
Received August 24, 2021, accepted September 14, 2021, date of publication September 17, 2021,
date of current version September 28, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3113711

Android Malware Detection Based on
Composition Ratio of Permission Pairs
HIROYA KATO , (Graduate Student Member, IEEE), TAKAHIRO SASAKI ,
AND IWAO SASASE , (Life Senior Member, IEEE)
Department of Information and Computer Science, Faculty of Science and Technology, Keio University, Kohoku, Yokohama, Kanagawa 223-8522, Japan

Corresponding author: Hiroya Kato (kato@sasase.ics.keio.ac.jp)

ABSTRACT Detecting Android malware is imperative. Among various detection schemes, permission pair
based ones are promising for practical detection. However, conventional schemes cannot simultaneously
meet requirements for practical use in terms of efficiency, intelligibility, and stability of detection perfor-
mance. Although the latest scheme relies on differences of frequent pairs between benign apps and malware,
it cannot meet the stability. This is because recent malware tends to require unnecessary permissions to
imitate benign apps, which makes using the frequencies ineffective. To meet all the requirements, in this
paper, we propose Android malware detection based on a Composition Ratio (CR) of permission pairs. We
define the CR as a ratio of a permission pair to all pairs in an app. We focus on the fact that the CR tends to
be small in malware because of unnecessary permissions. To obtain features without using the frequencies,
we construct databases about the CR. For each app, we calculate similarity scores based on the databases.
Finally, eight scores are fed into machine learning (ML) based classifiers as features. By doing this, stable
performance can be achieved. Since our features are just eight-dimensional, the proposed scheme takes less
training time and is compatible with other ML based schemes. Furthermore, our features can quantitatively
offer clear information that helps human to understand detection results. Our scheme is suitable for practical
use because all the requirements can be met. By using real datasets, our results show that our scheme can
detect malware with up to 97.3% accuracy. Besides, compared with an existing scheme, our scheme can
reduce the feature dimensions by about 99% with maintaining comparable accuracy on recent datasets.

INDEX TERMS Android malware detection, permission pairs, composition ratio, practical detection.

I. INTRODUCTION
Android is the most popular smartphone platform occupy-
ing 85% of market share in the world [1]. Smartphone is
an essential tool for many people, and Android apps can
provide various services such as online banking and games.
Because of its popularity, smartphones running on Android
system have become the main target of attackers [2]. In the
third quarter of 2019, approximately 365,000 new Android
malware samples have been found [3]. Android malware is
rapidly growing in an attempt to elaborately pretend benign
apps. Thus, using Android apps entails the risk of installing
malware, which results in the urgency of devising practical
detection schemes.

To detect sophisticated malware on the basis of vari-
ous aspects, many detection methods have been proposed.

The associate editor coordinating the review of this manuscript and
approving it for publication was Michael Lyu.

Existing detection schemes are roughly divided into three
categories, namely ‘‘network traffic based schemes’’ [4], [5]
and ‘‘inner interaction based ones’’ [6]–[9], ‘‘permission bas-
ed ones’’ [10]–[14]. In network traffic based schemes [4], [5],
network traffic is used to create features for detecting mal-
ware. These methods are helpful because most attackers
are inclined to use network for achieving malicious pur-
poses. However, network based methods are not applica-
ble to malware that conducts attacks without networks.
Besides, they inevitably require running apps to collect fea-
tures, which results in a certain runtime overhead. On the
other hand, in inner interaction based schemes [6]–[9], fea-
tures are extracted from various factors such as Application
Programming Interface (API) calls and Inter-Component
Communication (ICC) patterns. These methods are instru-
mental in capturing detailed features of apps because there
exists difference of the usage of the above factors between
benign apps and malware. However, these types of schemes

130006 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-9102-1848
https://orcid.org/0000-0002-3684-9159
https://orcid.org/0000-0002-8439-3491

H. Kato et al.: Android Malware Detection Based on CR of Permission Pairs

also suffer from runtime overhead to extract API calls and
ICC patterns even if static analysis is adopted. In order
to realize lightweight and efficient detection, permission
based schemes [10]–[14] are useful because permissions can
be statically extracted from apps. Thus, permission based
schemes are promising for practical detection. Among var-
ious permission based schemes, ‘‘permission pairs’’ based
schemes [12]–[14] are more effective and informative than a
single permission based ones [10], [11]. In other words, using
permission pairs improves detection performance and helps
users and security engineers to understand detection results
in the practical situations because the permission pairs can
provide more detailed information about how permissions
are used together. These facts motivate us to pay attention to
permission pairs based schemes [12]–[14] as attractive ones.
Although various permission pairs based schemes [12]–[14]
have been proposed, none of them are able to simultaneously
satisfy three critical requirements for practical use, which
hinders the conventional schemes from being used practi-
cally. To be specific, it is desirable that the following three
requirements are satisfied.

1) Efficiency: Practical detection systems need to realize
accurate detection by using low-dimensional feature
vectors and compact data, which achieves lightweight
detection. Compact features make systems compati-
ble with other machine learning (ML) based schemes,
which enables hybrid detection with feature fusion.

2) Intelligibility: A practical scheme must offer clear
information that helps human to understand detection
results for justifying the results.

3) Stability: A detection scheme must be able to detect
both old and recent malware samples.

These requirements are very important to deploy detection
schemes in practical situations. However, none of the conven-
tional permission pairs based schemes are able to simultane-
ouslymeet the three requirements. In particular, we found that
even the latest scheme [14] cannot fulfill the stability because
of artifices by recent malware whereas other requirements
are met. This is because that scheme relies on the differences
of frequencies of permission pairs between benign apps and
malware samples. Note that the frequency of a pair is normal-
ized in a range of 0 to 1 in that scheme. For example, when a
pair appears in half of all the apps in a dataset, the frequency
of the pair is expressed as 0.5. Recent malware tends to
require unnecessary permissions as well to imitate benign
apps. As a result, since more pairs appear in both benign apps
and malware, the frequency based detection gets ineffective.
Thus, this work aims to devise a practical scheme that meets
the above requirements by using a new tendency.

In order to fulfill the three requirements, in this paper,
we propose Android malware detection based on a Compo-
sition Ratio (CR) of permission pairs. The CR is defined
as a ratio of a permission pair to all pairs in an app. For
example, suppose that an app requires five permissions in
its manifest file. In this case, since the number of permis-
sion pairs is 10, the CR of pairs in the app is 0.1 = 1

10 .

We focus on the fact that the CR tends to be small in malware
compared to benign apps. The reason why there exists the
difference of the CR is that unnecessary permissions tend
to be contained in manifest files of malware samples to
imitate benign apps. To obtain features without using the
frequencies, we construct databases regarding the CR in
training datasets. For each app, we calculate eight similarity
scores on the basis of the databases. By doing this, even if
recent malware requires unnecessary permissions, the helpful
features of them can be obtained from a new aspect. Thus,
the proposed scheme can satisfy ‘‘Stability’’. Finally, our
scores are used as features in ML for detection. Since the
proposed scheme utilizes just eight-dimensional features,
it can realize reducing computational cost of training and
compatibility with other features, which results in satisfaction
of ‘‘Efficiency’’. Besides, our scores can quantitatively offer
clear information that what types of permission pairs dictate
detection results. Thus, since numerical evidence is provided
for human, the proposed scheme also meets ‘‘Intelligibility’’.
Since all the requirements can be met, our scheme is more
suitable for practical use.

The contributions of this paper are as follows:
1) We discovered the fact that permissions pairs in benign

apps also tend to appear frequently in recent malware
samples. This fact causes degradation in detection per-
formance of the latest permission pairs based scheme.

2) We propose amore practical malware detection scheme
using the CR of permission pairs. To the best of our
knowledge, this work first proposes using the CR for
malware detection.

3) The proposed scheme enables to not only realize stable
detection but also offer numerical evidence to human.

4) Our scheme is compatible with other ML based
schemes because our features are just eight-dimensional
ones, which enables hybrid detection.

