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ABSTRACT In recent times the statistical computation techniques are gaining a lot of interest for analyzing
the behavior of various mathematical distributions. This paper derives the likelihood distribution of image
priors which has been further used to denoise the image. This paper aims to maximize the likelihood
estimation of the parameters of interest i.e. prior and posterior estimation. We have proposed a prior-based
distribution model which has been applied to additive, multiplicative and mixed noise cases. The various
estimation parameters such as statistical variance and mean parameters have been used to evaluate the
maximum likelihood of image priors for these noise models. Later, we have used an optimization technique
based on the likelihood to reconstruct noise-free images efficiently. This paper uses conditional likelihood
and wavelet transformation-based minimization techniques to minimize the noise in the pixels and a final
denoised image is recovered. The conditional likelihood of the image has been optimized using pixel-based
minimization w.r.t. the wavelet transformation coefficients. The simulation and analytical results have also
been presented for the different noise cases.

INDEX TERMS Gamma, Gaussian and Poisson distributions, image priors, log-likelihood estimator,
normalization and minimization, noise models, posterior estimate, wavelet transformation.

I. INTRODUCTION
The image denoising methods have gradually developed
from spatial domain methods to transform domain methods.
Over the years, Fourier transform domain methods have
been extensively used and gradually other methods have
emerged such as cosine transform, wavelet transform, and
block-matching and 3D filtering [1]–[4] methods for image
recovery. One of the advantages of using the wavelet
transform domain method is that in this method the
characteristics of image information and noise are different.
Thus, image characteristics are well preserved, regardless
of its frequency content. This paper proposes a parametric

The associate editor coordinating the review of this manuscript and

approving it for publication was Yong Yang .

estimation technique to get a unique solution from the
various noise image models so that a clean image can be
retrieved.

The parametric estimation techniques are used to estimate
the parameters of a distribution model which maximizes the
fit to a particular data set. The most common techniques
used in mathematical statistics are maximum likelihood
estimation (MLE) [5] and Bayesian estimation (BE) [6].
These techniques return the prior and posterior distribution of
the parameters, where the mean of the posterior distribution
is the best-fitting estimate of the parameters. The conjugate
priors have been defined in form of a log-likelihood
function. This log-likelihood function is a form of simple
standardized function of parameters whose multiplication
with the prior distribution yields an exponential distribution.
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Such distribution can be used to model the noise in any
image and eventually be used to enhance the image quality
[7]–[9]. This paper has various advantages over other existing
studies. In modern image denoising techniques sparse signal
representation has been used for linear and nonlinear trans-
formations. In the existing studies, the pixel intensity or noise
variance has been analyzed rather than the actual noise distri-
bution [10]. It is evident that noise distribution greatly affects
the performance of any denoising algorithm [11]. Therefore,
this paper provides a detailed analysis of noise models using
likelihood estimation. In this paper, different noise models
have been statistically estimated using the likelihood of
image priors. We have also performed posterior analysis by
calculating the bias and accuracy of the proposed algorithm.
In the proposed methods the priors have not only been used
to define the parametric limits but also provide an accurate
statistical posterior analysis for various noise distributions.
By simulating individual samples of posteriori distribution,
the true parameter values can be recovered which is assessed
using the mean and median of the expected distribution.
These estimates are then used to compute the accuracy and
reliability of the point estimations obtained using statistical
parameters.

This paper proposes a denoising method that is capable of
removing the noise from an image without affecting image
details using likelihood estimation. Image denoising using
wavelet transform is gaining popularity due to its sparsity and
multiresolution. This paper proposes a parametric estimation
technique considering three noise models i.e. additive,
multiplicative, and mixed noise models. Since we cannot get
a unique solution from the noise image models to retrieve
the clean image. Therefore, the image denoising method has
to be used for a good estimation of a clean image. Spatial
domain and transform domain methods are extensively used
as denoising methods. The proposed method is based on the
transform domain method. The transform domain methods
are advantageous than spatial domain methods because in
spatial domain methods somehow the noise is eliminated
but due to image blurring the image loses edge sharpness.
The proposed methods also analyze the accuracy of the
noise model. Firstly, we calculate the conditional likelihood
of noisy image w.r.t. noise-free image. Then, we maximize
the likelihood equation w.r.t. bivariate conjugate priors of
image i.e. mean and variance because these image priors
are less susceptible to variations in pixel intensity, thus
yields accuracy and reliability of the proposed algorithm.
Moreover, the likelihood estimation improves robustness and
reduces bias before the final reconstruction of noise-free
images. Further wavelet transform has been optimized by
minimizing the noisy pixels in the image to reconstruct noise-
free image. Finally, inverse wavelet transform computes the
final denoised image.

In this paper, we have employed norm-based optimization
and usually, it is expected to maximize the PSNR of the result
which can be observed from the qualitative and quantitative
results. As such, using the norm-based optimization has

proven to provide better results on other quality evaluation
metrics are also mentioned in this paper.

Optimization helps to solve a problem by tuning a set of
parameters to achieve an optimal solution. The optimization
functions could be associated with a real-life problem, and
have endless applications. In this paper, we decided to use
optimization for the minimization of noisy pixels. In the
proposed method the set of parameters are transformation
coefficients and transformed noise-free pixels only. The
optimal goal is noise-free image reconstruction whose quality
is assessed in terms of various performance metrics. In the
proposed method we have used discrete gradients of the
image and it is well-known fact that norm-based optimization
is capable of representing the sparsity of the gradient image
better and preserves the edge.

The contributions of this paper are as follows-
1. The wavelet based methods presented in the literature

had a problem of the biased estimate of their wavelet
coefficient. In this paper, we have removed the bias
from wavelet coefficients based on the fact that bias in
the scaling coefficient is scaling independent.

2. The noise-free signals are estimated using magnitude
data points. The controversial point is that due to
neighborhood smoothing using MLE the sharpness
of edges and fine structure degrades. In this paper,
we have addressed this problem as the proposed
method possesses a high degree of redundancy in
the context of images and assures that pixels have
a similar neighborhood which is achieved by com-
puting horizontal and vertical gradients for differ-
ent noise distributions i.e. Gaussian, Gamma, and
Poisson.

3. We use mean and variance-based image priors for
maximizing the likelihood to locate the neighborhood
pixels for noise-free pixel estimation.

4. The proposed method is different from the methods
presented in the literature because this work is focused
on estimating the noise-free image with the use
of priors and log-likelihood criteria. Later, wavelet
coefficients are used to calculate likelihood-based
transformation.

5. Finally, we present a unique solution to the optimiza-
tion problem for the non-quadratic and non-smooth
log-likelihood problem to yield a noise-free image.

