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ABSTRACT Skyline queries identify skyline points, the minimal set of data points that dominate all other
data points in a large dataset. The main challenge with skyline queries is executing the skyline query in
the shortest possible time. To address and solve skyline query performance issues, we propose a decision
tree-based method known as the decision tree-based comparator (DC). This method minimizes unnecessary
dominance tests (i.e., pairwise comparisons) by constructing a decision tree based on the dominance testing.
DC uses dominance relations that can be obtained from the decision rules of the decision tree to determine
incomparability between data points. DC can also be easily applied to improve the performance of various
existing skyline query methods. After describing the theoretical background ofDC and applying it to existing
skyline queries, we present the results of various experiments showing that DC can improve skyline query
performance by up to 23.15 times.

INDEX TERMS Database, decision tree, incomparability, query processing, skyline query.

I. INTRODUCTION
A skyline [1] refers to a minimal set of data points that
dominate all other data points in a dataset. Dominance implies
that the skyline points have the same values, or at least
one better value, for all attributes than the remaining data
points. Fig. 1 demonstrates an example of a skyline query in
a database. Fig. 1 (a) lists a given dataset, and Fig. 1 (b) illus-
trates the skylines of the dataset (i.e., A, G, H ).
There has been substantial research interest in developing

efficient skyline query techniques to discover skylines, and
various studies have been conducted to apply these meth-
ods in various fields, including retail [2], load networks [3],
networks [4]–[6], web services [7], [8], and mobile edge
computing [9]. In recent years, the skyline query technique
has also been employed to compress a convolutional neural
network (CNN) for deep learning [10].

The main challenge in such endeavors is to execute the
skyline query in the shortest possible time. This is necessary
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FIGURE 1. An example of skyline query.

to satisfy the time constraints imposed by the underlying
user requests. Since a skyline query spends most of its time
conducting dominance tests, performing pairwise data com-
parisons to determine dominance, and reducing the num-
ber of dominance tests, can result in a direct improvement
in query performance [1]. Previous skyline query meth-
ods proposed for this purpose have ranged from sort-based
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methods [11]–[14] to those using indexing techniques
[15]–[17], dominance relations [18]–[21], and parallel and
distributed processing environments [22]–[28].

In this paper, using a concept called incomparability,
we focus on dominance relationsmethods tominimize unnec-
essary operations between data points, and reduce dominance
tests. Generally, incomparability occurs when two data points
cannot dominate each other [16], [20]. For example, in Fig. 1,
data points A and G are incomparable, and thus, cannot dom-
inate each other. Existing dominance relation-based skyline
query methods manage the skyline points based on a tree
structure. However, these methods perform dominance tests
using a tree structure, and this makes it challenging to remove
multiple data points from a skyline query using a single
dominance test procedure, as is the case in point-to-group
or group-to-group comparisons [17] used in index-based
methods. In addition, it is difficult to apply the dominance
relation concept to other methods because of the structural
dependencies of existing dominance relation-based methods.

In this study, we address the above issues by proposing
a new decision tree-based method, known as the decision
tree-based comparator (DC). The proposed method mini-
mizes the unnecessary dominance tests by using dominance
relations obtained from the decision rules of the proposed
tree structure, to determine incomparability. By reducing the
number of dominance tests in which dominance does not
occur, we can significantly reduce skyline query time. Fur-
thermore, unlike existing approaches, the proposed method
can be easily applied to improve the performance of various
existing skyline query methods, because of its unique tree
structure. These are the specific contributions of this study.
• We propose a decision tree structure that can easily infer
the dominance relation between data points. Specifi-
cally, the proposed decision tree structure contains deci-
sion rules that make it easy to classify the leaf nodes that
have a dominance relation with the current data point by
inferring the dominance relation between the leaf nodes.

• We propose a method known as DC that minimizes the
number of dominance tests in the skyline query. This
method eliminates the leaf nodes that exhibit incom-
parability with the current data point, thereby avoiding
unnecessary dominance tests. In addition, we describe a
method to further reduce the dominance tests by iterating
the comparable leaf nodes using a concept called popu-
lation, which is the number of skyline points belonging
to a leaf node.

• We demonstrate how DC can be applied to existing
skyline query methods. Applications of DC to Sort Fil-
ter Skyline (SFS) [11], [12], Sort and Limit Skyline
Algorithm (SaLSa) [14], and Branch and Bound Sky-
line (BBS) [15], which are widely used skyline query
methods, are explained at an algorithmic level.

• We evaluated the DC method experimentally to investi-
gate its performance. We first measured and compared
the number of dominance tests required to complete a
skyline search, without DC and when DC was applied

to an existing skyline query. We also measured and
compared the time required to complete a skyline search
with an existing skyline query with and without DC.
The results of these experiments showed that applying
DC reduced the skyline query time and dominance test
calls of existing methods by up to 95.9% and 95.5%,
respectively.

The remainder of this paper is organized as follows.
Section 2 explains the problems of skyline queries and
discusses state-of-the-art skyline query methods. Section 3
presents the proposed method. Section 4 demonstrates the
application of DC to existing skyline query methods. The
experimental results are outlined in Section 5. Section 6 sum-
marizes the paper and highlights future work.

II. RELATED WORK
In this section, we describe related studies. Numerous meth-
ods have been proposed to process skyline queries efficiently.
We classify these methods as sort-based, index-based, and
dominance relation-based skyline query methods.

