The spread in the ML estimate is reduced
in the acquisition process when the measurement size mML
is increased, however, as the lower bound is directly propor-
tional to k2, the measurement sizemML required to reduce the
spread increases quadratically with the sparsity level k . For
an efficient CS acquisition, the measurement size cannot be
increased beyond the minimum number required for perfect
CS recovery. Hence, with a limited number of measurements
acquired for CS recovery, the ML estimator provides a ML
estimate at every time step.

The number of measurements m(n) required for the per-
fect CS recovery of x(n) is given in [33] as m(n) ≥
1.69 k(n) log( N

k(n) ). Since k(n) is unknown, k̂(n − 1) is
used in the place of it for determining m(n). To over-
come the degradation in recovery performance due to the
randomness of k̂(n − 1), we consider the number of GSM

FIGURE 3. ML estimation of sparsity level k = 100 for different number of
measurements under different SNR values.

measurements (after excluding the BSM measurements) to
be,

mML(n)

= 1.69((̂k + σ̂k )(n− 1)) log
(

N

(̂k + σ̂k )(n− 1)

)
− mb(n).

Thus this estimator obtains sufficient measurements using
BSM and GSM without any compromise on the recovery
performance compared to other estimators given in [21], [22],
where separate measurements are obtained just for sparsity
level estimation that are not useful in the recovery process
and entail additional costs during acquisition.

D. EXPERIMENTAL EVALUATION
This section presents the simulation results onML estimation.
A sparse signal of dimension N = 1024 with sparsity level
k = 100 is generated. The SNR values considered are −5,
0 and 5 dB. The SNR is computed as 10 log(kσ 2

s /(mσ
2
ϑ )).

For each SNR value, we considered 100 trials and the results
are averaged. In every trial, though sparsity level k is main-
tained as 100, the support is randomly chosen. Also, in every
trial, initially, 100 measurements are obtained using BSM
for estimating the mean energy of supporting components,
i.e.,mb = 100. Figure 3 shows the ML estimates we obtained
for different SNR conditions. For the SNR values 0 and 5 dB,
the averaged sparsity level estimate converges to 100 ± 1
with nearly mML = 125 measurements. Whereas for the
SNR value of −5 dB, the effect of measurement noise is
significant, and the estimator requires nearly mML = 150
measurements for convergence. Figure 4 shows the compar-
ison of recovery performance for the different number of
measurements in a single trial under different SNR values.
Normalized Recovery Error (NRE)= ‖x̂−x‖22/‖x‖

2
2, i.e., the

ratio of the energy of the difference between the recovered
and original signal to the energy of the original signal is
shown. It is observed that NRE is initially higher due to the
weaker isometry conditions of BSM based measurements.
Then NRE reduces drastically as the number of GSM based
measurements increases.

1) PERFORMANCE COMPARISON OF SPARSITY LEVEL
ESTIMATORS
The performance of ML estimator is evaluated and compared
with existing Lopes [22] and 2-GMM [24] methods in terms
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FIGURE 4. Recovery performance for different number of measurements
under different SNR values.

FIGURE 5. Comparison of ML estimator with other existing methods in
terms of average number of measurements needed to estimate different
sparsity levels for different SNR values.

of average number ofmeasurements requiredmML to estimate
various sparsity levels for the SNR values of−5, 0, and 5 dB.
The sparsity levels chosen in the simulation are k = 25,
50, 75, 100, and 150. The sparse signal is of dimension
N = 1024. The average number of measurements required
for estimating each k with an error |k− k̂ML | ≤ 5 is presented
in Fig. 5.
Observation: (i) (mb + mML) is less than the number of

measurements required for Lopes and 2-GMMmethods for a
given SNR, and (ii) (mb + mML) < m = 1.69k log(N/k).

IV. IMPROVING SPARSITY LEVEL ESTIMATES DURING
RECOVERY
During recovery, the ML estimates can be refined further by
exploiting the Markovian property of sparsity level variation.
This property fits into the framework of MLS estimation that
is implemented using the classical Viterbi algorithm. Thus
a two-step estimation, i.e., ML, as discussed in Section III
followed by MLS (ML-MLS) estimation of the sequence of
sparsity levels can be used during recovery.