The rest of this paper is constructed as follows. Related
work is introduced in Section II. Motivation of this work is
described in Section III. The shortcoming of conventional
schemes are explained in Section IV. The proposed scheme is
presented in Section V. Evaluation results and discussion are
shown in Section VI. Limitations of our scheme are described
in Section VI. Finally, the conclusion of this paper and future
work are presented in Section VIII.

II. RELATED WORK
Android malware detection schemes have been proposed
on the basis of various aspects in order to detect sophisti-
cated malware. In this section, we introduce representative
schemes. Although Android malware detection schemes are
often classified into static, dynamic, and hybrid detection,
we classify existing methods on the basis of categories of fea-
tures. This is because we consider that a type of feature is the
primary factor in dictating detection performancewhich is the
most important requirement in malware detection. Android
malware detectionmethods are roughly divided into three cat-
egories, namely ‘‘network traffic based methods’’ [4], [5] and

VOLUME 9, 2021 130007

H. Kato et al.: Android Malware Detection Based on CR of Permission Pairs

‘‘inner interaction based ones’’ [6]–[9], ‘‘permission based
ones’’ [10]–[14].

A. NETWORK TRAFFIC BASED SCHEME
In network traffic based schemes [4], [5], network traffic is
used to create features to detect malware. In order to obtain
solid evidence of malware, Wang et al. [4] propose a method
that pays attention to the occurrence of words regarding
sensitive information in HTTP header of traffic data.Malware
uses HTTP-POST/GET schemes for sending sensitive infor-
mation. Therefore, semantic text features can be extracted
from HTTP packets. The semantic text features mean the
words such as ‘‘latitude’’, ‘‘longitude’’, and ‘‘imei’’, which is
the unique identifier of a phone. That scheme can effectively
detect malware by using dynamic evidence because most
attackers are inclined to use network for achieving malicious
purposes. However, recent malware cannot be efficiently
detected by that scheme because they tend to encrypt mali-
cious payloads.

To address encrypted traffic data, Garg et al. [5] propose a
scheme that leverages network traffic patterns in benign apps
and malware. The main idea of that scheme is that there exists
the difference of network traffic patterns between benign apps
and malware. That scheme is helpful because traffic patterns
can be obtained even if malicious traffic is encrypted. How-
ever, the method is not applicable to malware that conducts
attacks without network. Thus, detection schemes that are
able to deal with various types of malware samples are also
needed.

B. INNER INTERACTION BASED SCHEME
In inner interaction based schemes, features are extracted
from factors such as API calls and ICC used in an app.

As an element that is useful in obtaining detailed fea-
tures regardless of types of malware, API is very promising.
Aafer et al. [6] propose a scheme using top-169 API calls
which appear more frequently in malware than in benign
apps to differentiate patterns of them. As a similar scheme,
Deshotels et al. [7] propose a scheme focusing on the fact
that malware abuses sensitive API call. In that scheme, mal-
ware samples are classified in accordance with malicious
patterns predefined in advance. However, it is difficult for
these schemes to detect the malware which carries out an
attack by colluding with another malware because none of
sensitive API calls are used by the main malware.

To deal with sophisticated attacks such as a collusion
attack, Xu et al. [8] propose a scheme called ICCDetector
focusing on the difference of ICC patterns between benign
apps and malware. ICC is inner communication among
Android system and apps. As a rule, ICC is mainly used
for internal communication in a benign app. Nevertheless,
malware tends to communicate with other apps via ICC to
carry out malicious actions. Thus, ICCDetector can effec-
tively detect attacks including the collusion attack. However,
it is difficult for ICCDetector to deal withmalicious behaviors
that are conducted through obfuscation techniques called

‘‘reflection’’ because sensitive APIs are called via dynamic
code constructs.

To copewith such clever techniques, Cai et al. [9] propose a
scheme called DroidCat, which uses a diverse set of dynamic
features based on ICC Intents. DroidCat adopts a purely
dynamic approach that resolves reflective calls at runtime.
Hence, that scheme is fully resilient against reflection. How-
ever, DroidCat inevitably requires running apps to collect
dynamic features, which results in a certain runtime over-
head. Considering a huge amount of new malware is rapidly
increasing, lightweight and efficient methods are desired.

C. PERMISSION BASED SCHEME
Permission based schemes are useful in realizing lightweight
and efficient detection methods. Sanz et al. [10] propose
a detection method using permissions extracted from apps.
They noticed there exist several difference of required per-
missions in benign apps and malware. However, since that
work just reveals that permissions are useful for detection,
significant permissions were not inspected at all.

To efficiently detect malware with fewer permissions,
Li et al. [11] propose a method that only utilizes significant
permissions extracted from apps. The idea of that method
is that malware tends to require the common permissions
that enable to conduct high risk operations such as accessing
device information and personal information of users. Instead
of extracting and analyzing all permissions, that scheme con-
ducts three levels of pruning by mining the permission data to
identify the most significant permissions for detection. That
scheme canmaintain high detection accuracywith just 22 per-
missions. However, in [10], it is reported that the top five
permissions in both the categories are exactly the same. Thus,
it is important to consider how such common permissions are
used with other permissions in benign apps and malware.

Liang and Du [12] propose a rule based detection scheme
by using permission combination. The permission combina-
tion is useful to express the relationship between a permission
and another. They develop a tool that automatically generates
rule sets based on frequencies of permission combinations to
detect malware. That scheme can accurately detect malware
samples when using a permission group of six. However,
utilizing permissions in a group of more than two can lead to a
large number of patterns, and its expression will be complex.
Thus, detection with a group ofmore than two is not favorable
for practical application because memory space consumption
and computational cost will get high.

Similarly, Liu and Liu [13] propose a detection method
using permission pairs. The pairs are more useful than the
combination of six permissions in terms of computational
cost. That scheme converts the requested permission pairs
into a boolean vector because such a vector can represent
information about pairs. The boolean vector is fed into ML
to detect malware. Permission pairs are constructed only
from top 40 permissions that are frequently used in benign
apps and malware samples because utilizing all permis-
sion pairs considerably increase computational cost and

130008 VOLUME 9, 2021

H. Kato et al.: Android Malware Detection Based on CR of Permission Pairs

TABLE 1. Comparison of conventional permission pairs based schemes.

memory consumption. However, the boolean vector
inevitably gets huge as considered permissions are increased
in order to achieve high detection performance. In other
words, there exist a trade-off between detection accuracy
and computational cost. Furthermore, in light of a practical
use, the boolean vector is not sufficient to provide users with
convincing information of analysis. It is not easy for human
to understand the meaning of a boolean vector whereas
understandable information is important to justify detection
results. Thus, how to represent permission pairs for practical
detection is one of the important goals.

To efficiently represent the permission pairs,
Arora et al. [14] propose a detection scheme called PermPair,
which is based on frequencies of permission pairs in apps.
That scheme leverages the fact that frequencies of permission
pairs appearing in malware samples are different from the
ones in benign apps. PermPair constructs databases on the
basis of frequencies of permission pairs in prepared datasets
of benign apps and malware. The frequency of a pair is
normalized in a range of 0 to 1. In other words, when a pair
appears in half of all the apps in a dataset, the frequency of
the pair is expressed as 0.5. By using the databases, PermPair
calculates two similarity scores which represent how similar
a characteristic of an app is to benign apps and malware
samples in databases. When a pair exists in a database, its
normalized frequency is simply added to the similarity score.
PermPair can convert permission pairs based information into
just two scores, which results in providing clear information
for human. By comparing the two scores, PermPair can judge
whether an app is malware or not and realize lightweight
detection without ML.

III. MOTIVATION OF THIS WORK
Although various schemes have been proposed, permission
based schemes play an important role. This is because
permissions are essential factors to develop apps, and
malware inevitably requires them to carry out malicious
actions. Furthermore, permission based schemes [10]–[14]
are lightweight compared with other detection schemes using
features such as network traffic [4], [5], API calls [6], [7],
and ICC [8], [9]. In light of the predicament that a huge
amount of malware is rapidly increasing, it is desirable that
permission based detection schemes are practically used as
a lightweight filter. In particular, permission based detection
is promising for a filter in the first step to identify malware.
Therefore, detecting more malware samples accurately by
using permissions is very important to quickly deal with a
huge amount of malware. After permission based detection,
other schemes should be applied to tested apps if needed.