A. SORT-BASED SKYLINE QUERIES
Early studies related to skyline queries focused on search-
ing skyline points using naïve methods. For example,
Borzsony et al. [1] proposed the Block-Nested Loop (BNL)
and divide-and-conquer methods to perform skyline queries.
These are naïve methods that scan through a dataset and
run a dominance test for each data point. However, they
cannot search the skyline points monotonically, which results
in many unnecessary dominance tests. Since then, several
extension methods have been proposed that use sorting tech-
niques to solve the BNL problem. Chomicki et al. [11], [12]
introduced the SFS method. The SFS method first presorts
the data points according to their entropy scores using a
monotone scoring function, and then performs point-to-point
comparisons, similarly to BNL. As the data points with lower
entropy scores are more likely to become skyline points,
the SFS prunes a considerable amount of data points during
the early stage of pairwise data comparisons. Similar methods
that use presorting with early data pruning strategies have
been proposed in [13] and [14]. Linear Elimination Sort for
Skyline (LESS) [13] contains an elimination-filter window
to determine the set of data points that are most likely to
dominate other data points during the sorting process. Sub-
sequently, a dominance test is conducted with those data first
to identify the data points to be dominated with small com-
parisons using the skyline-filter window. However, as SFS
and LESS still have to utilize all the data for the dominance
test, SaLSa [14] provides a means of terminating the skyline
query without using all of the data points. To this end, a new
monotone limiting function known as minC was proposed
in [14]. Based on these functions, the concept of a stop point
was proposed, which can confirm that all unread data points
will be dominated. However, it has not been widely used
because of a problemwith the efficiency of themonotone lim-
iting function, which decreases as the dimensions increase.
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Also, recently, a method for sorting the incomplete data was
proposed in [29] and has been used in many skyline queries
in index-based or distributed environments [30].

These sort-based skyline query methods can effectively
reduce dominance testing by enabling the skyline to exhibit
monotonic properties. However, the problem of high cost
computations, such as presorting or point-to-point compar-
isons, remains to be solved.

B. INDEX-BASED SKYLINE QUERIES
Index-based skyline query methods can remove multiple
data points with a single dominance test by using an index
structure. Among the early index-based methods the most
representative approach is the BBS [15]. The BBS uses an
R-tree-based indexing structure and performs point-to-group
comparisons of the skyline points and a minimum bounding
rectangle (MBR). This comparison uses the properties of the
data space partitioning in the R-tree. If a specific skyline point
dominates the lower-left corner point of a specific MBR, all
of the data points belonging to theMBR are dominated by the
same skyline point. Using these features, the BBS can reduce
the number of dominant tests becausemultiple data points can
be removed from the query process with a single comparison.

To address the problem where the computation required
to construct an R-tree increases significantly as the dataset
dimensions increase, Z-SKYwas proposed by Lee et al. [16].
Z-SKY searches the skyline through a ZBtree by combin-
ing a B+-tree and a Z-order curve. The ZBtree divides the
Z-order curve into segments known as RZ-regions which
can be managed according to certain criteria. Z-SKY enables
group-to-group comparisons using a dominance test between
these RZ-regions. However, with the specialization of integer
datasets, the high computational cost of the ZBtree offset the
benefits gained by reducing the number of dominance tests.

More recently, studies are being conducted to search
the skyline by applying an index structure to incomplete
data [30]–[32] or search the skyline in a Hadoop or GPU
environment by applying an index [26]–[28].

The index-based skyline query methods are effective for
skyline queries because they can remove multiple data points
with a single dominance test. However, depending on the
properties of the index technique used for the skyline query,
it may be necessary to solve problems such as availability for
only a specific data type, or the cost of the index structure will
outweigh its advantages.

C. DOMINANCE RELATION-BASED SKYLINE QUERIES
Dominance relation-based skyline query methods reduce the
number of dominance tests so that the skyline can bemanaged
using lattice or tree structures, and avoid dominance tests,
based on the expected incomparability through these struc-
tures. In the case of the Lattice Skyline [18], a lattice structure
is created using low-cardinality attributes and the dominance
relations between them, and this structure is used to identify
the incomparability. However, a limitation exists, because the

dominance relation can only be used when low-cardinality
attributes exist.

For Object-based Space Partitioning Skyline [19],
BSkyTree [20], and BJR-tree [21], the data points are par-
titioned into regions of the multi-dimensional data space by
using a dominance relation that can be identified through
point-to-point comparisons. Thereafter, the dominance rela-
tion between partitioned regions is constructed into a tree
structure to easily determine the incomparability. When a
new data point is input, these trees minimize the dominance
testing by determining the region to which the input data
point belongs, and comparable regions through the tree. The
main advantage of these methods is that they can process the
dominance tests using only the data points belonging to those
regions.

These dominance relation-based skyline query methods
succeed in reducing the number of dominance tests by
effectively utilizing a dominance relation, which is obtained
through the dominance test, and then avoiding dominance
tests for incomparable cases. However, these skyline query
methods can only be used for point-to-point comparisons.
Moreover, it is difficult to apply the dominance relation con-
cept to other methods, because of the structural dependencies
of the existing dominance relation-based methods.

III. DECISION TREE-BASED COMPARATOR FOR SKYLINE
QUERIES
The proposed DC is described in this section. The DC is a
novel skyline query method that uses a decision tree structure
to minimize the number of dominance tests. In addition,
the DC can be easily applied to algorithms in conventional
skyline query methods to improve their query performance.
First in subsection A we describe the generation of the
decision tree. We then outline the actual DC procedure in
subsection B. The notations used in this paper are presented
in Table 1.

A. DECISION TREE FOR SKYLINE QUERIES
Recall from Section 1 that a data point that has a better
value than the other data points in at least one dimension,
while being equal to or better than the other data points
in the remaining dimensions, is selected as a skyline point.
The majority of state-of-the-art skyline query methods use
monotonic functions, such as the entropy score [11]–[13] or
mindist [15], [20] for effective skyline query processing. This
is because, if a data point with numerous better values than
the other data points is preferentially used in a skyline query
through a monotonic function, the skyline can be searched
with fewer dominance tests. That is, a data point with the
lowest score according to the monotonic function has the
highest probability of dominating the other data points, and
all input data points must perform a dominance test with this
data point.