6. We generalize the norm-based optimization for noise-
free image reconstruction. The proposed model can
achieve superior performance compared with the exist-
ing related methods for multiple reasons. Firstly, due
to the norm regularization term, the proposed model
can reduce streak artifacts. Secondly, due to the -norm
regularization term, the smoothing is improved and the
proposed model is proven to be better edge-preserving
and to provide a better sparsity representation. We have
used the optimization algorithm in such a way that
its algebraic framework solves the optimization effec-
tively using the minimization problem.
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The rest of the paper is organized as follows; Section II
provides the literature review. Section III details the pro-
posed method with wavelet-based pixel transformation and
final image recovery. Various performance measures are
provided in Section IV. Section V presents numerical
results and discussions. Finally, Section VI concludes
the paper.

II. BACKGROUND
Noise modeling requires parametric distributions with certain
physical or empirical considerations and denoising requires
an estimate of the statistics of these parameters. Various
denoising techniques have been proposed in the image pro-
cessing literature over the years [7]–[10]. Bayesian methods
are used frequently due to their adaptability to various
noises [6]. A Bayesian framework interprets the obtained
image as an accumulation of the original image. By adding
any prior knowledge of the signal, a Bayesian denoising
technique is formed and thus the formulated Bayesianmethod
treats denoising as an estimation problem. In [12], [13]
the additive white Gaussian Noise (AGWN) based model
is used for estimating the multiplicative noise model, but
the final image resolution is degraded. This resolution
problem can be overcome by using image priors. In another
work, Markov random field (MRF) [14] based denoising
framework has been developed for an estimation which
is based on image priors and minimization of the energy
function. The selection of a suitable prior is very impor-
tant for preserving the image structure and incorporating
smoothness in the denoised image. In recent years, for image
denoising, the Gaussian mixture models (GMM) [15], [16]
have been developed and they can represent image priors
as well.

Another challenge in image denoising problems is to
retrieve the original uncorrupted image efficiently. As per the
literature, log-likelihood based estimation is most commonly
used in image denoising. There exist literature that introduced
the priors to likelihood distributions such as GMM prior [17].
The reason to use priors in image denoising is that it
can provide Maximum A-posteriori (MAP) based statistical
estimation [18] using some regularization parameters of
images. Based on this idea, a Bayesian framework based
Expected Patch Log Likelihood (EPLL) algorithm [20] has
been proposed to model the probability of image patches
using Gaussian Mixture Model (GMM). Also, the various
noise hypotheses can be models easily using maximum like-
lihood estimation (MLE) [21]. The limitations of MLE are
poor neighborhood smoothing, partial restoration of image
structure, and inefficient preservation of edge sharpness. This
MLE estimate does not guarantee accurate statistics. In recent
years, the Maximum A-posteriori (MAP) model proved to
satisfy various analytical and computational properties for
efficient estimation. The MAP estimation is also dependent
on the posterior log-likelihood function [22]–[25]. In [22],
a denoising model (VMAP) based on variational approaches
has been presented which proved to maximize the posterior

distribution of the image. The posterior distribution of the
image was computed using the Bayes formula-based random
field model [26]. However, the random field models have
observed some implementation problems while choosing the
parameters of interest.

In [27], Bayesian hyper-parameter estimation (BHE) was
used which was based on factorized priors. But, when
the image size was small there was some inconsistent
observation. These inconsistencies have been removed
in this paper by using likelihood-based estimation and
prior model.

In the context of the computational difficulties of
exponential distributions, a new sub-pixel classification
algorithm (SCA) was introduced where prior information
is expressed in terms of the occurrence probabilities in
a pixel [28]. This is evident that the performance of the
algorithm can be significantly improved by incorporating
prior information. We have used priors with likelihood
estimation which has improved the bias and accuracy.

A Bayesian multi-scale method (BMM) was proposed
for multiplicative speckle noise removal [29]. This method
uses a wavelet transform domain and a gamma distribution
based prior to capture the heavy-tailed nature of wavelet
coefficients. This method lacks to optimize the noise-free
wavelet coefficients. In the proposed method by exploiting
the prior together with a Gaussian/ Gamma/ Poisson likeli-
hood, an analytical wavelet function is used which achieves
a better estimate of noise-free wavelet coefficients.

Wavelet coefficients based hidden bayesian network (HBN)
was proposed to model the prior probability of the original
image [30]. This method uses a MAP estimator to retrieve the
denoised wavelet coefficients. This method is highly complex
because each wavelet coefficient is modeled as a hidden
state variable. The proposed method uses prior information
for likelihood estimation and later wavelet coefficient based
optimization problem is solved to get the denoised image.
From literature [24], it is well known that prior estimate is a
natural and optimal choice when the PDF of signal and noise
are known. In this paper, we have used Jeffrey’s conjugate
prior [31], [32].

In [33] a Variational Bayesian Approach (VBA) is
proposed for Image Restoration Poisson–Gaussian Noise.
The Bayesian framework is based on Markov Chain Monte
Carlo (MCMC) sampling algorithms. But despite the good
estimation performance that has been obtained, such methods
remain computationally expensive for large-scale problems.
Moreover, the comparisons with image deblurring methods
are dedicated to a pure Poisson noise model. They were
observed to lead to poor results in terms of restoration
quality and to present a high computational time. This
limitation is overcome in the proposed method using
minimization-based regularization parameters which reduces
the account of noisy pixels directly and yields high-quality
restored image.

In [34] an imaging framework has been defined for image
restoration of images corrupted by Poisson noise followed by
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FIGURE 1. Block diagram showing the steps followed in proposed methodology.

additive Gaussian noise using alternating direction method
of multipliers (ADM) optimization algorithm. One of the
limitations of their method is that it is sensitive to variance
of the likelihood estimate because the upper bound on
step size of this optimization algorithm is the inverse data
likelihood. Moreover, if a restriction is applied to step size
by keeping it low then the gradient of the log-likelihood
increases exponentially with the intensity of the measured
image. Therefore the empirical convergence rate becomes
low. This limitation is not present in the proposed method
because we have used norm-based optimization. However,
the method presented in [34] is quite faster in computation
as compared to the proposed method.

The optimization problems involved in image restora-
tion applications are usually difficult due to the non-
differentiability of the norm and the high dimensionality
of the image data. In the past several decades, various
approaches have been proposed such optimizationmethod for
maximization of statistical estimate [35], [36], the second-
order cone optimization method [37], [38] the fixed-point
iterative method [39], and other methods [40]–[44]. These
methods are capable of denoising the image but they lack
numerical stability. Therefore, we have used norm-based
optimization algorithm in this paper.

In this paper, the performance of the proposed method has
been evaluated in terms of bias accuracy for varying image
sizes. The simulation results are well compared with the
conventional techniques [21], [22], [27]–[30], [33], and [34].