Among permission based schemes, utilizing permis-
sion pairs are more informative than a single permission.
In other words, it is easier for users and security engineers to
understand detection results because the permission pairs can
represent how permissions are used together. Furthermore,
in [14], it is reported that permission pairs based scheme is
more effective than single permission based ones as for detec-
tion accuracy. These facts motivate us to pay attention to per-
mission pairs based schemes [12]–[14] as conventional ones.
However, none of conventional schemes cannot simultane-
ously satisfy the three requirements, namely ‘‘Efficiency’’,
‘‘Intelligibility’’, and ‘‘Stability’’ explained in Section I.
In the subsequent section, we elaborate on the shortcomings.
Thus, this work aims to devise a more practical scheme that
meets the above requirements.

IV. SHORTCOMING OF CONVENTIONAL SCHEMES
To devise more practical schemes, detection systems must
realize ‘‘Efficiency’’, ‘‘Intelligibility’’, and ‘‘Stability’’.
These requirements are very important to deploy detection
schemes in practical situations. Table 1 shows comparison of
conventional permission pairs based schemes. As shown in
Table 1, there exist strong points and weak points in every
scheme [12]–[14]. Rule Set Based Scheme (RSBS) [12] and
Boolean Vector Based Scheme (BVBS) [13] only satisfy
‘‘Intelligibility’’ and ‘‘Stability’’, respectively. On the other
hand, although PermPair [14] can meet ‘‘Efficiency’’ and
‘‘Intelligibility’’ by using the two simple scores, it cannot
meet ‘‘Stability’’. In the following subsections, we describe
the above requirements in detail.

1) EFFICIENCY
With regard to ‘‘Efficiency’’, RSBS [12] and BVBS [13]
have weak points. In [12], it is reported that RSBS cannot
realize accurate classification with permission pairs unless it
uses combinations of six permissions. Therefore, RSBS is not
efficient because it needs to process numerous combinations
of six permissions to create an effective rule set.

In BVBS [13], boolean vectors tend to be large although
such vectors can simply represent information about per-
mission pairs. For example, when 40 permissions are used
for detection, 40C2 = 780 pairs are created, which means
780-dimensional sparse vectors. Hence, such feature vectors
are not efficient in terms of converting information about the
pairs into features. These schemes need hugememory to store
boolean vectors and combinations based rule set because the
dimensions of the boolean vector and the number of rules
inevitably get huge.

Furthermore, most existing detection schemes adopt
ML [4]–[6], [8]–[11], [13], because it can yield high

VOLUME 9, 2021 130009

H. Kato et al.: Android Malware Detection Based on CR of Permission Pairs

FIGURE 1. Distribution of the number of permissions required by benign apps and malware samples.

detection accuracy. In every ML based scheme, various fea-
tures have been defined. The various features can be used
together for enhancing detection performance, which results
in inevitably increasing required space, training time, and
complexity of model. In light of the fact that huge training
apps and regularly updating training data are required for
high detection performance, it is desirable that dimensions of
features are low to reduce the computational cost and com-
plexity. This is why converting information about permis-
sion pairs into low-dimensional features is important. Since
low-dimensional features can also provide compatibility with
other schemes, for the purpose of realizing hybrid detection
systems in the real world, this requirement must be satisfied.

2) INTELLIGIBILITY
As for ‘‘Intelligibility’’, BVBS [13] has a drawback. Boolean
vectors are not informative enough to describe the reason
why an app is judged as malware, and vice versa. This
problem was also suggested in the other existing work [15].
On the other hand, RSBS [12] and PermPair [14] can offer
understandable information about detection results because
rule set and scores can be utilized for interpretation. In the
practical use, clear information should be provided for users
to understand detection results without adequate expertise.
Besides, security engineers need to understand detection
results so that detailed analysis can be carried out. Since the
intelligibility can bring reliability of detection, this require-
ment must be met.

3) STABILITY
In malware detection, ‘‘Stability’’ is the most important
requirement. In terms of ‘‘Stability’’, the RSBS [12] and
PermPair [14] have weak points. In [12], it is reported that
frequency based rule set created from permission pairs cannot
accurately distinguish benign apps from malware. Accord-
ing to results in [12], more than 55% of benign apps are
misjudged as malware whereas 99% of malware samples are
detected. On the other hand, we found that PermPair [14] is
also incapable to detect recent malware samples because it
can be invalidated by the recent tendency of required permis-
sions. To be specific, recent malware samples tend to require
unnecessary permissions to imitate benign apps.

In order to confirm the tendency, we investigated the
number of permissions required by benign apps and

malware samples. Fig. 1 shows distribution of the number of
permissions required by benign apps and malware samples.
In Fig. 1(a), 4,000 old malware samples are randomly
selected from Drebin [16] (2010–2012). Meanwhile,
in Fig. 1(b) and Fig. 1(c), 4,000 recent apps are ran-
domly selected from Androzoo [17] (2017–2020) and
VirusShare [18] (2018–2020), respectively. Furthermore,
4,000 benign apps are also randomly selected fromAndrozoo
(2017–2020) for every figure in Fig. 1(a), Fig. 1(b), and
Fig. 1(c). As shown in Fig. 1(a), the distribution of malware
is relatively similar to that of benign apps. In particular, most
apps require less than 30 permissions. On the other hand,
as shown in Fig. 1(b) and Fig. 1(c), the distribution of mal-
ware is widely spread compared with Fig. 1(a), which is old
dataset. In particular, many malware samples tend to require
more than 30 permissions. These investigation results demon-
strate that recent malware samples tend to require unneces-
sary permissions comparedwith old ones. In addition, we also
investigated top ten permission pairs in our datasets. After
that, we discovered that top ten permission pairs in benign
apps also tend to be required by recent malware because
of these tendencies, which causes degradation in detection
performance of PermPair. Table 2 shows top ten permission
pairs and their frequencies in Drebin, Androzoo, VirusShare,
and the benign dataset. Furthermore, Table 3 shows the nota-
tion used for top permission pairs investigation. As shown in
Table 2, out of ten permission pairs, there exist three common
pairs, namely ANS:INT, INT:WES, and ANS:WES between
the Drebin (2010–2012) and Benign apps. In other words,
the permission pairs required by old malware in Drebin
tend to be different from the ones of benign apps. On the
other hand, six permission pairs are common among benign
apps, Androzoo (2017–2020), and VirusShare (2018–2020).
Moreover, their frequencies in Androzoo and VirusShare are
higher than the ones in benign apps. For example, ANS:INT
is the most frequently required pairs in benign apps, and its
frequency is 0.952. Meanwhile, the frequencies are 0.957 and
0.981 in Androzoo and VirusShare, respectively. Similarly,
as for five other pairs, their frequencies in Androzoo and
VirusShare are also high compared with benign apps. In other
words, it is natural that recent malware samples have permis-
sion pairs frequently required by benign apps, which means
that more pairs appear in both benign apps and malware.

130010 VOLUME 9, 2021

H. Kato et al.: Android Malware Detection Based on CR of Permission Pairs

TABLE 2. Top ten permission pairs and their frequencies in Drebin, Androzoo, VirusShare, and the benign dataset. The pairs in gray cells are common ones.

TABLE 3. The notation used for top permission pairs analysis.

As a result, apps cannot be correctly classified even through
the frequencies are used. This is why we argue that detection
schemes should not utilize the frequencies of permission pairs
anymore. In particular, we discovered that PermPair [14],
which is the latest scheme is considerably subject to this
tendencies. PermPair regards permission pairs with high
frequencies as important ones. Frequency based databases
in PermPair can be contaminated when recent malware
samples are utilized to create them. As a result, in most
pairs, since the frequencies in malware tend to be higher
than those in benign apps, the frequency based scores get
ineffective. Although PermPair can meet ‘‘Efficiency’’ and
‘‘Intelligibility’’, PermPair cannot deal with recent malware.

Therefore, to adopt permission pairs based detection for
practical use, we must devise a novel scheme that satisfies
the three above requirements simultaneously.