Like the existing methods, we first sort the given data
points according to a monotonic function. We then construct
a decision tree for the sorted data points using a level-by-level
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TABLE 1. Symbols and definitions.

approach, where each level in the tree corresponds to a dimen-
sion of the dataset. When new d-dimensional data is input
to the decision tree, each data point is compared with a data
point that has the lowest score according to the monotonic
function (referred as the top-1 skyline point) in matching the
level of the decision tree. If the input data point has a smaller
value than, or an equal value to, the top-1 skyline point at the
same level, it is classified as the left-side node; otherwise, it is
classified as the right-side node.
Example 1: Suppose that a three-dimensional dataset

related to a hotel reservation is provided, as per Table 2.
We first normalize the dimensions (i.e., distance, accommo-
dation cost, and star rating) of the given dataset, and then,
sort it based on the entropy score [11], [12]. A decision tree
constructed based on this dataset is presented in Fig. 2, where
each level in the tree corresponds to the dimensions of the
dataset. Here, hotel b (distance: 0.6, cost: 0.5, rating: 0.25),
which has the lowest entropy score in the dataset, is selected
as the top-1 skyline point and is used to build a decision
tree. Thus, when the rest of the data points are input to the
decision tree, each data point is compared with hotel b when
matching the level of the decision tree, and classified into the
corresponding leaf node. For example, data points having a
distance value less than or equal to 0.6 are classified into leaf
nodes 0 to 3, while the remaining data points are classified
into leaf nodes 4 to 7.

After classifying the input data points into leaf nodes,
we need to identify skyline points using dominance tests.
If a data point is not dominated by any other data point
in the dataset, it is stored in the corresponding leaf node
as a skyline point; otherwise, it is discarded. To minimize
unnecessary dominance tests, we propose a set of classifi-
cation rules, where the order of leaf nodes is expressed in
bits. For example, if we express the order of leaf nodes in
bits for the decision tree depicted in Fig. 2, the front four

TABLE 2. Hotel dataset sorted by entropy score [11], [12].

nodes are represented by 000 (0), 001 (1), 010 (2), and 011
(3), while the following four nodes are represented by 100
(4), 101 (5), 110 (6), and 111 (7). At this point, regularity
can be observed in the earliest bits: in the first dimension
(marked in red), the data points classified to the left-side have
bits starting with 0 (i.e., 000, 001, 010, and 011), while the
other data points have bits starting with 1 (i.e., 100, 101,
110, and 111). This rule applies equally to the remaining
dimensions. For example, in the second dimension (marked
in green), the comparison is performed with 0.5, which is the
second-dimension value of hotel b. The leaf nodes classified
to the left-side have 0 as the second bit (i.e., 000, 001,
100, and 101), while the leaf nodes classified to the right-
side have 1 as the second bit (i.e., 010, 011, 110, and 111).
Similarly, in the third dimension (marked in blue), when the
comparison is performed with 0.25, the leaf nodes classified
to the left-side have 0 as the last bit (i.e., 000, 010, 100,
and 110), while the leaf nodes classified to the right-side
have 1 as the last bit (i.e., 001, 011, 101, and 111). According
to the definition of dominance [1], it can be inferred that only
the data points belonging to the leaf nodes with bits equal
to or smaller than the current leaf node in all dimensions
can dominate the data points of the current leaf node. Thus,
by using the order of the leaf nodes represented as bits,
we can verify incomparability in advance. The procedure
of the proposed decision tree, D-Classifier, is described in
Algorithm 1.
Example 2:Let us continue Example 1 and consider hotel g

as an example. Hotel g is classified into leaf node 6 by
comparison with hotel b, which is the top-1 skyline point.
Afterward, it is necessary to check whether it can become
a skyline point through the dominance test. We can see from
the bit value, 110, of leaf node 6 that the hotels of the cor-
responding leaf node always have a value less than or equal
to 0.25 in the third dimension. With the bit value, it can be
known in advance that hotels belonging to leaf nodes 1 (001),
3 (011), and 5 (101) with values greater than 0.25 in the third
dimension cannot dominate hotel g. Consequently, hotels c
and e, which cannot dominate hotel g, can be excluded from
the dominance test sooner.
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FIGURE 2. Classification of data points in Table 2 using a decision tree.

After the dominance test with data points selected as the
skyline points in the previous step (i.e., hotels i, f , a, and k),
we can see that hotel g is not dominated by these skyline
points and thus, will be stored in leaf node 6 as a skyline
point. On the other hand, hotel d , which is a subsequent input
data point, is classified as leaf node 7. However, considering
that hotel d has the worst values in all dimensions compared
with the top-1 skyline point, it is discarded. Hotel h, which
is the last input data point, is classified into leaf node 5.
After a dominance test with the data points in comparable
leaf nodes 0, 1 and 4, we can see that hotel h is dominated by
hotel c in leaf node 1, and thus, is discarded.

Fig. 3 shows the leaf nodes that require dominance testing.
Originally, all of the leaf nodes needed to be compared with
leaf node 0. However, since the comparison was already
completed by the classifying process with the decision tree,
further comparison is not required. Similarly, the last leaf
node 7 must be compared with all other leaf nodes. However,
considering that leaf node 7 was already dominated by the
top-1 skyline point belonging to leaf node 0, further compari-
sonwith the other leaf nodes is unnecessary. In addition, since
it is possible to know by the bit value that all of the leaf nodes
located behind the current leaf node have a larger value in at
least one dimension, those unnecessary dominance tests can
also be excluded.

As we saw in Examples 1 and 2, the data points of a leaf
node with 1 in the first bit and 0 in all remaining bits cannot
dominate the data points of all leaf nodes with 0 in the first bit.
This is because all of the data points in the corresponding leaf
node have a larger value in the first dimension than the data
points of all leaf nodes with bits starting with 0. In contrast,
the corresponding leaf node has the potential to dominate the
data of all leaf nodes with the first bit of 1 because all the
remaining bits are 0. For this reason, incomparability only
occurs when a bit has a larger bit than the current leaf node
in at least one dimension of the leaf nodes.