The MLS estimates {k̂MLS (n)}Ln=1 are obtained by identify-
ing an optimal L length sequence of sparsity levels which has
the maximum probability of occurrence under the condition
that the ML estimates of sparsity levels {k̂ML(n)}Ln=1 are
available, as given below in Equation (29).

{k̂MLS (n)}Ln=1

= argmax
{kMLS (n)}Ln=1

Pr
[
{kMLS (n)}Ln=1 | ({k̂ML(n)}

L
n=1, pd )

]
.

(29)

FIGURE 6. Effect of MA filtering of ML estimates of slow and fast varying
sparsity levels.

Before implementing Equation (29), it is required to filter
the ML estimates to remove outliers, if any, and to reduce
the spread of values in the sequence of the ML estimates
{̂kML(n)}Ln=1. As the sparsity level remains constant on an
average of L̃ Survival time steps, a simple L̃−tap moving
average (MA) filter is considered for prefiltering the ML
estimates. The filtered estimate is then rounded to the nearest
integer. The effect of filtering the ML estimates using MA
is shown in Fig. 6a and Fig. 6b for two different sequences
of sparsity levels with slow and fast variations, respectively.
The ML estimates of slow and fast varying sparsity levels
are filtered using L̃ = 10 and L̃ = 3 taps, respectively.
These filteredML estimates are then refined using the Viterbi
algorithm. For the sake of maintaining brevity of the nota-
tions, the filtered estimates are also denoted as k̂ML in this
and subsequent sections.

A. VITERBI ALGORITHM
The MLS estimation using the Viterbi algorithm is similar
to estimating the most probable sequence of L hidden states
from the sequence of L observations emitted by those hidden
states in the hidden Markov problem. Here, the MLS and fil-
teredML estimates are the hidden states and the observations,
respectively. Since hidden states are the refined versions of
observations in this hidden Markov problem, the transition
probability values of hidden states and the emission proba-
bility values of observations from those hidden states are the
same.

The MLS estimate k̂MLS (L) at L th instant is obtained by
maximizing the probability qvL , which is the probability that
the sequence {k̂MLS (n)}

L−1
n=1 accounts for first L − 1 refined

estimates of {k̂ML(n)}Ln=1 and k̂MLS (L) = v at L th instant given
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FIGURE 7. Effect of ML estimation error on estimating the transition probabilities.

the knowledge of sparsity level variation probability pd , i.e.,

qvL = max
{k̂MLS (n)}

L−1
n=1

Pr[{k̂MLS (n)}
L−1
n=1 , k̂MLS (L) = v,

×{k̂ML(n)}Ln=1 | pd ]. (30)

Using induction principle, the highest probability for
selecting the sub sequence {k̂MLS (n)

L−2
n=1 such that the

sequence {k̂MLS (n)
L−2
n=1 , k̂MLS (L − 1) = u, k̂MLS (L) = v}

ending at the sparsity level v can be computed as,

qvL = max
u

[
quL−1pd

]
. (31)

Considering 0L(v) = argmax
u

[
quL−1pd

]
, the MLS esti-

mates at the time steps n = L − 1,L − 2, . . . , 1 can
be computed using trace-back technique, i.e., k̂MLS (n) =
0n+1(k̂MLS (n+ 1)).

B. ML ESTIMATION OF MARKOV MODEL PARAMETERS
As the probability pd is not available a priori for the MLS
estimation, it is estimated using the ML principle [34],
from the filtered ML estimates. Considering the sequence
{k̂ML(n)}Ln=1, the ML estimated transition probability p̂d is
given as,

p̂d =
number of d transitions in {k̂ML(n)}Ln=1

L
. (32)

C. SENSITIVITY OF MLS ESTIMATION
The errors in the input sequence {k̂ML(n)}Ln=1 to the MLS
estimator affect the estimate of pd , leading to the model mis-
match. To demonstrate the sensitivity of the MLS estimator,
consider the simulation of the discrete Markov model where
the birth and death transition probabilities are considered
equal and kept constant throughout the simulation. For each
p0, a sequence of 128 sparsity levels is generated and per-
turbed by introducing errors at random locations to mimic
the errors in the ML estimate after filtering. The probabilities
p<0 =

∑
d<0 pd , p0, and p>0 =

∑
d>0 pd are estimated

using Equation (32), and the Viterbi estimator is applied on
the perturbed sequence. For each p0, the number of errors
introduced is 10, 20, 30, 40, and 50. The estimate of transition
probabilities for each p0, after the introduction of errors,
is shown in Fig. 7. The robustness of MLS estimation method

FIGURE 8. Robustness of MLS estimation method on correcting the
sparsity level errors (errors in the k̂ML estimates) for different values of
markov model parameters.

in terms of the number of sparsity level errors before and after
the MLS estimation is shown in Fig. 8 for the different values
of model parameters.