V. PROPOSED SCHEME
In order to satisfy the above requirements, in this paper,
we propose Android malware detection based on the CR of
permission pairs The CR is defined as a ratio of a per-
mission pair to all pairs in an app. We focus on the fact
that the CR tends to be small in malware compared with
benign apps. This is because malware samples tend to require
unnecessary permissions to imitate benign apps. Our scheme
calculates CRs of permission pairs from four aspects, namely
Android Permission (AP), Dangerous Permission (DP), Cus-
tom Permission (CP), and all permissions. Although more
than 300 permissions are predefined in Android specifica-
tions [19], our scheme regards the predefined permissions
other than DPs as APs. DPs consist of 24 permissions that

enable accessing sensitive data such as personal information
in users’ devices and are also specified in the specifications.
CPs are permissions defined by developers while they are
not in the specifications. All permissions are made up of all
the above permissions, namely APs, DPs, and CPs. In our
scheme, except for pairs generated from all permissions, pairs
are composed only of the same kind of permissions. For
example, if an app requires two APs (AP1 and AP2), three
DPs (DP1, DP2, and DP3), and no CP, an AP based pair
(AP1:AP2) and three DP based ones (DP1:DP2, DP2:DP3,
and DP3:DP1) are created. In this case, the CRs based on APs
and DPs are 1.0 = 1

1 and 0.33 = 1
3 , respectively. As for

the CR based on CP in this app, 0.0 is specially assigned
to it because there is no CP based pair. Meanwhile, the CR
based on all permission is 0.1 = 1

10 because there exist
10 pairs in total. Thus, the CRs based on APs, DPs, CPs, and
all permissions are 1.0, 0.33, 0.0, and 0.1, respectively. The
CRs are common among the same type of pairs. For instance,
0.33 is assigned to every DP based pair.

To leverage the tendencies of the CR for detection, four
CRs based databases are constructed for each label of train-
ing databases (benign apps and malware). In other words,
eight databases are prepared in total. For each app, we cal-
culate eight similarity scores on the basis of corresponding
databases. By doing this, even if malware requires unnec-
essary permissions, useful features of them can be obtained
from a new aspect except for the frequency. Thus, our
scheme can satisfy ‘‘Stability’’. Finally, as features in ML,
our scores are fed into classifiers such as Random For-
est (RF) [20], Support Vector Machine (SVM) [21], and
Adaboost [22] for detection. Since our scheme utilizes just
eight-dimensional features, it can realize reducing computa-
tional cost of training and compatibility with other features,
which results in satisfaction of ‘‘Efficiency’’. Besides, our
scores can quantitatively offer clear information that what
types of permission pairs dictate detection results. Thus,
since understandable information are provided for human,
the proposed scheme also meets ‘‘Intelligibility’’. Since all
the requirements can be met, our scheme is more suitable for
practical use.

In what follows, we first validate usefulness of the CR.
After that, the overview of the proposed scheme and its
algorithms are explained in detail.

VOLUME 9, 2021 130011

H. Kato et al.: Android Malware Detection Based on CR of Permission Pairs

FIGURE 2. Box plots of the CR of permission pairs required by benign apps and malware samples.
The orange lines and green triangles mean the median and the mean, respectively.

A. VALIDATION OF USEFULNESS OF COMPOSITION RATIO
OF PAIRS
To validate that the CR of permission pairs are useful in
malware detection, we investigated the distribution of the
CR of permission pairs in apps by using box plot. Fig. 2
shows the box plots of the CR of permission pairs required
by benign apps and malware samples in three types of
dataset. In this investigation, 4,000 malware samples were
randomly selected from each of Drebin [16], Androzoo [17],
and VirusShare [18] datasets. Similarly, 4,000 benign apps
were also randomly selected from benign dataset provided
by Androzoo. In Fig. 2, there exist four box plots in terms of
four types of permissions. As shown in Fig. 2(a), Fig. 2(b),
and Fig. 2(c), in terms of all permissions, AP, and DP, there
exist clear differences of the distribution between benign apps
and malware samples. The CRs of malware samples from
VirusShare, Androzoo, and Drebin are distributed within a
range of 0.0 to 0.4. In particular, the variance of the CRs
of malware samples from VirusShare is very small, which
means that they tend to require more permissions. Moreover,
it can be seen that the CRs in Drebin are also distributed in
a narrow range, which means the CR is effective in detecting
old malware. Meanwhile, the CRs of benign apps are more
widely distributed than those of malware samples in the three
types of permissions. Average value in benign apps are also
higher than the ones in malware sources. With regard to CP,
as shown in Fig. 2(d), the CRs are widely distributed in all
types of apps. Therefore, obvious difference is not observed
compared with three other types of permissions. However,
since there exist differences of the median and the mean

between two types of apps to some extent, we concluded that
the CRs of CP based pairs can also be effective in detection.
These results demonstrate that the CRs of permission pairs
are useful to distinguish benign apps from malware samples.
From these results, we concluded that using the CRs of four
types of permission pairs are competent to correctly detect
malware samples without relying on their frequencies.

B. ALGORITHM
In this section, we describe the algorithm of the pro-
posed scheme. Fig. 3 shows the overview of the proposed
scheme. The proposed scheme has two main phases, namely,
1) CR based database construction, 2) the proposed score
calculation. In the first phase, for each label, CR based
databases are constructed depending on permission types.
To capture more detailed features of apps, the proposed
scheme constructs the four databases from the perspec-
tive of APs, DPs, CPs, and all permissions for each label.
In the second phase, for each app, eight scores are calculated
on the basis of corresponding databases constructed in the
first phase. Finally, the eight scores are used as features
for ML. The detailed algorithm of each operation is presented
in the next section.

1) COMPOSITION RATIO BASED DATABASE CONSTRUCTION
Algorithm 1 shows CR based database construction. As an
input, Algorithm 1 needs a set TPpt,l = {Ppt,lta1 , . . . ,

Ppt,ltai , . . . ,P
pt,l
taN }, which consists of Ppt,ltai which is a set of

permissions required by tai. Note that tai means an app in
the training dataset, and the total number of tai is N . Fur-

130012 VOLUME 9, 2021

H. Kato et al.: Android Malware Detection Based on CR of Permission Pairs

FIGURE 3. The overview of the proposed scheme.

thermore, pt and l denote a type out of four permission types
and a label of a training dataset, respectively. Algorithm 1
outputs a CR based database depending on pt and l. Let
Dpt,l denote an output database. If an input is a set of APs
required by benign apps, DAP,ben which means a database of
CRs based on AP pairs for benign apps is constructed. For
each tai, P

pair
tai which means a set of permission pairs in tai is

created on the basis of Ppt,ltai . After that, each pair (pj, pk) ∈
Ppairtai and cr(pj,pk) which is the CR of pairs are registered
with Dpt,l as a key and a value, respectively. If (pj, pk) has
already existed in Dpt,l , cr(pj,pk) are added to existing values
that corresponds to (pj, pk). Finally, every value in Dpt,l are
divided by the total number of the training dataset, |TPpt,l |,
which means calculating the average CR in the training
dataset. Similarly, Algorithm 1 is repeatedly conducted so
as to create databases that corresponds to other permission
types. Finally, four types of databases are constructed for
each label, which means that eight databases are obtained in
total.