FIGURE 3. List of comparable leaf nodes for each leaf node of Fig. 2.

This incomparability can be easily verified by the bitwise
OR operation. To this end, we propose Incmp, an incompara-
bility verification method, which is described in Algorithm 2.
As shown in line 2, performing a bitwise OR operation with
a leaf node that has a larger bit in one or more dimensions
returns a result that is greater than the current leaf node order,
which enables us easily verify the incomparability.

From the D-Classifier and Incmp algorithms, we can
observe that the bit value obtained from the order of the
leaf nodes allows us to check incomparability in advance.
Using the proposed algorithms, the total of the 22d dom-
inance relation between leaf nodes, which was necessary
when incomparability was not known, can be reduced to 3d ,
meaning that only (3/4)d of the dominance relation is needed
to check incomparability. Furthermore, considering that leaf
node 0 and the last leaf node in the DC do not require domi-
nance testing, as explained in Fig. 3, the dominance relation
between the leaf nodes is further reduced from (2d − 2)2 to
3d−2d+1+1. This indicates that the unnecessary dominance
tests, where dominance does not occur, are significantly
reduced.

B. DECISION TREE-BASED COMPARATOR
Recall from subsection A that the decision tree is a clas-
sification method that can be used to minimize unneces-
sary dominance tests by identifying incomparability when no
dominance occurs between data points. In the DC, the leaf
node to which the current input data point belongs is clas-
sified using the proposed D-Classifier algorithm. Subse-
quently, using the proposed Incmp algorithm, the dominance
test is performed by limiting the data points of the leaf node
where no incomparability occurs. If an input data point is
dominated by another data point during this process, the dom-
inance test for the corresponding input is immediately termi-
nated. Conversely, if an input data point is not dominated by
any other data points, it is stored in the leaf node obtained
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Algorithm 1 D-Classifier
TOP: Top-1 skyline point

Input: CUR: Current input data point
d : Number of dimensions

Output: NODE_IDX: Index of classified leaf node
Begin
1: NODE_IDX = 0
2: for dim = 1 to d do
3: if CUR[dim] <= TOP[dim] then
4: BRANCH = 0
5: else
6: BRANCH = 1

//Bitwise left shift to apply dimensional order
7: NODE_IDX = (NODE_IDX� 1) + BRANCH
8: return NODE_IDX

End

Algorithm 2 Incmp
Input: CUR_IDX: Order index of current leaf node

TGT_IDX: Order index of target leaf node
Output: INCOM: Incomparability verification result
Begin

//Bitwise OR between inputs
1: if (CUR_IDX | TGT_IDX) > CUR_IDX then
2: INCOM = True
3: else
4: INCOM = False
5: return INCOM

End

from theD-Classifier. In other words, the data points stored in
the leaf nodes consist of skyline points that are not dominated
by other data points.

However, in this process, moving to the next leaf node after
a comparison with all skyline points belonging to the compa-
rable leaf node creates the following problems. Firstly, when
amonotonic function is used, there is a higher probability that
a data point which is determined early to be a skyline point
will dominate the other data points, compared with a skyline
point that is determined later. This is because data points with
superior values are preferentially used for the calculations in
monotonic functions. However, when the dominance test is
performed on a leaf node basis, the skyline points with high
dominance probability cannot be preferentially used. There-
fore, cases exist in which data points that could be dominated
earlier are dominated later. Secondly, to solve such a problem,
when using a skyline window composed of a single list as in
conventional methods, it is necessary to perform Incmp for all
skyline points until the input data point is dominated, which
causes unnecessary computation even in incomparable cases.
This subsequently reduces query performance.

To solve these two contradictory problems in the DC,
the dominance test is conducted in a divide-and-conquer
manner based on the concept of population, which is
the number of skyline points belonging to a leaf node.

FIGURE 4. Example of the DC’s dominance test using a
divide-and-conquer manner.

Fig. 4 demonstrates the dominance test procedure when it is
performed using the proposed divide-and-conquer manner.

Let us assume that skyline points belonging to each leaf
node are divided into 10 groups according to dominance
probability, which can be determined using the entropy score.
Afterwards, the input data point is first compared with the top
10% skyline points of all comparable leaf nodes in sequential
order. Here, if the input data point is dominated by one of the
top 10% skyline points in the leaf nodes, then it is immedi-
ately discarded. If the input data point is not dominated by
any of the top 10% skyline points in any of the comparable
leaf nodes, then it is compared with the skyline points corre-
sponding to the next top 10% skyline points (i.e., 10%-20%
of the skyline points) in all comparable leaf nodes. If the input
data point is not dominated by any of the skyline point in the
leaf nodes through this divide-and-conquer strategy, then it
becomes a skyline point and is stored in the corresponding
leaf node.When the skyline query is processed in thismanner,
those skyline points with a high dominance probability can
be used preferentially in each comparable leaf node. This
enables us to increase the probability of the input data points
being dominated early.

The proposed divide-and-conquer strategy can minimize
the required dominance tests inDC. However, note that when
a fixed division value (Div) is used, regardless of the popu-
lation, an unnecessary overhead may occur for the following
reasons. First, as the skyline points increase, the number of
skyline points that must be compared by dominance testing
before moving to the next comparable leaf node may also
increase. Conversely, if there are too few skyline points stored
in each leaf node, the overhead caused by traversing through
leaf nodes may increase too. Therefore, to avoid unnecessary
overhead and keep the dominance test running efficiently
even as the skyline increases, Div is dynamically increased
according to the average number of skyline points belonging
to leaf nodes.

The DC algorithm and its optimization variants are pre-
sented in Algorithms 3 to 5. The efficiency of these algo-
rithms is demonstrated in Section 5.