The proposed estimation depends upon the prior distribution
and its ability to extract noise. This paper uses the wavelet
transformation [42] to represent the image pixels as high and
low-frequency wavelet coefficients. Later, these coefficients
are used for our minimization problem. Thus, one of the
important aspects of this paper is that by choosing appropriate
prior value the noise extraction can be improved and image
details can be preserved efficiently.

III. PROPOSED METHODOLOGY
Noise affects the information pixels in an image which can
remove fine structural details under general conditions. The
real-life noises are much more complex than the considered
noise distribution models. But, for the analysis purpose,
the noise distribution model should be considered such that
an approximate solution is obtained from the noisy image
to obtain the clean image. Therefore, there is a need to
choose a distribution model. We have used the distribution
models that represent additive, multiplicative, or mixed noise
models. The discrete gradients of these distribution models
give probability density functions which are maximized
usingmaximum likelihood condition and image priors. These
estimated values image priors i.e. mean and variance is
used to maximize the probability functions which have been
represented mathematically. Figure 1 details the steps of the
proposed methodology which is mathematically illustrated
in later sections. We have presented the stage-wise image
restoration results for one image in Figure 1 to analyze the
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quality of the image. Later, in this paper, the numerical
results have also been presented for different stages of the
proposed methodology which indicates the values of various
performance metrics.

The noise is induced in the input image that follows a noise
model. The noise model is defined by representing the image
in discrete form. Consider a sampling space S which consists
of possible outcomes of a random experiment. This sampling
space defines the discrete form of the model. Let us assume
resolution control of image as r > 0. The discrete image (I )
of size M × N is given as matrix I =

[
Iij
]
, such that i =

0, 1, 2, . . .M − 1 and j = 0, 1, 2, . . . ,N − 1. The intensity
values of the discrete image lie in a range between 0 to 255
such that the pixel location (ir, jr) has horizontal and vertical
distance r with a pixel grid xij = (ir, jr). The intensity noise
is dependent on each pixel location and the observed noise
depends on the surrounding pixels.

A. GAUSSIAN NOISE MODEL: CASE1
For the Gaussian noise model, the discrete image I with
M × N matrix realization is represented in terms of noisy
image as Ia = I + a |g| In this case we assume that a is
Gaussian distributed random variable which is responsible for
Gaussian intensity noises. Here, a = aij is the noise related to
every pixel. |g| is a matrix of the norm of discrete gradients.
For every pair (i, j) in the set we assign a discrete gradient gij
of I at xij by

gij =
1
r

(
Ii+1,j − Iij
Ii,j+1 − Iij

)
. (1)

The resultant of g represents a matrix of the norm of
discrete gradient

∣∣gij∣∣ → |g|. We can now separate the
discrete gradient |g| of a discrete image from horizontal and
vertical discrete gradients ∇hI and ∇vI respectively of image
I which are written as

∇hI
(
xij
)
=

1
r

(
I
(
xi+1,j

)
− I (xij)

I
(
xi,j+1

)
− I (xij)

)
, (2a)

∇hI
(
xij
)
=

1
r

(
I
(
xi,j+1

)
− I (xij)

I
(
xi+1,j

)
− I (xij)

)
. (2b)

To approximate the intensity noise model, we assume that
the overall shift in gradient which is written as ∇I

(
xij
)
such

that ∇I
(
xij
)
=

√
∇hI

(
xij
)2
+∇vI

(
xij
)2. Now the pixel grid

becomes

xaij = xij + aij
∇I
(
xij
)∣∣∇I (xij)∣∣ . (3)

In eq. (3) the discrete gradients are Gaussian distributed
probability density function (PDF) [12], [23].

1) PRIOR AND GAUSSIAN NOISE DISTRIBUTION
As per literature [24], when the noise and PDF of the image
signal are known then the prior estimate is one of the optimal
choices for any denoising algorithm. Let us assume the

Gaussian distribution as two parameters exponential family
which is represented in form of the probability density
function (p (.)) as

p
(
Ia, µ, σ 2

)
∝

(
σ 2
)− 1

2
e−

1
2σ2

(Ia−µ)2
. (4)

In eq. (4) we need to have both mean (µ) and variance(
σ 2
)
as random variables to obtain bivariate conjugate prior.

We use two cases to build up image priors in terms of
variance and known mean. Eq. (4) depicts the dependency
of distribution on µ. The Gaussian density is un-normalized
which is represented using the exponential of the negative
of the quadratic form in µ. The product of two such factors
is also an un-normalized Gaussian density i.e. the conjugate
prior ofµ [26]. Let us assume the probability density function
from point of view of mean and variance of prior as

p
(
Ia |µ0, σ

2
0

)
∝

(
σ 2
0

)− 1
2
e−

1
2σ2

(Ia−µ0)
2
. (5)

Here, µ0, σ
2
0 are mean and variance of the prior. Now

consider Gaussian distribution from point of view of mean
and variance as

p
(
Ia|µ, σ 2

)
∝

(
σ 2
)a
e−

b
σ2 . (6)

Here, a = − 1
2 , b =

1
2

∑M−1
i=0

∑N−1
j=0

(
Iaij − µ

)2
. Eq. (6) is

another form of Gamma distribution, but the random variable
σ 2 is in the denominator rather than the numerator in the
exponential term. It is assumed that prior distribution for
variance is an inverse Gamma distribution in terms of the
hyper-parameters which can be written as

p
(
σ 2
|α, β

)
=

βα

0 (α)

(
σ 2
)−α−1

e−
β

σ2 . (7)

αβ are hyper-parameters [45]. Now the images can be
modeled using the random vectorbased realization of the
prior distribution. For sample test data, the noisy variants of
images have been used and random noise has been artificially
distributed in images. Due to the random noise inclusion,
the probability distribution of norms of discrete gradients
of intensities is needed [28]. This probability distribution
is concentrated around zero which ensures the dominant
flat region of the image. We consider histogram of |g| to
derive image priors using an appropriate probability density
function. We assume that probability p(I ) depends on the
matrix |g| of I . These discrete gradients are independent and
identically distributed. So, the probability density of I is the
product of derivatives of gij. The absolute values of Gaussian
distributed discrete gradients in case of prior is written as

p
(
Ia|µ0, σ

2
0

)
∝ Ce

−
1

2σ20

∑M−1
i=0

∑N−1
j=0 (gij)

2

. (8)

Here, C =
(
σ 2
0

)− 1
2 . To generalize the definition

for non-discrete cases, we define maximum A-posteriori
estimation for discrete random vectors using conditional
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probability [23]. We define conditional probability which is
written as

p
(
I |Ia

)
=

p(I ,Ia)
p(Ia)

0, if p (Ia) = 0
, if p

(
Ia
)
> 0. (9)