1) OBSERVATIONS
1) For the slow varying case (p0 = 0.98, p<0 = 0.01,

and p>0 = 0.01), when the errors in ML estimates are
less, the errors in the estimated transition probabilities
(p̂<0, p̂>0, and p̂0) are also less, as shown in Fig. 7a, and
the MLS estimation is robust enough to correct most
of the errors, as shown in Fig. 8. However, when the
errors in ML estimates are large and bursty in nature,
the errors in the estimated transition probabilities are
large, as shown in Fig. 7a, and the performance of
Viterbi algorithm deteriorates and exhibits poor perfor-
mance as shown in Fig. 8.

2) The worst-case scenario is for the rapid varying case
i.e., when p0 = 0.33, p<0 = 0.33, and p>0 =
0.34. Here the errors in the ML estimates of sparsity
level are indistinguishable from that of natural variation
in the sparsity level, and the ML estimated transition
probabilities are independent of the number of errors
introduced as shown in Fig. 7b. Therefore, the Viterbi
estimator cannot recognize those errors, and hence the
correction is reduced, as shown in Fig. 8.

Thus the error in the estimate of transition probabilities
harms theMLS output only if manyML estimates are in error
or if the rate of change of sparsity level is very high. It may be
observed from Fig. 7a–7b that when no errors are introduced
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Algorithm 2ML-MLS - During Recovery

Input: y(n), Known values: σ̂ 2
ϑ , L̃,L;

1. Estimate the mean energy of supporting components
using Algorithm 1.

2. Estimate the sparsity level using GSM:

k̂r (n) =
1

mML

∑mML
i=1 y2i (n)−σ̂

2
ϑ

σ 2φ σ̂
2
s

;

Integer-valued ML estimate:
k̂ML(n) = argmaxk∈{b̂kr c,d̂kre} pY (y; k);

4. Filter the ML estimate using a MA filter of length L̃:
k̂ML(n) = b

∑n
I=n−L̃+1 k̂ML(I )/L̃e;

5. Estimate the transition probability values of the
Markov model:

p̂d =
number of d transitions in {k̂ML(I )}nI=n−L+1

L
;

6. Apply Viterbi algorithm on the sequence
{k̂ML(I )}nI=n−L+1 using estimated transition
probability values to get the MLS estimates
{k̂MLS (I )}nI=n−L+1;

7. n=n+1; Repeat from step 1.
Output: MLS estimates: k̂MLS (n)

in the sparsity level, the estimate of transition probabilities is
converging to the true value of transition probabilities.

The proposed two-step ML-MLS estimation technique is
summarized and is given as Algorithm 2.

V. PRACTICAL IMPLEMENTATION ASPECTS
This section covers the implementation aspects of the CS
acquisition system proposed for ML estimation of sparsity
level and Viterbi algorithm based MLS estimation for the CS
recovery system.

A. IMPLEMENTATION OF CS ACQUISITION SYSTEM
The practical real-time CS acquisition hardware for the pro-
posed estimation method is shown in Fig. 9. There are
m identical and independent modulator circuits working in
parallel. The hardware components of a modulator circuit
are (i) a multiplexer to select between Gaussian basis g(t)
(continuous-time version of rows of GSM) and Bernoulli
basis b(t) (continuous-time version of rows of BSM) and
(ii) a multiplier and an I&D circuit to multiply the sparse
signal with measurement basis for a duration of T seconds
to output a measurement. The select signal βi(t) of the mul-
tiplexer takes the value 0 for i ≤ mb to select the Bernoulli
basis and 1 for mb < i ≤ m to select Gaussian basis.