Algorithm 3 presents DC_Init, which is a leaf node initial-
ization function that is required for the DC. In this function,
Incmp is used to identify comparable leaf nodes and to store
this information. The essential parts ofDC_Init are lines 1 and
2. The zeroth leaf node can only store the top-1 skyline point,
and a comparison with the top-1 skyline point is initially
conducted through the D-Classifier. For this reason, when
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Algorithm 3 DC_Init
Input: d : Number of dimensions

LAST: Maximum order of leaf nodes
Output: SKYLF: Skyline windows conducted for leaf

nodes
Begin

//Leaf nodes and incomparability initialization
1: for CUR_IDX = 1 to LAST do

//Until idx is the same as CUR_IDX
2: for IDX = 1 to CUR_IDX do
3: if not Incmp(CUR_IDX, IDX) then
4: SKYLF[CUR_IDX].comparable(IDX)
5: return SKYLF

End

searching for a comparable leaf node, it begins from the first,
and not the zeroth, leaf node. Moreover, as the skyline points
corresponding to the same leaf node are also comparable,
the process is repeated until idx is equal to CUR_IDX to add
itself as a comparable leaf node.

Algorithm 4 presents the actual DC algorithm. The DC
behaves as an extension of the dominance test for easy appli-
cation to other skyline query algorithms. The p-ratio in line 2
represents the ratio required to preferentially use the skyline
points with a high dominance probability from each leaf node
in the dominance test. Lines 3 to 4 are used to verify thatCUR
is dominated by the top-1 skyline point using the leaf node
order obtained from the D-Classifier. If this is not the case,
the comparison is repeated with the skyline points of the com-
parable leaf nodes in lines 6 to 17. In line 8, the order of leaf
nodes is returned so that the comparable leaf nodes previously
searched with DC_Init can be accessed sequentially. Lines 9
to 10 define the start and end locations of the skyline points
to be compared in each comparable leaf node through p_ratio
and p_cur. Thereafter, the actual dominance test is performed,
as per line 12. IfCUR is dominated by a specific skyline point,
the value is returned as immediately dominated, according
to lines 13 and 14. At line 15, since all the comparable leaf
nodes have been cycled, p_cur is increased to access the next
sequence of skyline points. Lines 16 to 17 check that all leaf
node populations to be compared have been identified, and if
so, the comparison ends. Subsequently, in line 18, the True or
False stored in Dominated is finally returned.
Algorithm 5 presents the basic structure of the overall sky-

line query that is required to search the skyline with DC_Init
andDC, which we callDC-basic. Line 3 determines the order
of the final leaf node. At this time, the actual final leaf node is
the (2d - 1) leaf node, but since this leaf node is dominated by
the zeroth to which the top-1 skyline point belongs, the leaf
node before the actual final leaf node is our final leaf node.
Therefore, -2 is used here and not -1. The skyline is then
searched in lines 5 to 19 using the data points that have
been presorted with the monotonic function. Lines 7 to 12
use the first input data point to create skyline windows known

Algorithm 4 DC
Input: CUR: Current input data point

L_IDX: Leaf node order of input data point
LAST: Maximum order of leaf nodes
Div: Total number of divisions in population
SKYLF: Skyline windows conducted for leaf
nodes

Output: Dominated: Dominance result of input data point
Begin
1: Dominated = False
2: p_ratio = 1 / Div //Population traversal ratio
3: if L_IDX > LAST then
4: Dominated = True //CUR dominated by TOP
5: else
6: p_cur = 0
7: while not Dominated do
8: foreach IDX ∈ SKYLF[L_IDX].comparable do
9: start = SKYLF[IDX].size ∗ p_ratio ∗ p_cur

10: end = SKYLF[IDX].size ∗ p_ratio ∗ (p_cur + 1)
11: for ptr = start to end do
12: if SKYLF[IDX][ptr] dominate CUR then
13: Dominated = True
14: return Dominated
15: p_cur = p_cur + 1
16: if p_ratio ∗ p_cur > 1 then
17: break
18: return Dominated
End

as SKYLF, corresponding to the leaf nodes of the DC, and
set the variables to store the data point as a top-1 skyline
point. From the second data point, as per lines 14 to 15, the
D-Classifier determines which leaf node CUR belongs to,
and verifies whether it is dominant using the DC. At line 17,
if CUR has not been dominated, CUR is stored as a skyline
point on the corresponding leaf node via the L_IDX obtained
in line 14. After that, the necessity of updatingDiv is checked,
as in line 18, and Div is increased when the average number
of skyline points in SKYLF exceeds a certain standard. Once
the search for all data points has been completed, all of the
skyline points stored in the leaf node SKYLF are confirmed
as the skyline, and these are merged and returned, as indicated
in lines 20 to 22.

IV. APPLICATIONS OF THE DECISION TREE-BASED
COMPARATOR
In this section, we discuss how the proposed DC-related
algorithms can be applied to the existing state-of-the-art sky-
line query methods, which do not use the incomparability
concept. To this end, we demonstrate an application of the
DC algorithms to the sort-based SFS [11], [12], SaLSa [14],
and index-based BBS [15], which are representative skyline
query methods that do not use the incomparability concept
and their own skyline windows.
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Algorithm 5 DC-basic
DATA: Ordered dataset by monotonic function

Input: d : Number of dimensions
N : Number of data points

Output: SKYLINE: Set of skyline points by DC
Begin
1: SKYLINE = {}
2: SKYLF = NULL
3: LAST = 2d − 2 //Order of last possible leaf node
4: ptr = 0
5: while ptr < N do
6: CUR = DATA[ptr]
7: if SKYLF equal to NULL then
8: SKYLF = DC_Init(d, LAST)
9: Dominated = False
10: TOP = CUR
11: L_IDX = 0
12: Div = 1
13: else
14: L_IDX = D-Classifier(TOP, CUR, d)
15: Dominated = DC(CUR, L_IDX, LAST, Div, SKYLF)
16: if not Dominated do
17: SKYLF[L_IDX].add(CUR)
18: Div = DivUpdateCheck(SKYLF)
19: ptr = ptr + 1
20: for IDX = 0 to LAST do
21: SKYLINE = SKYLINE ∪ SKYLF[IDX]
22: return SKYLINE
End

A. SFS-DC
The SFS [11], [12] uses monotonic functions and sorting
to ensure that the skyline points are not dominated by the
following sequence of input data points.