2) PROPOSED SCORE CALCULATION
The proposed scores are calculated for every app in both
a training dataset and testing one so as to create feature
vectors. Algorithm 2 shows the proposed score calculation.
In Algorithm 2, two scores, namely Malicious Score (MS)
MSptai and Benign Score (BS) BSptai are calculated for an
app ai depending on pt . Note that MSptai and BS

pt
ai indicate a

similarity score with malware and benign apps, respectively.
The larger each score is, the higher the degree of similar-
ity is. For each app ai, eight scores are calculated in total.
As an input, Algorithm 2 requires Pptai that denotes a set
of permissions in ai. First of all, a set of permission pairs,
Ppairai = {(p1, p2), . . . , (pj, pk), . . . , (pN ′−1, pN ′)} is created
from Pptai . Note that N ′ means the number of permissions
in ai. After that, cr(pj,pk) is compared with a value in Dpt,mal

and Dpt,ben. Here, Dpt,mal represents a CR based database of
malware in terms of pt . Similarly,Dpt,ben means the database
of benign apps. If (pj, pk) exists only in Dpt,mal, a similarity

Algorithm 1 CR Based Database Construction

Input: TPpt,l = {P
pt,l
ta1 , . . . ,Ppt,ltai , . . . ,Ppt,ltaN }

Output: A database Dpt,l of pt and l
1: for each Ppt,ltai ∈ TPpt,l do
2: Create Ppairtai = {(p1, p2), . . . , (pj, pk)} from Ppt,ltai
3: for each (pj, pk) ∈ P

pair
tai do

4: if |Ppairtai | 6= 0 then
5: cr(pj,pk) =

1
|Ppairtai
|

6: else
7: cr(pj,pk) = 0
8: end if
9: if (pj, pk) exists in Dpt,l then
10: Dpt,l(pj,pk)

+ = cr(pj,pk)
11: else
12: Dpt,l(pj,pk)

= cr(pj,pk)
13: end if
14: end for
15: end for
16: Divide every value in Dpt,l by |TPpt,l |
17: return Dpt,l

value for malware, smal = 1. Meanwhile, if (pj, pk) exists
only in Dpt,ben, a benign similarity value, sben = 1. In the
case where (pj, pk) exists both in Dpt,mal and Dpt,ben, smal
and sben are calculated on the basis of absolute values of
differences between cr(pj,pk) and statistical values in the
databases, namely |cr(pj,pk)−D

pt,mal
(pj,pk)
| and |cr(pj,pk)−D

pt,ben
(pj,pk)
|,

respectively. The smaller absolute values are, the higher smal
and sben are, which means high similarities. Finally,MSptai and
BSptai are calculated depending on magnitude relationship of
smal and sben. If smal is higher than sben, smal is added toMS

pt
ai ;

otherwise sben is added to BS
pt
ai . Similarly,MSptai and BS

pt
ai are

calculated on the basis of other types of permission pairs.
Thus, the eight scores are obtained for ai. Finally, they are
fed into a ML based classifier as feature vectors for training
and testing.

VOLUME 9, 2021 130013

H. Kato et al.: Android Malware Detection Based on CR of Permission Pairs

Algorithm 2 The Proposed Score Calculation

Input: Pptai = {p1, . . . , pj, . . . , pN ′} of an app ai
Output: MSptai and BS

pt
ai

1: Create Ppairai = {(p1, p2), . . . , (pj, pk), . . . , (pN ′−1, pN ′)}
2: for each (pj, pk) ∈ P

pair
ai do

3: Initializing similarity values smal = 0, sben = 0
4: if |Ppairtai | 6= 0 then
5: cr(pj,pk) =

1
|Ppairai |

6: else
7: cr(pj,pk) = 0
8: end if
9: if (pj, pk) exists only in Dpt,mal then

10: smal = 1
11: else if (pj, pk) exists only in Dpt,ben then
12: sben = 1
13: else if (pj, pk) is both in Dpt,ben and Dpt,mal then
14: smal = 1− |cr(pj,pk) − D

pt,mal
(pj,pk)
|

15: sben = 1− |cr(pj,pk) − D
pt,ben
(pj,pk)
|

16: end if
17: if smal > sben then
18: MSptai+ = smal
19: else if smal < sben then
20: BSptai+ = sben
21: end if
22: end for
23: returnMSptai and BS

pt
ai

TABLE 4. Datasets of APK files used in our evaluation.

VI. EVALUATION RESULTS AND DISCUSSION
A. DATASET
Table 4 shows datasets of APK files used in our simulation.
Benign apps were obtained from Androzoo [17] distributed
between 2017 and 2020 (2017–2020). Malware samples
were collected from Drebin (2010–2012) [16], Androzoo
(2017–2020), and VirusShare (2018–2020) [18]. In our eval-
uation, we used only the apps that require more than one
permissions including all permissions because ourwork focus
on appraising permission pairs based schemes.With regard to
Androzoo and VirusShare, as a testing dataset, we randomly
selected 1,500 benign apps and 1,500 malware samples from
all of the benign dataset and all of the malware dataset,
respectively. Besides, we constructed the training dataset by
randomly selecting 6,000 benign apps and 6,000 malware
samples from the rest of them. On the other hand, in terms
of malware samples in the Drebin dataset, 1,000 apps and
3,000 apps are randomly selected as testing malware sam-
ples and training ones, respectively. This is because the total

number of Drebin malware samples in our dataset is 4364.
As for benign apps, 1,000 testing dataset and 3,000 training
one are also randomly selected to balance the number of
datasets.

B. COMPARISON WITH CONVENTIONAL SCHEMES
1) DETECTION PERFORMANCE
To evaluate the detection performance against old malware
samples and recent ones, we evaluate ACCuracy (ACC), True
Positive Rate (TPR), and False Positive Rate (FPR) with real
dataset. ACC, TPR, and FPR are calculated as

ACC =
TP+ TN

TP+ TN+ FP+ FN
, (1)

TPR =
TP

TP+ FN
, (2)

FPR =
FP

FP+ TN
, (3)

where TP, TN, FP, and FN denote the number of True Positive
(malware samples are regarded as malware samples), True
Negative (benign apps are regarded as benign ones), False
Positive (benign apps are regarded as malware samples), and
False Negative (malware samples are regarded as benign
apps), respectively.

We compare the proposed scheme with two conventional
permission pairs based schemes, namely Boolean Vector
Based Scheme (BVBS) [13] and PermPair [14]. Note that
in [13], although both a single permission and permission
pairs are used for detection, we only evaluate results by
using permission pairs. This is because our focus is how
to devise more practical detection with permission pairs.
In our evaluation, BVBS utilizes top 40 permissions which
frequently appear in benign apps and malware samples in the
training datasets in keeping with the number of permissions
in [13]. In other words, BVBS utilizes 780 permission pairs
as features for ML. Furthermore, since it was reported that
the RSBS [12] results in 55% FP with permission pairs, that
scheme is not adopted for comparison in our evaluation.

In terms of the proposed schemes, we evaluate two types
of schemes. The first one is a scheme with Random Forests
(RF) [20] (hereinafter, this scheme is called ‘‘Prop. (RF)’’).
The reason why we adopt RF is that RF achieved fast training
and more accurate detection performance compared with
other classifiers in our preliminary experiments. To fairly
evaluate performance, BVBS also utilizes the RF classifier
in our evaluation. The other is a scheme that uses a tech-
nique called Stacking Ensemble Learning (SEL) for train-
ing of ML (This is called ‘‘Prop. (SEL)’’). The SEL can
improve predictive performance by combining outputs from
multiple classification models. In other malware detection
methods [23], [24], the SEL is used to improve performance.

Table 5 shows detection performance of the conventional
schemes and the proposed schemes. In Table 5, ACC, TPR,
and FPR are appraised on every source. Furthermore, we eval-
uate detection performance of the four above schemes on
a mixed dataset, which is composed of 6,000 benign apps

130014 VOLUME 9, 2021

H. Kato et al.: Android Malware Detection Based on CR of Permission Pairs

TABLE 5. Detection performance of the conventional schemes and the proposed schemes.

and 6,000 malware samples from all sources. Note that the
benign apps and malware samples are randomly selected
as with other datasets. As shown in Table 5, the proposed
schemes achieves the highest ACC compared with PermPair
and BVBS. Moreover, the ACC of Prop. (SEL) is slightly
higher than that of Prop. (RF), which means that SEL is
useful for improving detection performance. In terms of
PermPair, although the ACC on Drebin is 89.1%, the ACC
values are 50.1% and 50.0% on Androzoo and VirusShare,
respectively. In particular, FPRs are 99.6% and 99.8% in
Androzoo and VirusShare, respectively, which means that
almost all the benign apps are misjudged as malware. This
is because PermPair is vulnerable to injecting unnecessary
permissions in recent malware samples. Recent malware
samples tend to require permission pairs that are frequently
required by benign apps, as shown in Section IV. As a result,
the frequencies of most pairs in malware tend to be higher
than those in benign apps. These results show that frequency
based databases get ineffective. Therefore, PermPair cannot
correctly identify benign apps.

