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ABSTRACT Neutral delay differential equations (NDDEs) are differential equations containing time lags
not only in the states but also in the state derivatives. NDDEs have applications in modeling physical and
biological systems. An NDDE model may consist of several parameters, some of which can be determined
using available data. Various numerical techniques have been studied to estimate parameters of mathematical
models. In this study, parameter estimation is posed as an optimization problem. The use of heuristic algo-
rithms in parameter estimation has gained popularity because of its ease of implementation, requiring only
function evaluations. But to our knowledge, heuristic algorithms have never been employed in estimating
parameters in NDDE models. In this work, we apply Genetic Algorithm with Multi-Parent Crossover (GA-
MPC) to obtain parameter estimates of three NDDE models with a discrete delay. We compare the estimates
to those obtained using standard heuristic algorithms. Results show that GA-MPC is capable of consistently
identifying model parameters that provide a good fit of the model to the data.

INDEX TERMS Neutral delay differential equations, parameter estimation, genetic algorithm, bootstrap-
ping, inverse problem, heuristic algorithms.

I. INTRODUCTION
Differential equations, where the derivatives at time t depend
on the solution and its derivatives at a previous time, are
called delay differential equations (DDEs). A general form
of a DDE is given by

y(k)(t) = f (t, y(t), . . . , y(k−1)(t), y(d0), . . . , y(k)(dk );p), (1)

where dj = dj(t, y(t)), j = 0, . . . , k are the delays which
satisfy dj ≤ t ∀t ∈ [t0, t1] for some t0, t1 ∈ R+. The function
f is parametrized by p ∈ RL , where L is the number of
parameters. The solution to (1) is dependent on some initial
function φ(t) defined at a previous time. This function φ(t)
is referred to as the history or preshape function. A DDE
is of retarded type (RDDE) when there is no delay in the
derivative terms of the DDE. On the other hand, it is of neutral
type (NDDE) if there are delays in the derivatives of the state
variables.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sun-Yuan Hsieh .

Several studies have been done on the numerical approx-
imations and asymptotic properties of solutions to NDDEs
[1]–[7]. NDDEs have been used to develop models in
engineering [8]–[12], biosciences [1], [13]–[17], and eco-
nomics [18], [19]. A review of the applications of NDDEs
in various fields is discussed in [20].

Here, we consider a single constant delay τ . That is,

dj(t, y(t)) = t − τ, ∀j.

Note that the solution y(t) to (1) depends on the parameter p
and the delay τ . Because τ can also be treated as an additional
parameter, we let

θ := [p; τ ],

be the vector of parameters. We also denote by yθ (t) the solu-
tion to (1) to make the dependence of y(t) on the parameters
and delay more obvious.

The values of the parameters in amodel are often unknown.
While some parameters are found in the literature, others
need to be estimated. Ideally, we want the experimental data
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recorded at time ti, denoted by Di, to coincide with the
solution to the model at ti. That is,

Di ≈ yθ (ti), i = 1, 2, . . . ,N , (2)

where N is the number of data points. Hence, we look for the
value of θ that will make the approximation in (2) as close
as possible. This can be done by minimizing a least-squares
formulation expressed as

min
θ

1
M

N∑
i=1

(Di − yθ (ti))2 , (3)

whereM is a normalizing constant. We denote the cost func-
tion to be minimized by

J (θ ) :=
1
M

N∑
i=1

(Di − yθ (ti))2 . (4)

There are many numerical optimization algorithms in the
literature that can be used to solve (3). Classical techniques
use the gradient of the cost function J in (4) to estimate the
minimizer. Gradient-based methods are fast but can be stuck
to a local minimum or a saddle point [21]. Using derivative
discontinuity tracking theory for DDEs, it was shown in [22]
that jumps can arise in the gradient of J . Hence, to solve (3),
we rely on a derivative-free method.

Numerical algorithms that only use function values of J
are either deterministic or heuristic. Deterministic algorithms
are computationally inexpensive and fast but tend to con-
verge to local minimizers [21], [23]. Heuristic algorithms
are often nature-inspired [24] and are computationally more
expensive than deterministic algorithms but can converge to
a global minimizer given enough number of function evalua-
tions [24]–[26].