The mapping Ia → I0 := argmax p(I |Ia)
I

is called

maximum A-posteriori (MAP) estimator and I0 is a MAP
estimate function [23]. We have Ia a noisy image that is
distorted by one of the noise processes. I is associated with
one of the image priors. The probability density function for
Gaussian intensity noise is written as

p
(
Ia|I

)
=

1

σ
√
2π

∏
∀i,j

exp

−
(
Iaij − µ

)2
2σ 2

 . (10a)

By simplifying,

− log p
(
Ia | I

)
= log

(
σ
√
2µ
)
+

∑
∀i,j

(
Iaij − µ

)2
2σ 2 . (10b)

The main goal of the posterior estimate is to retain I by
maximizing the product of conditional probability density
p (Ia|I ) =

∏
∀i,j p

(
Iaij |I

)
. The probability density of I is

given by its image prior p (I ). Thismaximization is equivalent
to the minimization of the negative logarithm of conditional
probability density. Mathematically

− log (p (I )) =
∑
∀i,j

1

2σ 2
0

∣∣∣(gij)2∣∣∣ . (11)

In terms of discrete gradients,

p
(
Ia|I

)
=

1

σ
√
2π

∑
∀i,j

1∣∣gij∣∣ .exp
−

(
Iaij − µ

)2
2σ 2

∣∣gij∣∣2
.

(12)

2) MAXIMIZATION OF LIKELIHOOD ESTIMATION
The loglikelihood estimate for Gaussian distribution [25] is
calculated as,

Lgaussian
(
µ, σ 2

|Ia
)
= log

( 1

σ
√
2π

)M+N∏
∀i,j

e
−

(
Iaij−µ

)2
2σ2

 .
(13)

The maximum likelihood condition is calculated using
differentiation of eq. (13) w.r.t. mean (µ) and variance (σ 2).
This differentiation is equated to zero for calculating the
maxima point.

d
dµ

(
Lgaussian

(
µ, σ 2

|Ia
))
=

d
dµ

[
−MN log

(
σ
√
2π
)]

−

∑
∀i,j

d
dµ

−
(
Iaij − µ

)2
2σ 2

−∑
∀i,j

Iaij +MNµ = 0,

(14a)

µ̂ =
1
MN

∑
∀i,j

Iaij . (14b)

d
dσ 2

(
Lgamma

(
µ, σ 2

|Ia
))
=

d
dσ 2

[
−MN log

(
σ
√
2π
)]

−

∑
∀i,j

d
dσ 2

−
(
Iaij − µ

)2
2σ 2

 , (15a)

After simplification,

σ̂ 2 =
1
MN

∑
∀i,j

(
Iaij − µ̂

)2
. (15b)

Eq. (13) is maximized at mean and variance which is
written in eq. (14b) and eq. (15b) respectively. This estimate
has also been used to compute bias [28].

B. GAMMA NOISE MODEL: CASE 2
The discrete image I with M × N matrix realization can be
represented in terms of Gamma noise as Ia = Ia |g| This
is the case for multiplicative noise which is modeled using
Gamma distribution [29]. In this case, let us consider that a is
Gamma distributed random variable which is responsible for
multiplicative noise. |g| is a matrix of the norm of discrete
gradients. Gamma density function with respect to a and g is
given as

f
(
Ia|g, a

)
=

Ia
0(Ia) .I

(g−1). exp (−gIa) , if Ia ≥ 0
0, otherwise.

(16)

0 (.) denotes Gamma function.

1) PRIOR AND GAMMA NOISE DISTRIBUTION
Let us consider Gamma distribution in terms of mean and
variance whose PDF function [30] is written as

pgamma
(
µ, σ 2

)
=

(
σ 2
0

)µ (
σ 2
)µ−1

0 (µ)
exp

(
σ 2
0 σ

2
)
. (17)

The density function [32] of image Ia is written as

p
(
Ia
)
=

∫
N
(
Ia; 0, σ 2

)
pgamma

(
µ, σ 2

)
dσ 2. (18)

N
(
Ia; 0, σ 2

)
is Gaussian distribution of argument Iaµ and

σ 2

The marginal PDF of Ia is given

pmarginal
(
Ia
)

=

(√
2σ
)µ+ 1

2

√
π. (2)µ−

1
2 .0 (µ)

∣∣Ia∣∣µ− 1
2 K

µ− 1
2

(√
2σ
∣∣Ia∣∣) . (19)

K
µ− 1

2

(√
2σ |Ia|

)
denotes Bessel function of the second

kind [33].

lim
Ia→0

pmarginal
(
Ia
)
=

√
2σ
π
.
0
(
µ− 1

2

)
0 (µ)

, if µ > 1
2

∞, otherwise.

(20)
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The tails of this distribution decrease in |Ia|µ−1 exp
(√

2σ
|Ia|

)
.

This class of prior follows a normal gamma prior esti-
mate [23], [26]. The priors of the image have been computed
using the MAP estimate. The two cases of noise matrix are
considered i.e. finite or asymptotic which have been used
to establish the properties of noise models. Thus, different
conditions have been established under which MAP estimate
of Ia works. The Gamma PDF can be written in terms of
shape and rate parameterization such that

f
(
Ia, α, β

)
=
βα(Ia)α−1

0 (α)
exp

(
−βIa

)
, Ia > 0, αβ > 0.

(21)

α and β are shape and rate parameters respectively. The
joint Gamma PDF can be written as

f
(
Ia, µ, σ 2, α, β

)
=

βα

0 (α)
√
2π

(σ)α−
1
2 exp

(
−
β

σ

)
exp

(
−
(Ia − µ)2

2σ 2

)
.

(22)

Using eq. (9), the posterior estimate is written as

p
(
I | Ia

)
=

(σ )α−
1
2 .0 (α) . exp

(
−
β
σ

)
exp

(
−
(Ia−µ)2

2σ 2

)
0 (α)

√
2π.(Ia)α−1. exp (−βIa)

,

Ia > 0. (23)

One of the good estimations for different noise models is
maximum likelihood [30], [46]. In this paper the advantages
of both priors and likelihood have been utilized. The PDF of
Gamma distribution with mean (µ) and variance (σ 2) is given
as

fgamma
(
Ia
)
=

(Ia)µ−1(
σ 2
)µ
0 (µ)

exp
(
−
Ia

σ 2

)
Ia > 0. (24)

A useful generalization is written as

fgamma
(
Ia
)
=

β (Ia)βµ−1(
σ 2
)βµ

0 (µ)
exp

(
−
Ia

σ 2

)β
Ia>0 and β>0.

(25)

As we observe that Gamma distribution is a specialized
case when β = 1.