With regard to BVBS, it can achieve high detection perfor-
mance as with Prop. (RF) and Prop. (SEL) whereas ACC is
slightly low on all the four types of datasets. Since boolean
vectors express information about the presence of pairs by
using boolean values (0 or 1), each pair is equally treated
regardless of its frequency. Hence, BVBS is insusceptible
to the tendencies of recent malware, and its detection per-
formance is not degraded. This evaluation demonstrates that
BVBS and the proposed scheme are capable to precisely
classify apps into benign apps and recent malware, which
means that they satisfy ‘‘Stability’’. Although BVBS can
fulfill ‘‘Stability’’, it cannot satisfy the other requirements. In
what follows, we compare the proposed scheme with BVBS
in terms of aspects of ‘‘Efficiency’’ and ‘‘Intelligibility’’.

2) COMPUTATIONAL COST AND COMPATIBILITY
As explained in Section VI-B 1), BVBS is tolerant to
the tendency of recent malware samples. However, BVBS
requires a high-dimensional feature vector to detect malware.
In this subsection, we first compare the proposed schemewith
BVBS in terms of training time. We ran our experiments on a
machine with 2GHz Intel Core i5 and 16GB of RAM. After
evaluating training time, we discuss compatibility with other
features in ML based schemes. Through the comparison and
discussion, we show that only the proposed scheme satisfies
‘‘Efficiency’’.

We evaluate relationship between the number of used
permissions and training time. Fig. 4 shows the training time

FIGURE 4. The training time in the proposed methods and BVBS when the
number of used permissions are changed.

in the proposed methods and BVBSwhen the number of used
permissions are changed. In this evaluation, 6,000 benign
apps and 6,000 malware samples are used in BVBS (RF),
BVBS (SEL), Prop. (RF), and Prop. (SEL). As shown in
Fig. 4, training time of BVBS (RF) and BVBS (SEL) expo-
nentially increase as the number of permissions increases.
In particular, it takes up to 14,101s (=3h 55m) for training
of 12,000 apps when 300 permissions are used for detection
in BVBS (SEL). In other words, BVBS (SEL) takes about
2,350 times longer than Prop. (SEL) in which training time
is 6s.

Meanwhile, Fig. 5 shows the ACC of the proposed meth-
ods and BVBS when the number of used permissions are
changed. In Fig. 5, dotted lines of Prop. (RF) and Prop. (SEL)
are just displayed as baselines. As shown in Fig. 5, as the
number of permissions increases, ACC values of BVBS and
BVBS (SEL) are slightly increased whereas the improve-
ment is trivial. When 80 permissions are used in BVBS

FIGURE 5. The ACC of the proposed methods and BVBS when the number
of used permissions are changed.

VOLUME 9, 2021 130015

H. Kato et al.: Android Malware Detection Based on CR of Permission Pairs

FIGURE 6. Average proposed scores of detected malware samples and undetected ones. MS and BS mean Malicious Score and Benign Score,
respectively. In terms of an alphabet and a word in parentheses after MS and BS, A, C, D, and ALL represent Android, Custom, Dangerous, and All
permissions, respectively.

(3160 pairs are used), the ACC of BVBS and that of
BVBS (SEL) are 84.36% and 84.33%, respectively, and
these values are a little bit higher than that of Prop. (SEL),
which is 84.2%. However, in this case, BVBS must utilizes
3160-dimensional vectors. On the other hand, since our fea-
tures are eight-dimensional, the proposed scheme reduces the
feature dimensions by about 99% with maintaining compa-
rable detection accuracy. In the case where 280 permissions
are used, whereas ACC of BVBS (SEL) is the best, already
mentioned above, its computational cost of training gets huge.
In this case, the number of permission pairs is 39,060, and
training time is 13,007s (=3h 36m). This result means that it
is difficult to apply the SEL to BVBS in the practical situation
although the SEL can ameliorate detection performance.

On the other hand, the training time of Prop. (RF) and that
of Prop. (SEL) are 1s and 6s, respectively, in our evaluation.
Training time of the proposed scheme is independent of the
number of used permission pairs because our feature vector
is always eight-dimensional one regardless of the number
of pairs. In our environment, the average elapsed time for
calculating eight scores per an app is about 9.3 × 10−4s.
In other words, our scheme can efficiently convert informa-
tion about permission pairs into low-dimensional features.

Furthermore, because of the low-dimensional features,
the proposed scheme is compatible with other ML based
schemes. In other words, our scheme is promising for hybrid
detection with feature fusion. The feature fusion means com-
bining various features obtained from different aspects such
as network traffic, API calls, ICC, and permissions so as to
comprehensively detect various malware. The feature fusion
is frequently adopted in Android malware detection [2], [9],
[25], [26]. In [2], [26], permissions based features are com-
bined with other features, and it is reported that the fea-
ture fusion is effective. When the feature fusion is carried
out, the dimensions of feature vectors inevitably get large.
For example, in [8], since more than 5,000-dimensional fea-
tures can be used, it is desirable that additional features are
low-dimensional ones. If the dimensions get too large like
BVBS, detection performance may not be versatile because
of curse of dimensionality. In particular, in the practical use,
detecting malware comprehensively on the basis of various
aspects is an ideal situation. Thus, in light of such situations,
our eight scores are effective and desirable features, which
means that the proposed scheme is suitable for a practi-
cal detection system with the feature fusion unlike BVBS.

From these results, we concluded that the proposed scheme
can satisfy not only ‘‘Stability’’ but also ‘‘Efficiency’’.

C. ANALYSIS OF DETECTION RESULTS
In this section, we demonstrate that our scores can offer
useful information to understand detection results from a new
aspect, namely the CR. In other words, we show that the pro-
posed scheme can satisfy ‘‘Intelligibility’’. Our scheme can
provide understandable information about detection results
because permission pairs based information is converted into
eight simple scores on the basis of the CR based databases.
The proposed scores and the CR based databases can help
human to understand detection results as with PermPair.
On the other hand, it is difficult for BVBS to provide under-
standable information about detection results to human by
using its feature vector. In the following subsections, we con-
duct detailed analysis and interpretation for tested apps that
our scheme judged.

1) ANALYSIS FOR DETECTED MALWARE
In this subsection, we conduct analysis of malware samples
that are judged by the proposed scheme. Fig. 6 shows average
proposed scores of detected malware samples and undetected
ones. Note that these average scores are calculated on the
basis of 3,000 testing data, namely 1,500 benign apps and
1,500 malware samples from the mixed dataset. As shown
in Fig. 6, there exist clear differences of our scores between
detected malware samples and undetected ones. In terms
of detected malware samples (blue bars), the differences
between MS and BS tend to be large. In particular, with
regard to scores of malware in Fig. 6(d), average MS (ALL)
and BS(ALL) are 393.36, 75.33, respectively. The difference
between them is 318.03. These results show that the proposed
scheme can calculate useful scores for identifying malware
samples.

2) ANALYSIS FOR UNDETECTED MALWARE
On the other hand, as for undetected malware samples
(red bars), it turns out that the differences between MS
and BS are small compared with detected malware. These
small differences cause the proposed scheme to misjudge
them as benign apps. Through further analysis, we found the
reason why these differences are small. That is, misjudged
malware samples tend to require fewer permissions com-
pared with malware samples that are correctly judged. As a
result, since CRs of permission pairs get large, they affect

130016 VOLUME 9, 2021

H. Kato et al.: Android Malware Detection Based on CR of Permission Pairs

FIGURE 7. Distribution of the number of permissions required by detected malware samples and undetected ones.