In [27], a modified particle swarm optimization (PSO) was
used to estimate the parameters of dynamical systems involv-
ing ordinary differential equations. It was shown in [28] how
a hybrid adaptive cuckoo search with simulated annealing
could be effective in identifying parameters in chaotic sys-
tems. A hybrid Taguchi-differential evolution algorithm was
proposed in [29] to estimate the parameters of an HIV model.
Heuristic algorithms have also been shown to be effective in
identifying parameters of S-system models [30]–[32]. Other
recent works on the application of various heuristic opti-
mization methods on estimating parameters of engineering
systems are found in [33]–[41].

Heuristic algorithms such as genetic algorithm (GA) [42],
which is a hybrid of an evolutionary search strategy with a
local multiple-shooting approach [43], and differential evolu-
tion [44] have been applied to parameter estimation in RDDE
models. In [45], Ant Colony Optimization was used to deter-
mine parameter values in RDDE models on human health.
To determine the unknown parameters in chaotic systems
with time-delays, a hybrid bio-geography optimization was
used in [46], PSO was used in [47], and a hybrid cuckoo
search algorithm was used in [48].

To the best of our knowledge, heuristic algorithms have
never been employed in estimating parameters of models
involving NDDEs. In this paper, we solve the least-squares
formulation in (3) usingGenetic AlgorithmwithMulti-Parent
Crossover (GA-MPC), and compare the results to those
obtained using standard global optimization algorithms: GA,
pattern search algorithm (PS), simulated annealing (SA),
and PSO. GA-MPC is a modified GA that proposes a new
crossover method [49]. It has been used to effectively solve
an economic dispatch problem [50] and an optimal power
flow problem [51]. It has also been applied to solve an inverse
problem in RDDEs [52].

In the next section, we discuss GA-MPC and a parameter
bootstrapping method. In Section III, parameter estimation
is done on three NDDE models arising from applications
using the heuristic algorithms mentioned above. The first
model describes the population growth of E. coli using a
first-order NDDE. The second one is an age-structured model
involving a system of first-order NDDEs. The third model is
a second-order NDDE describing a pendulum-mass-spring-
damper (PMSD) system. Parameter bootstrapping is done to
assess uncertainty in the estimates. Furthermore, since the
only stopping criterion is the maximum number of function
evaluations, we investigate the effect of varying this quantity
to the cost function value. In the last section, we state our
conclusions and recommendations.

II. METHODS
A. GENETIC ALGORITHM WITH MULTI-PARENT
CROSSOVER
Genetic Algorithm was formulated by John Holland
in 1975 based on Darwin’s theory of evolution [53]. It has
gained popularity for its ease of use and applicability in
various fields of study. Some applications of GA can be found
in [25], [26], [42], [54]–[59].

The general process of GA starts with a pool of randomly
generated individuals that serve as members of the first gen-
eration. Themembers of the population act as estimates of the
minimizer. The best members of the population are selected
based on their survival fitness. In the case of minimization,
the lower the function value of an individual, the higher
is its chance of survival. The members of the population
who did not survive will be replaced by the offspring of
the surviving population. The offspring are created using a
crossover method. To make sure that the solution does not
converge to a local minimum, a mutation step is done at the
end of the generation. In this step, a portion of the population
is modified randomly. The process is repeated until a stopping
criterion is satisfied. A detailed discussion on GA, as well as
the MATLAB codes, are found in [26].

GA-MPC proposes a new crossover method that uses three
parents from the selection pool to generate three offspring
(refer to Algorithm 1). Two of the offspring (o1 and o3 in
Algorithm 1) are formulated in such a way that they are
generated in the direction with less function value. These
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Algorithm 1 Genetic Algorithm With Multi-Parent
Crossover (GA-MPC) [49]
Require: Cost function f (x), x ∈ Rr , PopSize, xLB, xUB,M ,

β, cr , p,MaxEval.
Ensure: f is optimal at x∗

1: Randomly generate the initial population size PopSize.
The initial population must stay within the bounds xLB
and xUB.