2) MAXIMIZATION OF LIKELIHOOD ESTIMATION
The Gamma distribution can be estimated by comput-
ing the likelihood equations. Multiplicative noise follows
Gamma distribution which is represented as a function of
(µ, σ 2, β) [3]. We will calculate the generalized Gamma
distribution with β unknown. The log-likelihood function is
based on Iaij is

Lgamma
(
µ, σ 2, β

)
= lnβ − βµ ln σ 2

− ln0 (µ)

+
1
MN

M−1∑
i=0

N−1∑
j=1

(βµ− 1) ln Iaij −

(
Iaij
σ 2

)β . (26)

The likelihood of equation is obtained by taking partial
derivatives w.r.t. µσ 2 and β

0 = −
d ln0 (µ)

dIa
− β lnµ+

β

MN

∑M−1

i=0

∑N−1

j=1
ln Iaij ,

(27a)

0 = −µ+
1
MN

∑M−1

i=0

∑N−1

j=1

(
Iaij
µ

)β
, (27b)

0 =
1
β
+

k
MN

∑M−1

i=0

∑N−1

j=1
ln
Iaij
µ

−
1
MN

∑M−1

i=0

∑N−1

j=1

(
Iaij
σ 2

)β
ln

(
Iaij
σ 2

)
. (27c)

The maximum likelihood estimation is defined by solving
eq. (27c). In eq. (27b), σ 2 can be expressed as a function of
µ and β

σ 2 (µ, β) =

∑M−1

i=0

∑N−1

j=1

(
Iaij
)β

MNµ


1
β

. (28)

Substitute eq. (28) in eq. (27c), (29), as shown at the bottom
of the next page.

It is known that for Gamma distribution β = 1. So,
we can represent maximum likelihood estimate for µ and σ 2

as (30a) and (30b), shown at the bottom of the next page.
Eqs. (30a) and (30b) represent a log-likelihood estimation

of generalized Gamma distribution.

C. POISSON NOISE DISTRIBUTION MODEL: CASE 3
The Poisson noise distribution follows a mixed noise model
where noise is both additive and multiplicative [47], [48].
Assume that for image Ia the Poisson exponential distribution
with mean (µ) and variance

(
σ 2
)
is written as

f
(
Ia;µ, σ 2

)
=
µσ 2e−σ

2Ia−µ
(
exp

(
−σ 2I2

))
1− eµ

. (31)

This distribution converges to an exponential distribution
with parameters mean and variance [49]. If PDF decreases
then 0 < µ < 1 otherwise µ ≥ 1.

1) PRIOR AND POISSON NOISE DISTRIBUTION
For Poisson noise distribution we estimate the specification
of the prior distribution for the parameters µ and σ 2.
The corresponding conjugate prior to Poisson distribution
retains the shape Gamma distribution. We use Jeffrey’s
prior [48], [49] for σ 2 and Gamma prior g(·) for given µ,
which can be written as

g (µ) ∝ µb1−1 exp (−b2µ) , (32a)

g

(
σ 2
|µ
)
∝

1
σ 2 . (32b)

Now the joint prior for µ and σ 2 is given as

g

(
µ, σ 2

)
∝
µb1−1

σ 2 exp (−b2µ) b1 > 0, b2 > 0. (33)
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b1b2 are hyper-parameters. Under independent and identi-
cally distributed sampling as the exponents grow then the
eq. (33) retains the power ofµ. This suggests that to obtain the
conjugate prior for µ we use a distribution that is a product
of powers of µ and (1− µ) which is normalized as b1 and
b2 such that b1 >−1 and b2 >−1. This choice of prior
distribution can be justified when information about µ and
σ 2 is very less. A flat prior distribution is a result of large
prior variance while the peaked prior is a result of the small
prior variance. However, b1 and b2 can be taken as zero, when
information about mean and variance is very less.

2) MAXIMIZATION OF LIKELIHOOD ESTIMATION
The likelihood function [50] for the Poisson distribution case
can be written as

Lpoisson
(
µ, σ 2

|Ia
)
= exp

{
MN log

(
µσ 2

)
−σ 2

∑
∀i,j

Iaij − µ
∑
∀i,j

e−σ
2Iaij −MN log

(
1− eµ

)}
.

(34)

The log likelihood of eq. (34) is

log
(
Lpoisson

)
= MN log

(
µσ 2

)
− σ 2

∑
∀i,j

Iaij

−µ
∑
∀i,j

e−σ
2Iaij −MN log

(
1− eµ

)
(35)

Differentiating eq. (35) w.r.t. µ and σ 2 we get two implicit
equations in mean and variance as

MN
µ
−

∑
∀i,j

eσ
2Iaij −

MNe−µ

1− e−µ
= 0, (36a)

MN
σ 2 −

∑
∀i,j

Iaij + µ
∑
∀i,j

Iaije
−σ 2Iaij = 0. (36b)

After combining the likelihood function from eq. (34) and
prior from eq. (33), the joint posterior distribution for µ and
σ 2 is computed. The density functions are given as

p
(
µ, σ 2

|Ia
)
∝ Lpoisson

(
µ, σ 2

|Ia
)
g

(
µ, σ 2

)
, (37a)

p
(
µ, σ 2

|Ia
)
= c−1µ(M+N+b1−1)σ 2(M+N−1)

exp
{
−σ 2

∑
∀i,j

Iaij − µ
(
b2 +

∑
∀i,j

e−σ
2Iaij
)}
. (37b)

Here

c =
∫
∞

0

∞∫
0

µ(M+N+b1−1)σ 2(M+N−1)

exp

−σ 2
∑
∀i,j

Iaij − µ

b2 +∑
∀i,j

e−σ
2Iaij

 dµdσ 2.

By considering the fully conditional distortion, the samples
from the posterior distribution are simulated using µ and σ 2

such that

p
(
µ|σ 2, Ia

)
∝ µM+N+b1−1 exp

−µ
b2 +∑

∀i,j

e−σ
2Iaij


−MN . log

(
1− e−µ

) , (38a)

p
(
σ 2
|µ, Ia

)
∝σ 2(M+N−1)exp

−σ 2
∑
∀i,j

Iaij−µ
∑
∀i,j

e−σ
2Iaij

 .
(38b)

Eq. (36a) and eq. (36b) gives likelihood maximized
at mean and variance i.e. this computation yields the
estimates µ̂ and σ̂ 2

D. WAVELET TRANSFORMATION COEFFICIENTS
We assume that the individual image pixels are independent.
The conditional likelihood of noisy image (Ia) w.r.t. noise-
free image (I ) is proportional to the sum of squared norm [35]
and it can be written as

p
(
Ia|I

)
∝ exp

(
−
‖Ia − I‖22

σ 2

)
. (39)

The reconstruction of noisefree image aims to maximize
the likelihood equation w.r.t. bivariate conjugate priors of
image i.e. µ and σ 2. The equivalent sum of the squared norm
in eq. (39) has to be minimized. ‖Ia − I‖22 represents the sum

µ (β) =

∑M−1
i=0

∑N−1
j=1

(
Iaij
)β

β
∑M−1

i=0
∑N−1

j=1

(
Iaij
)β
. ln Iaij − β

∑M−1
i=0

∑N−1
j=1 ln Iaij .