The SFS includes a procedure that stores skyline candi-
dates in a separate file when the skyline window is full.
However, in addition to this feature, the dataset can be pro-
cessed in a manner very similar to that of DC-basic, and
SFS-DC is achieved by applying DC to the existing SFS,
as demonstrated in Algorithm 6. This algorithm shows that
the incomparability concept can be easily applied because
there is no structural change, other than changing the existing
dominance test to be performed through the D-Classifier
and DC.

B. SaLSa-DC
The SaLSa is a method that uses the concepts of a mono-
tonic function and stop point together, thereby eliminating
the need to access all data points by terminating the query
early if a skyline point can no longer occur through the
stop point. To achieve this, SaLSa performs checks relating
to the stop point, but the skyline is determined by a domi-
nance test between the skyline points and the current input
data point. Therefore, in SaLSa, by replacing the logic
related to dominance tests with DC-related algorithms, it is
possible to use incomparability and easily improve query
performance.

Algorithm 6 SFS-DC
Input: DATA:Sorted dataset by entropy score at Heap

d : Number of dimensions
Output: S: Set of skyline points of DATA
Begin
1: S = {}, SKYLF = NULL, LAST = 2d − 2
2: unfinished = True
3: while (unfinished) do
4: T = open_cursor(DATA)
5: unfinished = False
6: while next_data(T , t) do
7: if SKYLF equal to NULL then
8: SKYLF = DC_Init(d, LAST)
9: Dominated = False

10: TOP = t, L_IDX = 0, Div = 1
11: else
12: L_IDX = D-Classifier(TOP, t, d)
13: Dominated = DC(t, L_IDX, LAST, Div, SKYLF)
14: if not Dominated then
15: if ‘‘SKYLF is full’’ then
16: unfinished = True
17: break
18: else
19: SKYLF[L_IDX].add(t)
20: Div = DivUpdateCheck(SKYLF)
21: if (unfinished) then
22: S = open_new_file(SecondPass)
23: write(S, t)
24: while next_data(T , t) do
25: L_IDX=D-Classifier(TOP, t, d)
26: Dominated = DC(t, L_IDX, LAST, Div, SKYLF)
27: if not Dominated then
28: write(S, t)
29: free(DATA)
30: close(S)
31: Heap = SecondPass
32: for IDX = 0 to LAST do
33: S = S∪SKYLF[IDX]
34: free(SKYLF)
35: return S
End

The specific SaLSa algorithm with DC is presented as
Algorithm 7. In this algorithm, a processing procedure is
required, corresponding to lines 8 to 10, which sets the first
input data point as TOP, such as SFS-DC. But in the sub-
sequent logic, most of the processing proceeds in the same
manner as the existing SaLSa algorithm.

C. BBS-DC
BBS is representative of index-based skyline queries, and
performs point-to-group comparisons using the MBR of the
R-tree to removemultiple data points with a single dominance
test. To accomplish this, the BBS performs a comparison by
assuming the lower-left corner as the point for performing
the dominance test with the data point and the MBR, which
is a group of data points. Therefore, even with an MBR
(i.e., an intermediate entry), a comparison with a data point
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Algorithm 7 SaLSa-DC
Input: DATA: Sorted dataset by minC

d : Number of dimensions
Output: S: Set of skyline points of DATA
Begin

1: S = {}, stop = False, p_stop = undefined, u = DATA
2: SKYLINE = {}, SKYLF = NULL, LAST = 2d − 2
3: while not stop and u 6= {} do
4: p = u.next_data, u = u.remove(p)
5: if p_stop_plus ≤ minC(p) and p_stop 6= p then
6: stop = True
7: else
8: if SKYLF equal to NULL then
9: SKYLF = DC_Init(d, LAST)
10: TOP = t, L_IDX = 0, Div = 1
11: else
12: L_IDX=D-Classifier(TOP, t, d)
13: if not DC(p, L_IDX, LAST, Div, SKYLF) then
14: SKYLF[L_IDX].add(p)
15: Div = DivUpdateCheck(SKYLF)
16: if p_plus < p_stop_plus then
17: p_stop = p
18: for IDX = 0 to LAST do
19: S = S∪ SKYLF[IDX]
20: return S

End

is made possible in the dominance test by assuming the
value of the lower-left corner to be a point. This concept has
been used in many index-based methods, such as Z-Sky [16].
In particular, in line 9 of Algorithm 8, comparisons occur
frequently between the skyline point and MBR, and if the
lower-left corner of the MBR is dominated by a specific
skyline point, all of the data in the corresponding MBR are
dominated by the corresponding skyline point. Therefore,
in this case, as indicated in line 10, the corresponding MBR
and its children are removed from the query. Therefore, even
in the case of the MBR, the use of incomparability makes
it possible to reduce unnecessary dominance tests, where
dominance cannot occur.

The BBS algorithm with the DC applied is presented in
Algorithm 8. Although the DC_Init call is different from
the previous case, there was no change in utilizing the
incomparability when the dominance test was changed to the
D-Classifier and DC.

V. PERFORMANCE EVALUATION
In this section, we perform a performance evaluation of
the proposed DC. First, we describe the experimental envi-
ronment used to perform the evaluations. Then, we present
the experimental results, where the superiority of the pro-
posed method is confirmed by comparing the performance
when DC was applied to existing algorithms and when
it was not. We also provide an in-depth analysis of the
experiment results, presenting what led to the performance
improvements.