2: while FuncEvals < MaxEval do
3: Sort the population by their cost function value. Form

the archive pool Ã using the bestM members.
4: Generate tournament selection size TC randomly

between 2 and 3. Do a tournament selection and fill
the selection pool.

5: Randomly generate a number ū ∈ [0, 1].
6: for each three consecutive individuals in the selection

pool do
7: if one of the selected individual is the same as

another individual then
8: Replace one by a randomly-selected individual in

the selection pool.
9: end if
10: if ū < cr then
11: Sort the three individuals xi, xi+1, xi+2 so that

f (xi) ≤ f (xi+1) ≤ f (xi+2).
12: Compute β = N (µ̃, σ̃ ).
13: The three offspring are generated from the three

parents using: o1 = x1 + β(x2 − x3), o2 = x2 +
β(x3 − x1), o3 = x3 + β(x1 − x2).

14: end if
15: for i = 1 : 3 do
16: Randomly generate ũ ∈ [0, 1].
17: if ũ < p then
18: The offspring undergoes mutation: oji = xjmut ,

where xmut ∈ Ã and mut ∈ [1,m].
19: end if
20: end for
21: end for
22: if a duplicate individual x ji exists then
23: Change the duplicate with xji = xji+N (0.5∗ū, 0.25∗

ū), ū ∈ [0, 1].
24: end if
25: end while

two offspring exploit the location of the best parents to attain
better estimates. The third offspring (o2 in Algorithm 1) will
move away from the best parent. Although this is counter-
intuitive, this gives the algorithm the capability to escape
local minima. Thus, GA-MPC also adopts a randomized
operator to diversify the offspring. A detailed discussion on
GA-MPC is found in [49]. This algorithm ranked first among
the participating algorithms in the 2011 IEEE Congress of
Evolutionary Computation Competition, which tests algo-
rithms by solving real-world optimization problems [60].

In the following simulations, the parameter values of
GA-MPC are set to their default values as stated in [49].
That is, the population size PopSize = 90, selection rate
M = 0.50× PopSize, crossover rate cr = 1, crossover factor
β ∼ N (0.5, 0.3), and mutation rate p = 0.1.
The results obtained using GA-MPC are compared to

those obtained using standard heuristic algorithms: GA, PS,
SA, and PSO, which are implemented using the built-in
functions ga, patternsearch, simulannealbnd, and
particleswarm, respectively, in the global optimization
toolbox of MATLAB. For consistency of comparison, all the
parameters in these built-in functions are set to their default
values. The only stopping criterion in all the algorithms is
the maximum number of function evaluations. In the param-
eter estimation results in Section III, the maximum number
of function evaluations is set to 2000 times the number of
parameters to be estimated. Because heuristic algorithms
are probabilistic, we run each of the algorithms 100 times
and compute for the mean of the estimates. Box plots are
used to illustrate the distribution of the parameter estimates.
Furthermore, we explore the effect of the maximum number
of function evaluations to the cost function value by setting
this maximum number to the number of parameters to be
estimated times 500, 1000, 1500, or 2000.

B. PARAMETER UNCERTAINTY ANALYSIS
In [61], a parameter bootstrapping approach is presented
to quantify the standard error in the parameter estimates
in models involving RDDEs. We adopt this strategy to
analyze the uncertainty in parameter estimates in the
NDDE models. The method is summarized in the following
steps:

1) Solve the parameter estimation problem in (3) and
denote the estimated parameter by θ̂ .

2) Let y
θ̂
(t) be the solution of the NDDE model. Set the

maximum number L of realizations to 100. Initialize
the number of realizations r to 1.

3) Using (y
θ̂
(ti), σ 2), i = 1, . . . ,N , generate a noisy data

{D̂i}Ni=1 based on an assumed probability distribution.
Here, the noisy data are generated using the normal
distribution Normal(y

θ̂
(ti), σ 2), i = 1, . . . ,N , where

σ is the noise set to 10% of the standard deviation of
{y
θ̂
(ti)}Ni=1 (compare with [61]).

4) Get a new set of parameter estimates using the sim-
ulated noisy data {D̂i}Ni=1. This is done by replacing
{Di}Ni=1 by {D̂i}

N
i=1 in (4) and minimizing the modified

cost function. Store this parameter as θ̄r .
5) If r < L, set r ← r + 1 and go back to step 3.