∑M−1
i=1

∑N−1
j=0

(
Iaij
)β

(29)

µ̂ =

∑M−1
i=0

∑N−1
j=1 Iaij

β
∑M−1

i=0
∑N−1

j=1 Iaij . ln I
a
ij −

∑M−1
i=0

∑N−1
j=1 ln Iaij .

∑M−1
i=1

∑N−1
j=0 Iaij

, (30a)

σ̂ 2 =
1

MN
∑M−1

i=0
∑N−1

j=1 Iaij . ln I
a
ij −

∑M−1
i=0

∑N−1
j=1 ln Iaij .

∑M−1
i=1

∑N−1
j=0 Iaij

(30b)
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FIGURE 2. Surface plots of proposed methods for image prior density function (a) image size 128 × 128 (b) image
size 512 × 512 (c) image size 1024 × 1024.

of squared norm over image pixel space (ij) such that∥∥Ia − I∥∥22 ∼= 1
MN

∑
∀i,j

∥∥∥Iaij − Iij∥∥∥22 . (40)

Since the image priors are less susceptible to variations
in pixel intensity because the likelihood estimation improves
robustness and reduces bias before the final reconstruction of
the noisefree image. In this paper, we opt to use a transforma-
tion to represent the image pixels using wavelet coefficients.
The procedure to generate high and low frequency wavelet
coefficients are detailed in [36]. Let us assume that high
frequency and low frequency wavelet coefficients are rep-
resented as hij and `ij respectively. Once the transformation
coefficients are estimated we can express the sum of squared
norm as ∥∥∥Iaij − Iij∥∥∥22 ≈ 1

MN

∑
∀i,j

∥∥hij − `ij
∥∥2
2 . (41)

hij and `ij are computed from wavelet transformation
of the image as WT Iaij , where WT represents wavelet
transformation [45]. The high and low frequency coefficients
are computed using wavelet transform and these pixels are
identified as aggregate pixels vectors, Nij

E. MINIMIZATION OF NOISY PIXELS
In eq. (40) and eq. (41) the sum of squared norm and
noisefree likelihood membership is further optimized using
by minimization of Nij. Therefore, we use the minimization
problem for noisefree image reconstruction. The transformed
pixel vector can be represented using the minimization
equation [45] as

Nij =
1
σ 2

∥∥hij − `ij
∥∥2
2 + λ1

(
hij − µij

)T −1∑
∀i,j

(hij − µij)

+λ2
∥∥hij, `ij

∥∥
∗
. (42)

‖.‖∗ is the nuclear norm [51] ofmatrixWT Iaij with high and
low frequency wavelet coefficients. λ1 and λ2 are the weights
of the likelihood and nuclear norm terms [51]. We can mini-
mize the overall objective function in eq. (42) by minimizing
each term independently. To achieve this, we have used a
squared F-norm [51]. The Nij is minimized w.r.t. low fre-
quency coefficients (lij) such that the overall effect of high fre-
quency coefficient is maximized. The minimization equation

becomes(
`∗ij,N

∗
ij

)
= argmin

`ij,Nij

1
σ 2

∥∥hij − lij
∥∥2
2

+λ1
(
hij − µij

)T ∑−1

∀i,j
(hij − µij)

+

∥∥∥Nij −

[
hij, `ij

]∥∥∥2
F
+ λ2

∥∥Nij
∥∥
∗
. (43)

Here,
∥∥∥Nij −

[
hij, `ij

]∥∥∥2
F

represents squared F-norm.(
`∗ij,N

∗
ij

)
represents the minimization of Nij w.r.t. `ij such

that N ∗ij denotes noisefree pixel extraction matrix for the
selected low frequency coefficient matrix `∗ij. To solve
eq. (43) `ij is varied by keepinghij fixed inNij. By doing this,
the squared F-norm term becomes a quadratic function of `ij.
Therefore, the optimization w.r.t. `ij in Nij can be written as(

`∗ij,N
∗
ij

)
= argmin

`ij,Nij

1
σ 2

∥∥hij − `ij
∥∥2
2

+λ1
(
hij − µij

)T ∑−1

∀i,j
(hij − µij)

+

∥∥Nij
[
:,hij

]
− `ij

∥∥2
2

(MN + 1) σ 2 . (44)

1
(MN+1)σ 2

is Lagrange multiplier [45] which is used to rep-
resented the F-norm in form of the squared norm.Nij

[
:,hij

]
represents the pixel vector with high frequency coefficients.
Since eq. (44) is quadratic therefore, its derivative will give a
linear equation as(

MN + 2
MN + 1

+ λ, σ 2.
∑−1

∀i,j
hij − µij

)
`∗ij = hij + λ1σ

2
∑−1

∀i,j
µij +

Nij
[
:,hij

]
MN + 1

. (45)

F. FINAL IMAGE RECOVERY
The transformation coefficients are estimated and we can
recover them as the final denoised image (F) in pixel domain
by inverse wavelet transform. It can be represented as

F =W
((
`∗ij,N

∗
ij

))
,∀ij. (46)

Here, W is the inverse wavelet transform. To reconstruct
the full image, we use the transformation coefficients and
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FIGURE 3. Surface plots of proposed method for posterior density function (a) image size 128 × 128 (b) image size
512 × 512 (c) image size 1024 × 1024.

transformed noisefree pixels only. The noisefree pixel extrac-
tion matrix is represented as N ∗ij such that F =

∑
∀i,jN ∗ij Iij.

The optimal solution to this minimization problem is

F = argmin
`ij

λ0
∥∥Ia − `ijIa∥∥22 +∑∀i,j

∥∥∥N ∗ij I − Ia∥∥∥22 .
(47)

λ0 is a positive constant. The leastsquare solution of
eq. (47) is

F =
(
λ0I +

∑
∀i,j

N ∗ij I
)−1 (

λ0Ia +
∑
∀i,j

N ∗ij I
a
)
.

(48)

Eq. (48) represents the final denoised image.