Algorithm 8 BBS-DC
Input: R: R-tree of dataset

d : Number of dimensions
Output: S: Set of skyline points
Begin
1: S = {}, SKYLF = NULL, LAST = 2d − 2
2: insert all entries of root R into heap H
3: while not H .empty
4: e = H .pop() //read and remove top entry of H
5: if SKYLF equal to NULL then
6: L_IDX = 0, Div = 1
7: else
8: L_IDX = D-Classifier(TOP, e, d)
9: if DC(e, L_IDX, LAST, Div, SKYLF) then

10: discard e
11: else //e is not dominated
12: if e is an intermediate entry then
13: foreach child i of e do
14: L_IDX = D-Classifier(TOP, i, d)
15: if not DC(i, L_IDX, LAST, Div, SKYLF)

then
16: H .push(i)
17: else //e is a data point
18: if SKYLFequal to NULL then
19: SKYLF = DC_Init(d, LAST)
20: TOP = e
21: SKYLF[L_IDX].add(e)
22: Div = DivUpdateCheck(SKYLF)
23: for IDX = 0 to LAST do
24: S = S∪SKYLF[IDX]
25: return S
End

TABLE 3. Specifications of datasets.

A. EXPERIMENTAL ENVIRONMENT
In skyline queries performance highly depends on the char-
acteristics of the dataset, such as the number of dimensions
and the distribution of data points. Therefore, to experi-
mentally evaluate the skyline queries on various scenarios,
we generated and used synthetic datasets with various distri-
butions and various dimensions, using the generator proposed
by Borzsony et al. [1]. The generated datasets had anti-
correlated (correlation: −0.5), independent, and correlated
(correlation: 0.5) distributions, and were organized into 4, 8,
12, and 16 dimensions for each distribution. Also, the data
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points belonging to each dataset consisted of real numbers
with ten decimal places in the range [0, 1] for each dimension.
In these synthetic datasets, the number of skyline points
increases as the dimension or cardinality increases, and the
number of skyline points increases in the order of correlated,
independent, and anti-correlated, even when they have the
same dimensions and cardinality.

Furthermore, to evaluate scalability in relation to dataset
cardinality, the datasets were generated with 10K (ten thou-
sand), 100K (one hundred thousand), 1M (one million), and
10M (ten million) data points, respectively. Also, to evalu-
ate DC using real-world datasets, we evaluated three types
of real-world datasets called Household [20], Gas [33],
Weather [34]. The Household dataset consists of 128K data
points in 6 dimensions and consists of US census data on
expenses such as electricity and mortgage. The Gas dataset
consists of 929K data points in 10 dimensions and contains
a record of a gas sensor array composed of eight metal
oxide gas sensors, and temperature and humidity sensors for
monitoring home activity. Lastly, the Weather dataset had
566K data points in 15 dimensions and consisted of aver-
age monthly precipitation totals and elevation at over half
a million sensor locations obtained from the University of
East Anglia climatic research unit. In Table 3, the previously
mentioned datasets are summarized once again.

To evaluate the DC, the first experiment shows the differ-
ence in the performance of the DC-basic skyline query when
Div was used and when it was not. The second experiment
shows the results of the comparison experiments with and
without DC applied to existing skyline queries. For this com-
parison, we conducted experiments using the DC algorithm
applications for SFS, SaLSa, and BBS proposed in Section 4.
And in the last experiment, a comparative experiment was
conducted using three real-world datasets.

Lastly, all the skyline query methods were implemented
using C++ 14, and the experiments were carried out on an
Intel Core i7-6700 3.4 GHz processor with 64-bit Windows
10 Pro and 16 GB of main memory.

B. EXPERIMENTAL RESULTS
In this subsection, we present the results of experiments,
usingDiv, skyline computation time, and dominance test calls
to evaluate DC from various aspects.

The first experiment shows the skyline query performance
improvement based on Div usage. To do this, we exper-
imentally show the difference in the performance of the
DC-basic skyline query when Div was fixed to 1, to check
all of the skyline points in the leaf node without division, and
when Div for division was increased based on the number
of skyline points. In this experiment, the Div was increased
by one whenever the average number of skyline points in
the leaf nodes increased by 64. In addition, to evaluate the
difference in performance due to Div from various aspects,
the experiment was configured to vary the dimensions for the
1M dataset, using various distributions, or to vary the number
of data in 8-dimensions with the various distributions.

FIGURE 5. The reduction rates in various dimensions when using Div.

FIGURE 6. The reduction rate in various cardinalities when using Div.

Fig. 5 shows the query time and dominance test reduction
rates according to dimensions in various data distributions
when Div was used. In this experiment, since the number
of average skyline points per leaf node did not satisfy the
Div increase criterion in 16-dimensions, there was no dif-
ference with the use of Div. However, in the other dimen-
sions, the query time decreased from 1.2% to 37.3%, and
the dominance test call decreased from 1.2% to 50.6%. The
largest difference was shown in the 8-dimensions, where the
average number of skyline points was the largest. This shows
that even when the number of unnecessary dominance tests
is minimized through incomparability, it is important to first
use the skyline points with the high dominance probability
for dominance tests, to eliminate data that are not selected as
skylines early.

In addition, in this experiment, there was greater perfor-
mance improvement with the independent dataset than with
the correlated or anti-correlated datasets. This is because in
the correlated dataset, the number of skyline points is small,
so the value of Div is not frequently used. And, in the anti-
correlated dataset, the probability of dominance between the
data is very low, so that new data must be compared with most
of the skyline points selected early. Accordingly, there was
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FIGURE 7. Skyline query time according to dimensionality.

no significant difference in performance according to Div.
However, a larger Div was used for the dataset with indepen-
dent distribution, because the number of skylines was greater
than that of the correlated dataset, and data could be removed
early because the dominance probability between the data
was higher than that of the anti-correlated dataset. Therefore,
the performance improvement when using Div was most
noticeable in the dataset with independent distribution.