Otherwise, go to the next step.
6) The standard error of the parameter θ̂ , denoted by

Err(θ̂ ), is equal to the standard deviation of {θ̄r }100r=1.
The 95% confidence interval for the parameter θ̂ is
[θ̂ − 1.96 ∗ Err(θ̂ ), θ̂ + 1.96 ∗ Err(θ̂)]. The standard
error and 95% confidence interval of the solution to the
NDDE are computed similarly.
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FIGURE 1. Box plots of the parameter estimates for the E. coli population growth model using GA-MPC, GA, PS, SA, and PSO. The
outliers, i.e., the estimates that fall outside the lower and upper quartiles, are plotted in red (+). The median and mean are
represented by a red line across the box plots and black dot, respectively.

TABLE 1. Bounds for the parameters in the NDDE model of E. coli
population growth.

III. RESULTS AND DISCUSSION
A. E. COLI POPULATION GROWTH MODEL
In [16], an NDDE model of E. coli population growth is
proposed. The model assumes that all cells have the same
division time and that they divide simultaneously. Further-
more, it is assumed that there is a prolonged initial step-like
growth. The model is given by

y′(t) = ρ0y(t)+ ρ1y(t − τ )+ ρ2y′(t − τ ), (5)

where y(t) denotes the number of colonies at time t , and
ρ0, ρ1, ρ2, and τ are the model parameters. The parameter ρ0
is the rate of cell death, ρ1 is the rate of commitment to cell
division, ρ2 represents the gradual dispersal of synchroniza-
tion, and τ is the average cell-division time [62]. The history

function for this problem is given by

φ(t) = y0 + β9(t), t ∈ [−τ, 0],

where

9(t) =
2y0βγ
ρ1τ

E
(
2t
τ
+ 1

)
,

and

E(t) =

{
exp[−1/(1− t2)], for |t| < 1,
0, otherwise.

The function φ(t) follows a bell-shaped distribution that
corresponds to non-monotone cell growth [16]. The value of
γ is set to 2.25 and the initial population y0 to 99 [16].
We wish to estimate the parameters ρ0, ρ1, ρ2, τ , and β by

comparing the numerical solution to (5) with the number of
colonies {y?i }

28
i=1 based on experimental data [16]. For brevity,

we define

θ := [ρ0, ρ1, ρ2, τ, β].
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FIGURE 2. Plots of the solution y (t) (cyan curve) to the NDDE model of E. coli population growth using the estimates from the 100 runs
of GA-MPC, GA, PS, SA, and PSO. Experimental data points are represented by asterisks.

Thus, the minimization problem to estimate the parameters
of the NDDE model of E. coli population growth is given by

min
θ∈R5

28∑
i=1

(
y?i − yθ (ti)

)2
28∑
i=1

(
y?i
)2 .

Here, yθ (t) is the solution to (5) given an arbitrary param-
eter vector θ . To compute for yθ (t) numerically, we use the

MATLAB built-in function ddensdwith step size 0.01. The
maximum and minimum values of the parameters used in the
simulations are shown in Table 1.

Figure 1 shows the box plots of the parameter estimates
of the E. coli population growth model obtained using GA-
MPC, GA, PS, SA, and PSO. Compared to the other algo-
rithms, most of the estimates obtained using GA-MPC fall
within the first and third quartiles of the 100 estimates.
Furthermore, the narrow interquartile ranges suggest small
variations among estimates. The cyan curves in Figure 2
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TABLE 2. Standard error Err (θ̂), 95% confidence interval, and mean of the
100 realizations using GA-MPC for the NDDE model of E. coli population
growth.

FIGURE 3. The numerical solution y (t) of the NDDE model of E. coli
population growth using the mean parameter estimates of GA-MPC is
shown as the blue curve. The black asterisks are the experimental data
points. The 95% confidence interval of the solutions is shown in gray and
is bounded by the red curves.

are the plots of the solutions corresponding to the 100 sets
of estimates. The data points are represented by the aster-
isks. Among the five algorithms, plots of the solution using
GA-MPC produce the best fit to the experimental data.