G. PROPOSED ALGORITHM
The algorithm used in the proposed method has been defined
in Algorithm 1.

IV. PERFORMANCE MEASURES
This paper presents a comparison of the proposed method
with the conventional algorithms to analyze the performance
of the proposed method. It is observed that the expected
estimation of the parameters has been successfully recovered
using the posterior distribution. We have used mean and
variance as the parameter of interest to simulate the statistical
estimation using the posterior distribution and computed its
bias. Eqs. (12), (23), and (37b) present the estimation of the
posterior distribution for different noise models. It is assumed
that this estimation is based on the image space. This paper
considers different image sizes as 1024×1024.512×512 and
128×128. It is observed that when the image size is small the
distribution of posterior estimate is not uniformly distributed.
On the other hand, when the image size is large then the
distribution of posterior estimate is uniformly distributed
which is shown in the surface plots. Figures 2–4 present
the surface plots for prior, posterior and likelihood functions
respectively. The posterior estimation has been analyzedw.r.t.
statistical parameters in terms of bias (B). It is also observed
in the surface plots in Figures 2–4 that when the variance is
small then the prior estimate truncates the long tails of the
likelihood function.

In this paper we have considered different image sizes
and plotted the normal prior, log-likelihood and posterior

Algorithm 1 Proposed Algorithm
1) Input: Original image I of sizeM × N .
2) Introduce Gaussian, Gamma or Poisson noise which

yields noisy image (Ia).
3) Compute overall discrete gradient from horizontal and

vertical discrete gradient.
4) Evaluate probability of noisy image w.r.t mean and

variance of prior.
5) Evaluate absolute values of probability of noisy image

w.r.t. discrete gradient in case of priors.
6) Evaluate the conditional probability of noisy image w.r.t.

noise-free image using MAP estimate.
7) Substitute the values of probabilities in step 6 in terms of

the gradient.
8) The log-likelihood estimate is computed for noisy

images for Gaussian, Gamma, and Poisson cases.
9) Maximize the equation from step 8 w.r.t. mean and

variance to calculate maxima point.
10) High frequency and low frequency wavelet coefficients

are represented as hij and `ij respectively. Once the
transformation coefficients are estimated we can express
them as the sum of squared norm.

11) The sum of squared norm and noise-free likelihood
membership is optimized using by minimization of
aggregate pixels vector (N ij)

12) N ij is minimized w.r.t. low frequency coefficients (`ij)
and the overall effect of high frequency coefficient is
maximized.

13) To reconstruct the full image, we use the transfor-
mation coefficients and transformed noise-free pixels
only. Finally, the optimal solution of the minimization
problem yields noise-free output image.

14) Output: F = argmin
`ij

λ0
∥∥Ia − `ijIa∥∥2F +

∑
∀i,j

∥∥∥N ∗ij I − Ia∥∥∥2F /∗ Final noise free image ∗/

in Figures 2–4 respectively. We have considered the Gaussian
distributed noise samples for these plots. It is observed
that for all the three image sizes the likelihood function is
uniformly distributed about the center for the parameters
under consideration i.e. mean and variance. It is observed that
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FIGURE 4. Surface plots of proposed method for likelihood function (a) image size 128 × 128 (b) image size
512 × 512 (c) image size 1024 × 1024.

TABLE 1. Values of various performance parameters using proposed
algorithm for Gaussian 20dB noise case.

posterior distribution resembles prior distribution for smaller
image size which is well illustrated from eqs. (12), (23),
and (37b). When the image size increases the log-likelihood
distribution becomes more peaked and the area surrounding
the peak is zero. It is observed that the peak of log-likelihood
distribution increases when the prior has a small variance,
and vice versa. Generally, these estimates are less affected
by prior; but, in practical applications, there is a critical
sample size for which prior can influence the estimation. It is
observed that exponential posterior distribution is estimated
using mean and variance. The bias value becomes small
when the image size is large and vice versa. Thus, it is
concluded that the root men square error can be reduced
for a large range of image space because in that case the
bias value also reduces. The smaller bias value depicts better
efficiency of estimate. The bias value w.r.t. mean and variance
is mathematically written as

Bmean =
∥∥µ̂− µ∥∥ (49a)

Bvariance =
∥∥∥σ̂ 2 − σ 2

∥∥∥ . (49b)

µ̂ is log-likelihood of mean estimate and µ is a true mean
estimate. σ̂ 2 is log-likelihood of variance estimate and σ 2 true
mean estimate. ‖.‖ is absolute value norm. The maximum
likelihood estimate for mean and variance is sample mean

FIGURE 5. The proposed method based qualitative image restoration
results for 6 grayscale images

(
512 × 512

)
for Gaussian 20dB noise case

(Row 1: High frequency coefficients based restoration; Row2: Low
frequency coefficients based restoration; Row 3: Aggregate
transformation; Row4: Log-Likelihood based restoration; Row5:
Minimized Nij w.r.t high frequency; Row 6: Minimized Nij w.r.t low
frequency; Row7: Optimized image; Row8: Final denoised image).

and variance of data respectively. The larger variance value
causes mean square error to increase.

Entropy (E) is the information content of the image and it
is represented as E = −

∑L−1
i=0 Dilog2Di Here, L is the total

of grey levels, Di = {D0,D1, . . . ,DL−1} is the probability
distribution of each level. Root mean square error (RMSE)
corresponds to noisy pixels in F and Ia. RMSE value will
increase when the noisy pixels increase between these two
images. Mathematically

RMSE =

√
1
MN

∑M−1

i=0

∑N−1

j=0
(Fij − Iaij )

2. (50)

132178 VOLUME 9, 2021



A. Dhaka et al.: Likelihood Estimation and Wavelet Transformation Based Optimization

FIGURE 6. The proposed method based qualitative image restoration
results for 6 grayscale images

(
512 × 512

)
for Gamma 20dB noise case

(Row 1: High frequency coefficients based restoration; Row2: Low
frequency coefficients based restoration; Row 3: Aggregate
transformation; Row4: Log-Likelihood based restoration; Row5:
Minimized Nij w.r.t high frequency; Row 6: Minimized Nij w.r.t low
frequency; Row7: Optimized image; Row8: Final denoised image).

TABLE 2. Values of various performance parameters using proposed
algorithm for Gamma 20dB noise case.

FIGURE 7. The proposed method based qualitative image restoration
results for 6 grayscale images

(
512 × 512

)
for Poisson 20dB noise case

(Row 1: High frequency coefficients based restoration; Row2: Low
frequency coefficients based restoration; Row 3: Aggregate
transformation; Row4: Log-Likelihood based restoration; Row5:
Minimized Nij w.r.t high frequency; Row 6: Minimized Nij w.r.t low
frequency; Row7: Optimized image; Row8: Final denoised image).

TABLE 3. Values of various performance parameters using proposed
algorithm for Poisson 20dB noise case.
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FIGURE 8. The proposed method based qualitative image restoration
results for 6 grayscale images

(
512 × 512

)
for Gaussian 40dB noise case

(Row 1: High frequency coefficients based restoration; Row2: Low
frequency coefficients based restoration; Row 3: Aggregate
transformation; Row4: Log-Likelihood based restoration; Row5:
Minimized Nij w.r.t high frequency; Row 6: Minimized Nij w.r.t low
frequency; Row7: Optimized image; Row8: Final denoised image).