FIGURE 8. Average proposed scores of benign apps and misjudged ones.

our scores. Fig. 7 shows distribution of the number of permis-
sions required by detected malware samples and undetected
ones. The used data are the same as the data in Fig. 6.
As shown in Fig. 7, it can be seen that misjudged malware
samples require fewer permissions in every type of permis-
sion. In terms of CPs, as shown in Fig. 7(b), even detected
malware samples do not frequently require many CPs. As for
APs and DPs, malware samples tend to require many of them,
as shown in Fig. 7(a) and Fig. 7(c). Meanwhile, misjudged
malware samples require fewer permissions. Since benign
apps tend to require only essential permissions, CRs of them
tend to be large. Thus, the CRs ofmisjudgedmalware samples
are similar to those of benign apps, which results in incorrect
scores of them.

We found a misjudged malware sample that has five per-
missions in total. The malware has one CP and one DP,
which means that permission pairs cannot be generated in
the CP and the DP. Since the proposed scheme is based on
permission pairs, it cannot calculate MS (C), BS(C), MS (D),
and BS(D) at all. This malware requires INTERNET (INT)
and WRITE_EXTERNAL_STORAGE (WES). This pair is
dangerous, because it enables the malware to install another
malware in a device. However, as for the pair INT:WES,
smal and sben are 0.847 and 0.872, respectively, which means
that benign features are more strong. Besides, although the
CR based scores can be calculated in terms of APs and all
permissions, both MS (A) and MS (ALL) were 0 whereas
BS (A) and BS (ALL) were 2.42 and 5.29. As a result,
since the two BSs are higher than the two MSs, the malware
was misjudged as benign apps. Although this type of mal-
ware may dynamically require additional permissions, our
scheme cannot deal with that. The above analysis reveals
that our scheme has a limitation. We elaborate on limitations
in Section VII.

3) ANALYSIS FOR BENIGN APPS
In this subsection, we conduct analysis of benign apps that
are judged by the proposed scheme. Fig. 8 shows average pro-
posed scores of benign apps and misjudged ones. As shown
in Fig. 8, in terms of benign apps (red bars), BSs are higher
than MSs. In particular, the difference between MS (C) and
BS (C) is the largest, which is 6.24, as shown in Fig. 8(b). The
reason why scores of benign apps are relatively small is that
benign apps tend to require fewer permissions. Fig. 8 shows
distribution of the number of permissions required by benign
apps and misjudged ones. As shown in Fig. 8(d), even when
counting all permissions, the distribution tends to concentrate
in fewer number. Thus, since the number of created pairs
is also small, MSs and BSs tend to be small, which causes
their differences to be small. However, it is can be seen that
our scores are properly calculated because average BSs are
larger than average MSs in benign app, which results in high
detection performance.

4) ANALYSIS FOR MISJUDGED BENIGN APPS
On the other hand, as shown in Fig. 8(a), Fig. 8(c), and
Fig. 8(d), magnitude correlation between MSs and BSs in
misjudged benign apps (blue bars) are reversed compared
with those in benign apps (red bars) except for MS (C) and
BS (C) in Fig. 8(b). From this result, it turns out that
CPs are less important than other permissions. Furthermore,
the differences between MSs and BSs in misjudged benign
apps are large compared with those in benign apps. Thus,
these large differences causes misjudgement in the proposed
scheme. Fig. 9 shows distribution of the number of permis-
sions required by benign apps and misjudged ones. As shown
in Fig. 9(a), Fig. 9(c) and Fig. 9(d), misjudged benign apps
is liable to require more permissions. In this case, CRs of
permission pairs in such benign apps are similar to the ones in

VOLUME 9, 2021 130017

H. Kato et al.: Android Malware Detection Based on CR of Permission Pairs

FIGURE 9. Distribution of the number of permissions required by benign apps and misjudged ones.

malware because CRs get small. Hence, the proposed scheme
regards the benign apps as malware by mistake when many
permissions are required by benign apps. In order to prevent
this types of misjudgement, it is important that developers of
benign apps should avoid requiring unnecessary permissions.
On the other hand, attackers have no choice but to inject
unnecessary permission so as to conceal malicious evidence
in permissions. Considering this fact, misjudgement by our
scheme can be prevented by obeying the right manner of
development in terms of permissions.

Meanwhile, the proposed scheme also failed in judging
benign apps that require fewer permissions whereas the ten-
dency of the CR of permission pairs is relatively similar
to the benign one. To reveal the reason, we investigated
such benign apps. After our investigation, we discovered
that a benign app requires six permissions including three
DPs, namely SEND_SMS (SSMS), READ_SMS (RSMS),
and RECEIVE_SMS (RECSMS). MS (D) and BS (D) are
2.03 and 0.0, respectively. In addition to these DPs, this
benign app also has INTERNET. By combining this permis-
sion and the above DPs, this benign app is potentially capable
to conduct malicious operations. In fact, in terms of the pair
INT:SSMS, similarities, smal and sben are 0.9349 and 0.9336,
respectively, which means that this benign app is more sim-
ilar to malware. As for other pairs such as INT:RSMS and
INT:RECSMS, we found that smal is larger than sben. As a
result, MS (ALL) and BS (ALL) are 11.2 and 2.83, respec-
tively. To cope with this misjudgement, using other features
such as API calls and ICC is needed.

VII. LIMITATION
Our scheme can satisfy requirements for practical use. How-
ever, there exist some limitations even in the proposed
scheme. The first one is that the proposed scheme cannot
deal with malware samples that statically require fewer per-
missions, as explained in Section VI-C 2). This limitation
is common to all the permission based schemes that utilize
static analysis [11]–[14]. In order to address this limitation,
extracting dynamic permissions [27] is promising. We plan
to devise a new scheme that calculates the CR from pairs of
permissions including dynamic ones. However, in order to
obtain dynamic permissions, it is necessary to run each app in
a device or an emulator, which causes runtime overhead.
Since dynamic analysis based schemes can also capture more
useful features such as network traffic and API calls, the

feature fusion may be more useful. In light of such facts and
the compatibility of our low-dimensional features, combining
our features and other features can be promising for detecting
the above malware.

Furthermore, as mentioned in Section VI-C 4), our scheme
cannot correctly judge benign apps that require fewer permis-
sions including DPs. Such benign apps might actually need
to use DPs for benign purposes. It is difficult to justify the
truth on the basis of information about permissions. Thus,
we concluded that such benign apps should be treated by
using other feature based schemes.

At this stage, our scheme utilizes all permission pairs
required by apps. As a result, detection performance of the
proposed scheme is slightly inferior to BVBS with pairs of
more than 80 permissions. In order to ameliorate the perfor-
mance, we might have to select useful pairs from all pairs.
It is possible that using only pairs whose variance of the CR is
small is helpful in improving detection performance. We will
work on this task as future work.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we have proposed Android malware detec-
tion scheme using the CR of permission pairs. We focus on
the fact that the CR tends to be small in malware because
of unnecessary permissions. To leverage the CR for mal-
ware detection, we constructed databases regarding the CR.
For each app, we calculated eight similarity scores on the
basis of the prepared databases. Finally, our scores were
fed into machine learning (ML) based classifiers for detec-
tion. By using real datasets, our evaluation results show
that the proposed scheme can detect malware with up to
97.3% accuracy. Compared with BVBS, our scheme can
reduce the feature dimensions by about 99%withmaintaining
comparable detection accuracy on recent datasets. Because
of this, the proposed scheme is compatible with other fea-
tures in ML based schemes. Furthermore, our features can
quantitatively offer clear information that what types of per-
mission pairs dictate detection results. Thus, our scheme is
more suitable for practical use. However, our scheme has
the limitations. To address them, our future work will focus
on devising a new scheme that calculates the CR from pairs
of permissions including dynamic ones. Besides, in order to
improve detection performance, we plan to select useful pairs
by using some techniques such as clustering CRs with their
variance in future.

130018 VOLUME 9, 2021

H. Kato et al.: Android Malware Detection Based on CR of Permission Pairs

REFERENCES
[1] (2020). Smartphone Market Share. Accessed: May 2021. [Online]. Avail-

able: https://www.idc.com/promo/smartphone-market-share/os
[2] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, ‘‘MADAM: Effec-

tive and efficient behavior-based Android malware detection and pre-
vention,’’ IEEE Trans. Depend. Sec. Comput., vol. 15, no. 1, pp. 83–97,
Jan./Feb. 2018.