Next, we apply the bootstrapping method presented in
Subsection II-B to assess the uncertainty in the parameter
estimates obtained using GA-MPC. Table 2 shows the stan-
dard errors and mean of the estimated parameters, which all
fall within the 95% confidence interval. In Figure 3, we see
that the plot of the solution using the mean of the estimated
parameters (blue curve) fits the experimental data (asterisks)
well. The bounds for the 95% confidence interval of the
solution y

θ̂
(t) are represented by the red curves.

B. AGE-STRUCTURED MODEL
Next, we consider a population divided into two age groups –
juveniles and adults. This can be described by the following
age-structured population growth model from [14]:

U̇ (t) =


−µ0U (t)+ b1V (t)
+ (b2 − 1)n0(τ − t)e−µ0t , 0 ≤ t ≤ τ,
c0U (t)+ c1V (t)
+ c3V (t − τ )+ c4V̇ (t − τ ), t > τ,

TABLE 3. True values and bounds for the parameters in the
age-structured NDDE model.

V̇ (t) =

{
n0(τ − t)e−µ0t − µ1V (t), 0 ≤ t ≤ τ,
a1V (t − τ )+ a2V̇ (t − τ )− a3V (t), t > τ,

where U (t) is the juvenile population, V (t) is the adult popu-
lation,

c0 = b0 − µ0,

c1 = b1,

c2 = (b2 − 1)b0e−µ0τ ,

c3 = (b2 − 1)(b1e−µ2 + b2µ1)eµ2−µ0τ ,

c4 = (b2 − 1)b2eµ2−µ0τ ,

a0 = b0eµ2−µ0τ ,

a1 = (b1e−µ2 + b2µ1)e−µ0τ ,

a2 = b2e−µ0τ ,

a3 = µ1, (6)

bj, and µj, j = 0, 1, 2, are different birth and death rates,
respectively. We note from [14] that the coefficients ai in (6)
are non-negative and that

a1 ≥ a2a3.

We set the initial values for U (t) and V (t) as (compare
with [15])[

U (0)
V (0)

]
=

∫ 36
0 n0(a)da∫ 50
36 n0(a)da

 =
∫ 36

0 1da∫ 50
36 1da

 = [36
14

]
,

where the initial age distribution is given by

n0(a) =

{
1, 0 ≤ a ≤ 50,
0, otherwise.

In this example, we use generated population data for
U (t) and V (t) at n different time points. To generate noisy
data, we follow the method used in DDE models presented
in [61]. First, clean data are generated by solving the model
given the true parameters (see Table 3). The solution of the
NDDE model is computed numerically using the MATLAB
function ddensd. Then noisy data are generated following a
normal distribution, with standard deviation set to 10% of the
standard deviation of the NDDE solution. We generate data
for n = 20, 50, and 100 time points over a fixed interval.
The goal is to estimate the parameters of the age-structured
NDDE model from the generated noisy data {U∗(ti),V ∗(ti)},
i = 1, 2, . . . , n.

The minimization problem for the parameter estimation of
this model is given by

min
θ∈R7

(
n∑
i=1

|U∗(ti)− Uθ (ti)|2

|U∗(ti)|2
+
|V ∗(ti)− Vθ (ti)|2

|V ∗(ti)|2

)
+ ζg,
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FIGURE 4. Box plots of the estimates for τ , b0, b1, and b2 in the age-structured
NDDE model using GA-MPC, GA, PS, SA, and PSO. The outliers, i. e., the estimates
that fall outside the lower and upper quartiles, are plotted in red (+). The median
and mean are represented by a red line across the box plots and black dot,
respectively. The true values are shown as a black dotted line. The estimates are
computed from a generated data set containing 20, 50, and 100 sample points.
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FIGURE 5. Box plots of the estimates for µ0, µ1, and µ2 in the age-structured NDDE model using
GA-MPC, GA, PS, SA, and PSO. The outliers, i. e., the estimates that fall outside the lower and
upper quartiles, are plotted in red (+). The median and mean are represented by a red line across
the box plots and black dot, respectively. The true values are shown as a black dotted line. The
estimates are computed from a generated data set containing 20, 50, and 100 sample points.