Fig. 6 shows the query time and dominance test
reduction rates according to cardinality when using Div.

FIGURE 8. Number of dominance test calls according to dimensionality.

The experimental results show that as the cardinality of the
dataset increased, the reduction in query time and dominant
test calls with Div also increased. This occurs because an
increase in cardinality leads to an increase in skyline points,
and an increase in skyline points leads to an increase in Div.
This increasedDivmakes it possible to quickly eliminate data
that cannot be skylines by allowing the skyline points with
high dominance probability to be more preferentially used
for dominance tests. Therefore, as the cardinality increases,
the performance improvement due to Div also increases.
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FIGURE 9. Skyline query time according to cardinality.

In the second experiment, to evaluate performance
improvements whenDCwas applied to existing skyline query
methods, the difference in the performances of the existing
methodswithout theDC algorithm, andwhenDCwas applied
to them, was compared using various aspects.

Fig. 7 shows the skyline query time results for each dimen-
sion for SFS, SaLSa, and BBS, which are current skyline
query methods, and SFS-DC, SaLSa-DC, and BBS-DC,when
DC was applied to them, using a log scale. This experiment

FIGURE 10. Number of dominance test calls according to cardinality.

showed that the skyline query time was reduced in most cases
for the methods that applied the DC algorithm. Specifically,
the DC-applied methods significantly reduced the skyline
query time from at least 50.5% to a maximum of 95.9% in
8-dimensions or more, compared with the existing methods.
Also, in most cases, there was a more prominent reduction
in the skyline query time of SaLSa and BBS than that of
SFS. This is because, in the case of SaLSa, the time required
to reach the stop point was significantly reduced because
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FIGURE 11. Skyline query time according to real-world datasets.

the unnecessary dominance test between data sorted through
minC could be reduced through DC. And in the case of BBS,
usingDC, the point-to-group comparison, which is conducted
at the beginning of the query, can be performed with a smaller
number of skyline points. As a result, the large number of data
belonging to theMBR can be eliminatedmore quickly, so that
the skyline query time is significantly reduced.

Fig. 8 shows the number of dominant test calls that
occurred when the same experiment shown in Fig. 7 was
conducted. In this experiment, the number of dominant test
calls decreased in all cases, and the reduction rate ranged
from a minimum of 11.8% to a maximum of 95.5%. Notably,
the correlated and independent datasets showed at least a

FIGURE 12. Number of dominance test calls according to real-world
datasets.

73.7% reduction in dominant test calls over 8-dimensions.
However, in the anti-correlated dataset, only 24.5% to 83%
reduction in dominant test calls occurred, because even with
DC, as the number of skylines increased, the dominance tests
needed to confirm skyline points also accumulated.

Fig. 9 shows the difference in skyline query time for
the existing methods and DC applied methods according to
cardinality. In this experiment, except for the anti-correlated
datasets, as the cardinality increased, the degree of decrease
in skyline query time declined due to DC. In addition,
in the anti-correlated dataset, there were cases where the
degree of decrease in query time declined compared to
previous performance, for certain cardinalities depending on
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the method, but most of them increased. And, for advanced
cardinality of 100K or more with increased Div, the sky-
line query time decreased from a minimum of 55.2% to a
maximum of 94.9%.

Fig. 10 shows the number of dominant test calls obtained
with the same experiment as the one in Fig. 9. The rate of
reduction in dominance test calls seen in this experiment
was generally similar to the reduction rate for skyline query
time. This is because most of the time consumed in the
skyline query occurs in the dominance test. This confirms that
the reduction in skyline query time with DC can be largely
attributed to the reduction in dominance test calls.

In the final experiment, a comparative experiment was
conducted using three real-world datasets called Household,
Gas, and Weather.

Fig. 11 shows the skyline query time results using the
three types of real-world datasets. In this experiment, all the
DC-applied methods showed a reduction in skyline query
time compared with the existing methods, and the sky-
line search was accomplished with a maximum of 94.4%
less time. Fig. 12 shows the number of dominant test calls
obtained in the same experiment using real-world datasets,
as shown in Fig. 11. This experiment showed that when DC
was applied, it was possible to search the skyline with fewer
than 16.5% to 81.8% of the dominance test calls compared
with the existing method. The results of these experiments
show that by using DC it is possible to reduce the skyline
query time and dominance test calls that occur in the existing
skyline query methods. These results are consistent with the
experimental results using the synthetic datasets.

The various experimental results indicate that when DC
is used, the number of unnecessary dominance tests per-
formed in existing methods can be effectively reduced, using
incomparability obtained from the decision tree. As a result,
with the proposed method, we can minimize dominance tests,
leading to a reduction in skyline query time. This result can be
particularly helpful to solve the known problems with skyline
queries, which have limitations at high dimensions and with
high cardinality data.

VI. CONCLUSION
In this paper, we have proposed a decision tree-based com-
parator (DC) to optimize dominance tests for skyline queries.
There were three key findings. First, the proposed DC
allowed us to eliminate leaf nodes and their data points
when they exhibited incomparability with the current data
point, thereby avoiding unnecessary dominance tests. Sec-
ond, the proposed DC method was easily applied to improve
the performance of various existing skyline query methods
because of its unique tree structure. Third, using various
experiments, we demonstrated that DC can reduce skyline
query time and dominance test calls in existing methods by
up to 95.9% and 95.5%, respectively.

It is important to note that further considerations are
required when applying the proposed DC to distributed
and parallel processing environments, or incomplete data

as mentioned in Section 2. Thus, in future work, we plan
to conduct research to demonstrate the effectiveness of the
proposed DC for reducing dominance testing that occurs
while searching for local and global skylines in a distributed
and parallel processing environment. We are also planning to
conduct a study that utilizes the concept of incomparability
with the proposed DC method, even with incomplete data.
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