B. IMPLEMENTATION OF VITERBI ALGORITHM IN CS
RECOVERY SYSTEM
The main component of sparsity level estimator in the CS
recovery system is the Viterbi algorithm. Here sliding win-
dow based Viterbi algorithm is considered. There exist two
parallel sliding windows and each window requires a Viterbi

FIGURE 9. CS acquisition hardware.

FIGURE 10. Illustration of sliding window viterbi algorithm.

estimator. The L length sequence of ML estimates of spar-
sity level is decomposed into blocks of M number of ML
estimates. The value M is five times the trace-back length
T where T is the maximum sparsity level transition possible
in a time step. Each sliding window size is kept similar to
the block size, M . Both the Viterbi estimators do not require
the knowledge of initial state probabilities and the trellis
terminated state.

FromFig. 10, it can be observed that, after receiving Block-
1 at time n = M , the first Viterbi estimator starts the training
of trace-back from the sub-block, TB. After T time steps
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i.e., at n = (M + T )th time step, the first Viterbi estimator
starts providing the MLS estimates of sparsity levels received
during time steps n = T to n = M−T −1. In the meanwhile,
the second Viterbi estimator starts the training of trace-back
from the time step n = 2M − 2T . After T time steps i.e., at
n = (2M − T )th time step, the second Viterbi estimator
starts providing the MLS estimates of sparsity levels received
during time steps n = M−T to n = 2M−3T−1. Thus with a
group delay ofM time steps, the slidingwindow basedViterbi
algorithm provides MLS estimates of sparsity levels without
knowing initial state probabilities and trellis termination.

It may be noted that for fast and rapid varying sparsity
levels, the Viterbi algorithm has poor performance in cor-
recting the errors introduced by the filtered estimates k̂ML as
shown in Fig. 8. Thus the proposed Viterbi algorithm based
MLS estimation technique is suitable for slow and moderate
varying sparsity levels to provide better MLS estimates with
less computational complexity. If the rate of sparsity level
variation is higher than that of the estimation speed, then
the filtered ML estimates are retained as the best estimates
without executing the Viterbi algorithm.

VI. PERFORMANCE EVALUATION FOR THE PROPOSED
ML-MLS ESTIMATION
The performance of the proposed estimator is evaluated by
applying it to model-generated data and real-world signals.
The performance measures such as Mean Recovery Error
(MRE)= |(k̂ − k)/k|, NRE, and the computational complex-
ity are compared between the proposed and other sparsity
level estimators described in [22], [24] and [28] as well as
support estimators (size of estimated support gives sparsity
level) such as [20], [30], and [17], and an Oracle CS estimator
which is aware of signal and noise statistics for the support
recovery.

A. COMPARISON ON COMPUTATIONAL COMPLEXITY
The performance of ML-MLS estimation technique is
compared in terms of the computational complexity with
Lopes method [22], 2-GMM method [24], and Trace based
method [28] where sparsity level is estimated, and DCS-AMP
method [20], DBBD-Kronecker [30], and KFCS method [17]
where support is estimated which gives knowledge on the
sparsity level for a given m number of measurements,
as follows.

The proposed estimator requires m = mb + mML mea-
surements per time step, wheremb measurements are for esti-
mating the mean energy of the supporting components, and
mML measurements are for estimating the sparsity level. The
computational complexity for estimating the instantaneous
sparsity level using m measurements is O(m).
At any time step, the Viterbi algorithm performs the MLS

estimation over a block of L length whose computational
complexity is O(D2

R L), where DR = kmax − kmin + 1 is
the dynamic range of sparsity level, kmin and kmax are the
minimum and maximum sparsity level, respectively in the
L length block. Thus the overall computational complexity
for the proposed ML-MLS method is O(m) + O(D2

R L).

The computational complexity of other methods are given
in Table 1, where the remarks explain the reason for their
computational complexity. The proposed ML-MLS estima-
tion technique demands an additional computational com-
plexity of O(D2

R L) which is lesser than O(mk3) of KFCS
and O(mN ) of DCS-AMP methods. Except for estimating
the mean energy of supporting components, the ML-MLS
technique does not involve any iterations. Though the
DBBD-Kronecker method has a better computational com-
plexity of support estimation, which isO(N−m) and is lesser
than that of proposed ML-MLS, its recovery performance is
very much affected due to the structure of DBBD.