where

θ = [τ, b0, b1, b2, µ0, µ1, µ2],

ζ is a penalty parameter, n is the number of data points,
{Uθ (ti),Vθ (ti)} are the solutions to the model at time ti given
an arbitrary parameter vector θ , and

g = −min[a1 − a2a3, 0]

= −min[(b1e−µ2 + b2µ1)e−µ0τ − µ1b2e−µ0τ , 0]

is a penalty function to ensure that the parameter values
satisfy the condition a1 ≥ a2a3. The parameter ζ is set to
1000. We solve the minimization problem using GA-MPC,
GA, PS, SA, and PSO. The bounds for the parameters are
given in Table 3.

We see in Figures 4 to 5 that in most cases, GA-MPC
and PSO result in parameter estimates which are close to
the true parameter values (black dotted line) and vary within
small interquartile ranges. However, GA-MPC gives better
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FIGURE 6. Plots of the solutions U(t) and V (t) (cyan and magenta curves, respectively) to the age-structured NDDE model using
the estimates from the 100 runs of GA-MPC. The generated data sets with 20, 50, and 100 sample points are represented by
asterisks.

FIGURE 7. The numerical solutions U(t) (black curve) and V (t) (blue
curve) of the age-structured NDDE model using the mean estimated
parameter values of GA-MPC. The black asterisks are the 50 generated
data points. The 95% confidence interval of the NDDE solutions is
illustrated in gray and is bounded by the red curves.

estimates than PSO for the parameters b2, µ0, µ1, and µ2.
Using PSO, some estimates for the death rates µ0 and µ1
are zero, which fall outside the meaningful range for the
death rate. Some parameter estimates using GA, PS, and SA
vary on a larger range and a significant number of estimates
fall outside the first and third quartiles. There is no notable

TABLE 4. Standard error Err (θ̂), 95% confidence interval, and mean of the
100 realizations using GA-MPC for the age-structured NDDE model.

difference in the parameter estimation results when n = 20,
50, or 100.

Figure 6 shows the plots of the solutions U (t) and V (t)
(cyan and magenta curves, respectively) using GA-MPC.
We see that the plots have a good fit to the n data points (aster-
isks) and that the value of n does not affect the performance
of GA-MPC. Figures 12 to 14 in the Appendix show the plots
of the solutions to the age-structured NDDE model using the
estimates from GA, PS, SA, and PSO.

To analyze the uncertainty in the estimates, we apply the
bootstrapping method to the data with n = 50. Results
in Table 4 show small standard errors of all the parameters.
Furthermore, the mean values of the estimates all fall within
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FIGURE 8. Box plots of the parameter estimates in the PMSD NDDE model using GA-MPC, GA, PS, SA, and PSO.
The outliers, i.e., the estimates that fall outside the lower and upper quartiles, are plotted in red (+). The median
and mean are represented by a red line across the box plots and black dot, respectively. The true values are
shown as a black dotted line. The estimates are computed from a generated data set containing 20, 50, and
100 sample points.
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FIGURE 9. Plots of the solutions y (t) (cyan curves) to the PMSD NDDE model using the estimates from the 100 runs of GA-MPC. The
generated data sets with 20, 50, and 100 sample points are represented by asterisks.

the 95% confidence intervals. Figure 7 shows the good fit of
the solutions to the data set using the re-estimates.

C. COUPLED PENDULUM-MASS-SPRING-DAMPER
SYSTEM
Consider a mechanical system consisting of a mass M
mounted on a linear spring, where a pendulum of mass m is
attached to it via a hinged rod of length l [9]. We assume
that the angular deflection of the pendulum from the down-
ward position is very small, and is thus negligible. Moreover,
we assume that there is a linear, viscous damping C on the
massM and no external forces are acting on the system. The
equation of motion is given by the second-order NDDE

Mẍ(t)+ Cẋ(t)+ Kx(t)+ mẍ(t − τ ) = 0, (7)

where C and K are the damping and stiffness coefficients,
respectively. This equation describes the vertical motion of
a PMSD system, and the terms x(t), ẋ(t) and ẍ(t) are the
position, velocity, and acceleration of the PMSD at time t .
In the following discussion, we consider the nondimension-
alized version of (7) given by