[3] Z.Wang, Q. Liu, and Y. Chi, ‘‘Review of Android malware detection based
on deep learning,’’ IEEE Access, vol. 8, pp. 181102–181126, 2020.

[4] S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao, and M. Conti, ‘‘Detecting
Android malware leveraging text semantics of network flows,’’ IEEE
Trans. Inf. Forensics Security, vol. 13, no. 5, pp. 1096–1109, May 2018.

[5] S. Garg, S. Peddoju, andA. K. Sarje, ‘‘Network-based detection of Android
malicious apps,’’ Int. J. Inf. Secur., vol. 16, no. 4, pp. 385–400, 2017.

[6] Y. Aafer, W. Du, and H. Yin, ‘‘DroidAPIMiner: Mining API-level features
for robust malware detection inAndroid,’’ inProc. Int. Conf. Secur. Privacy
Commun. Syst. Berlin, Germany: Springer, 2013, pp. 86–103.

[7] L. Deshotels, V. Notani, and A. Lakhotia, ‘‘DroidLegacy: Automated
familial classification of Android malware,’’ in Proc. ACM SIGPLAN
Program Protection Reverse Eng. Workshop (PPREW), 2014, pp. 1–12.

[8] K. Xu, Y. Li, and R. H. Deng, ‘‘ICCDetector: ICC-based malware detec-
tion on Android,’’ IEEE Trans. Inf. Forensics Security, vol. 11, no. 6,
pp. 1252–1264, Jun. 2016.

[9] H. Cai, N. Meng, B. G. Ryder, and D. Yao, ‘‘DroidCat: Effective Android
malware detection and categorization via app-level profiling,’’ IEEE Trans.
Inf. Forensics Security, vol. 14, no. 6, pp. 1455–1470, Jun. 2019

[10] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. G. Bringas, and
G. Álvarez, ‘‘Puma: Permission usage to detect malware in Android,’’ in
Proc. Int. Joint Conf. CISIS’B ICEUTE SOCO Special Sessions. Berlin,
Germany: Springer, 2013, pp. 289–298.

[11] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An, and H. Ye, ‘‘Significant
permission identification for machine-learning-based Android malware
detection,’’ IEEE Trans. Ind. Informat., vol. 14, no. 7, pp. 3216–3225,
Jul. 2018.

[12] S. Liang and X. Du, ‘‘Permission-combination-based scheme for Android
mobile malware detection,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
Jun. 2014, pp. 2301–2306.

[13] X. Liu and J. Liu, ‘‘A two-layered permission-based Android malware
detection scheme,’’ in Proc. 2nd IEEE Int. Conf. Mobile Cloud Comput.,
Services, Eng., Apr. 2014, pp. 142–148.

[14] A. Arora, S. K. Peddoju, and M. Conti, ‘‘PermPair: Android malware
detection using permission pairs,’’ IEEE Trans. Inf. Forensics Security,
vol. 15, pp. 1968–1982, 2020.

[15] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang, ‘‘Explor-
ing permission-induced risk in Android applications for malicious appli-
cation detection,’’ IEEE Trans. Inf. Forensics Security, vol. 9, no. 11,
pp. 1869–1882, Nov. 2014.

[16] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, ‘‘DREBIN: Effective and explainable detection of Android
malware in your pocket,’’ in Proc. NDSS, vol. 14, 2014, pp. 23–26.

[17] K. Allix, T. F. Bissyandé, J. Klein, and Y. L. Traon, ‘‘AndroZoo: Collecting
millions of Android apps for the research community,’’ in Proc. 13th Int.
Conf. Mining Softw. Repositories, May 2016, pp. 468–471.

[18] Virusshare.Com. Accessed: Apr. 2020. [Online]. Available: https://
virusshare.com

[19] Manifest.Permission. Accessed: Jul. 2021. [Online]. Available:
https://developer.android.com/reference/android/Manifest.permission?hl=ja

[20] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[21] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995.

[22] Y. Freund and R. E. Schapire, ‘‘A decision-theoretic generalization of on-
line learning and an application to boosting,’’ J. Comput. Syst. Sci., vol. 55,
no. 1, pp. 119–139, Aug. 1997.

[23] D. Vasan, M. Alazab, S. Venkatraman, J. Akram, and Z. Qin, ‘‘MTHAEL:
Cross-architecture IoT malware detection based on neural network
advanced ensemble learning,’’ IEEE Trans. Comput., vol. 69, no. 11,
pp. 1654–1667, Nov. 2020.

[24] H. Zhu, Y. Li, R. Li, J. Li, Z. You, and H. Song, ‘‘SEDMDroid: An
enhanced stacking ensemble framework for Android malware detection,’’
IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2, pp. 984–994, Apr. 2021.

[25] G. Tao, Z. Zheng, Z. Guo, and M. R. Lyu, ‘‘MalPat: Mining patterns of
malicious and benign Android apps via permission-related APIs,’’ IEEE
Trans. Rel., vol. 67, no. 1, pp. 355–369, Mar. 2018.

[26] A. Arora and S. K. Peddoju, ‘‘NTPDroid: A hybrid Android malware
detector using network traffic and system permissions,’’ inProc. 17th IEEE
Int. Conf. Trust, Secur. Privacy Comput. Commun./ 12th IEEE Int. Conf.
Big Data Sci. Eng. (TrustCom/BigDataSE), Aug. 2018, pp. 808–813.

[27] A. Mahindru and P. Singh, ‘‘Dynamic permissions based Android malware
detection using machine learning techniques,’’ in Proc. 10th Innov. Softw.
Eng. Conf., Feb. 2017, pp. 202–210.

HIROYA KATO (Graduate Student Member,
IEEE) was born in Gunma, Japan, in 1994.
He received the B.E. and M.E. degrees from Keio
University, in 2017 and 2019, respectively, where
he is currently pursuing the Ph.D. degree. His
research interest includes security and privacy for
the IoT. He is a member of IEICE.

TAKAHIRO SASAKI was born in Saitama, Japan,
in 1995. He received the B.E. degree from Keio
University, in 2021. His research interest includes
security and privacy for the IoT.

IWAO SASASE (Life Senior Member, IEEE)
was born in Osaka, Japan, in 1956. He received
the B.E., M.E., and D.Eng. degrees in electri-
cal engineering from Keio University, Yokohama,
Japan, in 1979, 1981, and 1984, respectively. From
1984 to 1986, he was a Postdoctoral Fellow and
a Lecturer of electrical engineering with the Uni-
versity of Ottawa, ON, Canada. He is currently
a Professor of information and computer science
with Keio University. He has authored more than

301 journal articles and 446 international conference papers. His research
interests include modulation and coding, broadband mobile and wireless
communications, optical communications, communication networks, and
information theory. He granted 48 Ph.D. degrees to his students in the
above field. He is a fellow of IEICE and a member of the Information
Processing Society of Japan. He received the 1984 IEEE Communica-
tions Society (ComSoc) Student Paper Award (Region 10), the 1986 Inoue
Memorial Young Engineer Award, the 1988 Hiroshi Ando Memorial Young
Engineer Award, the 1988 Shinohara Memorial Young Engineer Award,
the 1996 Institute of Electronics, Information, and Communication Engi-
neers (IEICE) of Japan Switching System Technical Group Best Paper
Award, and WPMC2008 Best Paper Award. He is also serving as the
Vice-President of IEICE. He served as the President of the IEICE Com-
munications Society, from 2012 to 2014. He was a Board of Governors
Member-at-Large, from 2010 to 2012. He was a Japan Chapter Chair, from
2011 to 2012. Hewas the Chair of theNetwork SystemTechnical Committee,
from 2004 to 2006; the Communication System Technical Committee of
the IEICE Communications Society, from 2002 to 2004; and the Satellite
and Space Communications Technical Committee of IEEE ComSoc, from
2000 to 2002. He was the Director of Asia–Pacific Region, from 2004 to
2005; the Vice President of the Communications Society, from 2004 to 2006;
and the Director of the Society of Information Theory and Its Applications
in Japan, from 2001 to 2002.

VOLUME 9, 2021 130019