B. PERFORMANCE EVALUATION ON MODEL-GENERATED
DATA
A time-varying Gaussian sparse signal x(n) ∈ R1024×1

with k(0) such that 64 ≤ k(0) ≤ 128, and supporting
components śi(n) ∼ N (0, 2) is generated using the model
parameter p<0 = 0.05, p0 = 0.9, p>0 = 0.05, for 128 time
steps. The input to the Viterbi Algorithm is filtered using
L̃ = 9−tap MA filter. With the estimated sparsity level,
Orthogonal Matching Pursuit (OMP) [9] algorithm is run
to find the supporting components and recover the sparse
signal x̂(n). In every trial of the simulation, the number of
obtained measurements m = 4k . The measurements are
obtained for different SNR values. We considered 500 trials
in the simulation, and the averaged MRE and NRE results
are plotted in Fig. 11 and Fig. 12, respectively. It is observed
that the proposed two-step estimation algorithm significantly
outperforms the other methods in terms of MRE and NRE.
It is natural to expect improved performance for theML-MLS
estimator, which is close to the oracle estimator because the
instantaneous ML estimate is improved upon by exploiting
the temporal correlation defined by the Markov model.

It is observed that the performance of the Lopes
method [22] is inferior and considerably invariant to the
SNR. This is because the Lopes method uses the random
Cauchy sensing matrix for which the variance is infinite.
As Trace-based method [28] is more suitable for estimating
time-invariant sparsity level, its performance is poor. Though
both the KFCS and DCS-AMP estimators (which exploit
the temporal correlation of sparse signal) perform at par
with the proposed ML-MLS estimator, and Oracle estimator,
their computational complexity results in harder practical
implementation.

C. PERFORMANCE EVALUATION ON REAL-WORLD DATA
The performance of the ML-MLS estimation method is eval-
uated here for the real-world applications on compression
and recovery of sparse vibration signals and estimation of
wireless channels.

1) APPLICATION ON COMPRESSION AND RECOVERY OF
VIBRATION SIGNAL DATA OF AN AIRCRAFT
Real-world vibration signals were obtained from Mide Tech-
nologies [31]. The vibration signal acquired on the aircraft
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TABLE 1. Computational complexity comparison.

FIGURE 11. Comparison of MRE performance.

FIGURE 12. Comparison of NRE performance.

FIGURE 13. Time-frequency spectrogram of vibration signal showing that
only a few components are having significant magnitudes.

skin at a sampling rate of 2500 sps for 500 seconds during the
aircraft’s climb is analyzed here. The Time-Frequency spec-
trogram of that vibration signal is shown in Fig. 13, which
reveals that (i) the vibration signal is compressible in the
frequency domain as only a very few frequency components
are significant at any given time step, and (ii) the number of
significant frequency components varies in time.

In our analysis, the duration of 500 seconds is divided into
500 time steps of one second duration and DCT is applied
on the vibration signal in every one second time step. The
sparsity level k(n) is computed such that 95% energy of
N = 2500−dimensional vibration signal is contained in

FIGURE 14. MLS estimation corrects the ML estimate errors and tracks
the actual sparsity levels.

k(n) number of the most significant DCT coefficients and
it is plotted in Fig. 14. It is analyzed that the sparsity level
variation is moderate and follows a discrete Markov model
with transition probabilities

∑
d>0 pd = 0.08,

∑
d<0 pd =

0.11, and p0 = 0.81. After obtaining the mean energy of
the frequency components using BSM as discussed in Algo-
rithm 1, theML estimate of k(n) is computed at each time step
using Equation (14) and the number of acquired measure-
mentsm(n) gives the compression ratio CR=N/m(n). On the
recovery side, the MA filter length is kept as L̃ = 5. The
transition probabilities are estimated as

∑
d>0 p̂d = 0.10,∑

d<0 p̂d = 0.14, and p̂0 = 0.76 and the MLS estimation
is performed using Viterbi algorithm. The ML and MLS
estimates are plotted in Fig. 14 along with the actual sparsity
level and it is verified that MLS estimation refines the ML
estimates.