ÿ+ 2ζ ẏ+ y+ pÿ(t − τ ) = 0, (8)

with the preshape function φ(t) = cos(t/2) [9]. Note that if
|p| < 1 and ζ > 1/

√
2, then the steady state of (8) is locally

FIGURE 10. The numerical solution y (t) of the PMSD NDDE model using
the estimated parameter values of GA-MPC is shown as the blue curve.
The black asterisks are the 50 generated data points. The 95% confidence
interval for the NDDE solutions is illustrated in gray and is bounded by
the red curves.

asymptotically stable [9]. In particular, we are interested in
the case when p > 2ζ

√
1− ζ 2, so that there is a succession

of stability switches as the value of τ increases.
We estimate the parameters of (8) from noisy data gen-

erated in the same way as in the age-structured NDDE
model. First, clean data is obtained by numerically solving (8)
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TABLE 5. True values and bounds for the parameters in the PMSD NDDE
model.

using the MATLAB function ddensd. We use the following
parameter values from [9]: τ = 1, ζ = 0.05, and p = 0. Then
noisy data y∗(ti), i = 1, 2, . . . , n, are generated following a
normal distribution, with the standard deviation set to 10%
of the standard deviation of the NDDE solution. We generate
data sets containing n = 20, 50, and 100 time points divided
over a fixed interval. We minimize the objective function
given by

min
θ∈R3

n∑
i=1

(
y?i − yθ (ti)

)2
n∑
i=1

(
y?i
)2 ,

where

θ := [τ, ζ, p],

yθ (ti) is the solution to (8) at time ti using an arbitrary
parameter vector θ . The bounds for the parameters are shown
in Table 5.
Figure 8 shows the zoomed-in box plots of the parame-

ter estimates of the PMSD NDDE model. Aside from PS,
the heuristic algorithms performed well in the parameter esti-
mation. This might be attributed to having only 3 parameters
being estimated. We note that there are many outliers in the

TABLE 6. Standard error Err (θ̂) and mean of the 100 realizations using
GA-MPC, and the resulting 95% confidence intervals of the parameter
estimates for the PMSD NDDE model.

estimates using PS with n = 50, which are not seen in Fig-
ure 8 but are seen in the plots of the solutions (see Figures 15
to 17 in the Appendix). The algorithms GA-MPC and GA
both give good approximations to the true parameter values
(black dotted line) in all 100 runs, but GA-MPC has fewer
outliers. The plots of the solutions using parameter estimates
of GA-MPC are shown in Figure 9. The number of data points
used in the estimation does not appear to significantly affect
the cost function value and the fit of the solutions to the data
points.

Results of the parameter bootstrapping method show small
standard errors of the parameter estimates in the PMSD
NDDE model with mean estimates lying within the 95%
confidence intervals (Table 6). Figure 10 shows a good fit
to the data of most of the solutions using the re-estimated
parameters.

D. VARYING MAXIMUM NUMBER OF FUNCTION
EVALUATIONS
The only stopping criterion used in the previous simulations is
themaximum number of function evaluations and this is set to
2000 times the number of parameters to be estimated. Results
show that GA-MPC consistently obtained good parameter
estimates in the three models. Now, we look at how vary-
ing the maximum number of function evaluations affect the

FIGURE 11. The mean cost function value in models 1 to 3 using GA-MPC, GA, PS, SA, and PSO for different maximum number of function
evaluations. The maximum function evaluations is set to 500 · d (blue), 1000 · d (red), 1500 · d (yellow), and 2000 · d (violet), where d is the
number of parameters to be estimated.

VOLUME 9, 2021 131359



C. U. Jamilla et al.: Parameter Estimation in NDDEs Using GA-MPC

FIGURE 12. Plots of the solutions U(t) and V (t) (cyan and magenta
curves, respectively) to the age-structured NDDE model using the
estimates from 100 runs of GA, PS, SA, and PSO. The generated data sets
with 20 data points are represented by asterisks.

performance of GA-MPC,GA, PS, SA, and PSO in parameter
estimation.