After the ML-MLS estimation, the vibration signal is
recovered using the OMP recovery algorithm, which iterates
for k̂MLS (n) number of times at each time step. The recovery
performance of the proposed estimation followed by theOMP
algorithm (ML-MLS-OMP) for the total duration of 500 sec-
onds is shown in Fig. 15. In each time step, the recovery
performance is computed in terms of NRE. A snapshot of
the ML-MLS-OMP based CS recovered signal along with
the original vibration signal is shown in Fig. 15a. The NRE
performance of the proposed ML-MLS-OMP method with
DCS-AMP and KFCS-based CS methods, and traditional
DCT based compression method is presented in Fig. 15b.
It is observed that the NRE performance of the ML-MLS-
OMP method is comparable with that of the traditional DCT
based compression method and at par with DCS-AMP and
KFCS methods. For the DCT based compression method,
the most significant coefficients and their locations are well
known a priori resulting in aminimum 5%NRE.Whereas for
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FIGURE 15. Comparison of recovery performance on vibration signal.

TABLE 2. Elapsed time comparison among SLE methods.

the ML-MLS-OMP based CS method, the most significant
components and their locations are not available a priori or
directly, and each measurement is affected by the insignifi-
cant DCT coefficients. This makes the NRE performance of
the ML-MLS-OMP based CS method to have a slight degra-
dation with respect to the DCT based compression method.

It may be noted that all vibration signals will not be sparse.
For example, the vibration signal of a rocket during the
transonic regime is almost a random signal rich in significant
components making the signal non-sparse. Here, we do not
consider such non-sparse signals.

The run-time complexity of the proposed ML-MLS
method is evaluated and compared with other existing Spar-
sity Level Estimation (SLE) methods on a Windows 7 OS
based PC having a processor running with 1.66 GHz clock
speed. The average elapsed time for the SLE on analyzing
each segment of the vibration signal is shown in Table 2.

The time elapsed by the proposed ML-MLS method is
significantly less than that of other existing SLE methods.

2) APPLICATION ON ESTIMATION OF SPARSE IMPULSE
RESPONSE OF WIRELESS CHANNELS
Consider the problem of estimating the wireless channel
impulse response (CIR) from the model,

y = Xh+ ϑ,

FIGURE 16. Channel impulse response measured between transmitter 1
and receiver 2.

FIGURE 17. Performance of ML and MLS estimation techniques.

where y,X,h and ϑ are the received measurements, Toeplitz
matrix of known pilots, CIR, and measurement noise, respec-
tively. The above model becomes the CS acquisition model
as the CIR h is sparse, and X is carefully chosen as a sensing
matrix. As the minimum number of measurements obtained
are dependent on the sparsity level of CIR, the sparsity level
estimation is essential to reduce the number of pilots. Thus
the performance of the proposed sparsity level estimator in
terms of estimation accuracy is evaluated on a real-world
measured CIR obtained from CRAWDAD data set [35]. The
CIR was recorded using a 44-node wireless network in a
standard office environment. There were 44 × 43 = 1892
pairwise links. The transmitter and receiver were moved
and CIR measurements were taken multiple times between
the nodes. A sample real and imaginary realization of CIR
between nodes 1 and 2 are shown in Fig. 16. The time-varying
sparsity level is shown in Fig. 17 by stacking the several
realizations of CIR measurements. It is observed that spar-
sity level variation follows a discrete Markov process with
transition probabilities

∑
d>0 pd = 0.46,

∑
d<0 pd = 0.43,

and p0 = 0.11 resulting in fast sparsity level variation. After
obtaining themean energy of the multipath components using
Algorithm 1, the ML estimate of k(n) is computed for each
realization using Equation (14). The MA filter length is kept
as L̃ = 3. As the sparsity level varies fast, the ML estimates
of transition probabilities are computed as equally distributed
i.e.,

∑
d>0 p̂d = 0.33,

∑
d<0 p̂d = 0.33, and p̂0 = 0.34, from

the sequence of filtered ML estimates. The MLS estimation
is performed using the Viterbi algorithm. The unfiltered ML
estimates and refined MLS estimates are plotted in Fig. 17
along with the actual sparsity level, and it is verified thatMLS
estimation refines the unfiltered ML estimates.
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VII. CONCLUSION
In this paper, novel sparsity level estimation techniques for
the acquisition and recovery of time-varying sparse signals
have been proposed using the ML principle. The ML esti-
mator estimates the sparsity level with a minimum number
of measurements without any additional cost or resources
compared to any other estimator in the acquisition process.
In the recovery process, a two-step sparsity level estimation
is proposed, in which the first step is the ML estimation, and
the second step is the MLS estimation. The MLS estimation
technique filters the ML estimates and refines the sequence
of filtered ML estimates using the Viterbi algorithm. The
performance of the proposed two-step ML-MLS technique
is comparable to that of an oracle estimator. It is an improved
one compared to other published methods, even under high
level of measurement noise.

VIII. FUTURE WORK
The present work focuses only on the sparsity level estimation
for time-varying sparse signals. However, the problem of
estimation and tracking of time-varying sparse signals is three
dimensional, where time-varying (i) sparsity level, (ii) sup-
port, and (iii) amplitude have to be estimated simultaneously.
Hence as future work, characterization of time-varying spar-
sity level and support together as a two dimensional discrete
Markov birth-death model and derivation of corresponding
ML algorithms can be considered.

APPENDIX: PROOF FOR THE PROPERTIES OF ML
ESTIMATOR

1) The ML estimator is an unbiased estimator. Since k̂r =
k̂ML + kδ , where kδ ∼ U{−0.5, 0.5} is the uniformly
distributed round-off error. Thus, E{̂kr } = E{̂kML} +
E{kδ} = E{̂kML}. Since,

E{̂kML} = E{̂kr } =
1

mML

∑mML
i=1 E{y2i } − b
a

=

mML (ak+b)
mML

− b

a
= k,

the estimator k̂ML is an unbiased estimator.
2) The variance VAR of the ML estimator k̂ML is derived

from the variance of k̂r and is given by,

VAR{̂kML} = VAR{̂kr } + VAR{kδ} − 2COV{̂kr , kδ}.

Since VAR{̂kr } =
2(kσ 2φσ

2
s +σ

2
ϑ )

2

mML (σ 2φσ
2
s )2

, VAR{kδ} = 1
12 , and

COV{̂kr , kδ} ≈ 0,

VAR{̂kML} ≈
2(kσ 2

φσ
2
s + σ

2
ϑ )

2

mML(σ 2
φσ

2
s )2

+
1
12
.

3) For the integer parameter k , the CRLB can be derived
by computing either second forward or second back-
ward difference for the log likelihood of Equation (12).
Let a = σ 2

φσ
2
s and b = σ 2

ϑ . Then the joint probabil-
ity distribution of mML independent random variables

{yi}
mML
i=1 parameterised by k is given as,

pY (y; k)=
1

(2π (ak + b))
mML
2

exp

[
1

2(ak + b)

mML∑
i=1

y2i

]
.

The second forward difference of log likelihood is
given by,

ln(pY (y; k + 2))− 2 ln(pY (y; k + 1))+ ln(pY (y; k))

=
−mML

2
ln
(
(ak + b)(a(k + 2)+ b)

(a(k + 1)+ b)2

)
−

1
2

mML∑
i=1

y2i

(
1

ak+b
+

−2
a(k+1)+b

+
1

a(k+2)+b

)
≈
−mML

2

(
−a2

(a(k + 1)+ b)2

)
−

1
2

mML∑
i=1

y2i

(
2a2

(ak+b)(a(k+1)+b)(a(k+2)+b)

)
.

Using the second forward difference of log likelihood,
CRLB=

−1
E{ln(pY (y; k + 2))− 2 ln(pY (y; k + 1))+ ln(pY (y; k))}

=

(
−mML

2

(
−a2

(a(k + 1)+ b)2

)
+

1
2

mML∑
i=1

E{y2i }

×

(
2a2

(ak + b)(a(k + 1)+ b)(a(k + 2)+ b)

))−1
≈

2
mMLa2

(ak + b)2; (k ≈ k + 1 ≈ k + 2

when k is large)

=
2(kσ 2

φσ
2
s + σ

2
ϑ )

2

mML(σ 2
φσ

2
s )2

.
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