We consider setting the stopping criterion to 500, 1000,
1500, or 2000 times the number of parameters to be esti-
mated, which we denote by d . Figure 11 shows the mean
cost function value of 20 independent runs performed using

FIGURE 13. Plots of the solutions U(t) and V (t) (cyan and magenta
curves, respectively) to the age-structured NDDE model using the
estimates from 100 runs of GA, PS, SA, and PSO. The generated data set
with 50 data points are represented by asterisks.

GA-MPC, GA, PS, SA, and PSO. In Model 1, we see that
GA-MPC produces the least cost function values across
the different maximum numbers of function evaluations.
In Models 2 and 3, we observe that GA-MPC and PSO give
parameter estimates with the lowest cost function values,
even when the maximum numbers of function evaluations are
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FIGURE 14. Plots of the solutions U(t) and V (t) (cyan and magenta
curves, respectively) to the age-structured NDDE model using the
estimates from 100 runs of GA, PS, SA, and PSO. The generated data set
with 100 data points are represented by asterisks.

500d or 1000d . In all three models, GA-MPC consistently
provides parameter estimates with low cost function values
even for smaller numbers of maximum function evaluations.
This is advantageous in instances when modeling using
NDDEs requires parameter tuning at a faster time.

FIGURE 15. Plots of the solutions y (t) (cyan curves) to the PMSD NDDE
model using the estimates from 100 runs of GA, PS, SA, and PSO. The
generated data set with 20 sample points are represented by asterisks.

IV. CONCLUSION
In this work, we examine the use of a modified genetic
algorithm called GA-MPC in solving parameter estimation
problems involving NDDEs. We test our method on three
different NDDE models – a first-order NDDE, a system of
first-order NDDEs, and a second-order NDDE. We look at
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FIGURE 16. Plots of the solutions y (t) (cyan curves) to the PMSD NDDE
model using the estimates from 100 runs of GA, PS, SA, and PSO. The
generated data set with 50 sample points are represented by asterisks.

the performance of GA-MPC in comparison to other heuris-
tic algorithms and incorporate parameter uncertainty analy-
sis to examine the extent of uncertainties in the estimates.
For consistency of comparison, the default values of the
parameters in the algorithms used are unchanged and the
only stopping criterion is the maximum number of function
evaluations. The simulations show that heuristic algorithms,

FIGURE 17. Plots of the solutions y (t) (cyan curves) to the PMSD NDDE
model using the estimates from 100 runs of GA, PS, SA, and PSO. The
generated data set with 100 sample points are represented by asterisks.

particularly GA-MPC, can provide good estimates for the
parameter values and a good fit to experimental data. The high
accuracy and good consistency of the parameter estimates
using GA-MPC are observed in all three different types of
NDDE models we presented.

An advantage of using GA-MPC in solving the
least-squares formulation arising from the parameter
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estimation problem is that it does not depend on the explicit
formulation or the derivatives of the solution to the NDDE.
Although heuristic algorithms are computationally expen-
sive, they are robust and are easy to implement.

Many factors contribute to the performance of heuris-
tic algorithms in solving optimization problems. For future
research, one can explore modifying the default parameter
values or the stopping criteria in the algorithms. One can
also consider other recent heuristic algorithms and hybrids of
heuristic algorithms in solving inverse problems in NDDEs.
In this study, we have varied the number of data points and
maximum number of function evaluations. For future work,
one can use other metrics for comparison such as varying the
noise level in the simulated data and adding different types of
noise.

APPENDIX A
ADDITIONAL FIGURES
Figures 12 to 14 show the plots of the solutions to the
age-structured NDDE model using parameter estimates
obtained from the data set containing 20, 50, and 100 points
using GA, PS, SA, and PSO. The plots of U (t) and V (t)
are the cyan and magenta curves, respectively, while the data
points are represented by the asterisks. Figures 15 to 17 show
the plots of the solution to the PMSD NDDE model obtained
using the estimates from 20, 50, and 100 data points, using
GA, PS, SA, and PSO. The plots of the solutions are in cyan
and the data points are represented by the asterisks.
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