TABLE 4. Values of various performance parameters using proposed
algorithm for Gaussian 40dB noise case.

FIGURE 9. The proposed method based qualitative image restoration
results for 6 grayscale images

(
512 × 512

)
for Gamma 40dB noise case

(Row 1: High frequency coefficients based restoration; Row2: Low
frequency coefficients based restoration; Row 3: Aggregate
transformation; Row4: Log-Likelihood based restoration; Row5:
Minimized Nij w.r.t high frequency; Row 6: Minimized Nij w.r.t low
frequency; Row7: Optimized image; Row8: Final denoised image).

TABLE 5. Values of various performance parameters using proposed
algorithm for Gamma 40dB noise case.
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FIGURE 10. The proposed method based qualitative image restoration
results for 6 grayscale images

(
512 × 512

)
for Poisson 40dB noise case

(Row 1: High frequency coefficients based restoration; Row2: Low
frequency coefficients based restoration; Row 3: Aggregate
transformation; Row4: Log-Likelihood based restoration; Row5:
Minimized Nij w.r.t high frequency; Row 6: Minimized Nij w.r.t low
frequency; Row7: Optimized image; Row8: Final denoised image).

The average correlation C can be expressed as

C =
Fij.Iaij√∑M−1

i=0
∑N−1

j=0 (I2ij + I
a2
ij )
. (51)

The average correlation metric provides a quantitative
measure of the degree of correlation. The image quality
improves when C is closer to 1. Another performance metric
is, Image quality Index (Q) which is used to measure image
distortion in terms of three factors i.e. loss of correlation,
luminance distortion and constant distortion. We considered
two images i.e. noisy (Ia) and denoised image (F). The
notation d represents the degree of correlation. The image
quality index is calculated as a product of three components.
It is written as

Q =
d(F , Ia)
d (F) d(Ia)

2d̄ (F) d̄(Ia)
d̄ (F)2 + d̄ (Ia)2

2d (F) d(Ia)
d (F)2 + d (Ia)2

.

(52)

d̄ (F) =
1

M × N

∑M−1

i=0

∑N−1

j=0
Fij (53a)

TABLE 6. Values of various performance parameters using proposed
algorithm for Poisson 40dB noise case.

d̄(Ia) =
1

M × N

∑M−1

i=0

∑N−1

j=1
Iaij (53b)

d(FIa) =
1

M + N − 1

∑M−1

i=0

∑N−1

j=0

(
Fij − d̄(Ia)

)
(
Iaij − d̄(I

a)
)

(53c)

d (F)2 =
1

M + N − 1

∑M−1

i=0

∑N−1

j=0

(
Fij − d̄ (I )

)2
(53d)

d
(
Ia
)2
=

1
M + N − 1

∑M−1

i=0

∑N−1

j=0

(
Iaij − d̄(I

a)
)2
.

(53e)

The degree of linear correlation is measured using the
first component whose values lie between −1 to 1. The
closeness of the mean luminance (or contrast of images)
between images Fij and Iaij is measured using the second
component whose value lies between 0 to 1. The similarity
of contrast between images is measured using the third
component whose value lies between 0 to 1. The best value
of Q is assumed to be unity.

Peak signal to noise ratio (PSNR) is calculated as

PSNR = 20log10

(
L2

1
MN

∑M−1
i=0

∑N−1
j=0 (Fij − Iaij )

2

)
. (54)

Here, L is the number of gray levels in the image.
A high PSNR value corresponds to a better qualitative image.
Structural similarity index measure (SSIM ) [52], [53] is used
for determining the structural similarity between two images
as it takes into account the characteristics of the human visual
system. The SSIM of the image F and Iij is given as

SSIM =

∑
SSIM (Fij, Iij)
M × N

. (55)
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FIGURE 11. Qualitative results for Gaussian noise at 20dB
(
512 × 512

)
(Row 1: Proposed method; Row2: MLE [21]; Row 3: VMAP [22];

Row 4: BHE [28]; Row5: SCA [29]; Row6: BMM [30]; Row7: HBN [31]; Row8: VBA [33] and Row9: ADM [34]).

SSIM (Fij, Iij) is the similarity of the image in the i× j space
Fij and Iij is given by

SSIM
(
Fij, Iij

)
=

(
2µFijµIij

) (
2σFijµIij

)
(
µ2
Fij
+ µ2

Iij

) (
σ 2
Fij
+ σ 2

Iij

) . (56)

µFij and µIij are the local means, σ 2
Fij and σ 2

Iij are the
variance for images Fij and Iij respectively.
Figures 5–10 represent qualitative results for different

stages of the proposed method for 6 grayscale images under
different noise cases i.e. Gaussian 20dB, Gamma 20dB,
Poisson 20dB, Gaussian 40dB, Gamma 40dB and Poisson
40dB respectively. The different rows of Figures 5–10
indicate the following: Row 1: High frequency coeffi-
cients based restoration; Row2: Low frequency coeffi-
cients based restoration; Row 3: Aggregate transformation;

Row4: Log-Likelihood based restoration; Row5: Minimized
Nij w.r.t high frequency; Row 6: Minimized Nij w.r.t low
frequency; Row7: Optimized image; Row8: Final denoised
image.

Tables 1–6 represent values of various performance
parameters computed for proposed algorithm for different
noise cases i.e. Gaussian 20dB, Gamma 20dB, Poisson
20dB, Gaussian 40dB, Gamma 40dB and Poisson 40dB
respectively.

V. RESULTS AND DISCUSSION
This paper presents the performance comparison of the pro-
posed algorithm with some existing parametric estimation-
based methods [21], [22], [27]–[30], [33] and [34]. for
image denoising. It can be observed that the visual quality
of an image is improved using the proposed algorithm.
The denoising performance of the proposed method has
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FIGURE 12. Proposed method based qualitative results for 6 images
(
512 × 512

)
(Row 1: Original images; Row2:

Gaussian noise at 20dB; Row 3: Gamma noise at 20dB; Row4: Poisson noise at 20dB; Row5: Gaussian noise at 40dB;
Row 6: Gamma noise at 40dB; Row7: Poisson noise at 40dB).

improved by using Log-likelihood estimation on priors of
the image. We performed the experiments on six sets of
grayscale images (house, butterfly, lake ball, bridge, and
cup). We have considered different noise densities i.e. 20dB
and 40dB for our experiments. The qualitative results using
various methods [21], [22], [27]–[30], [33], and [34]. have
been shown in Figure 11 for Gaussian noise at 20dB. The
qualitative results using the proposed method for Gaussian,
Gamma, and Poisson-induced noises at 20dB and 40dB are
shown in Figure 12. The qualitative results depict that the
output image using the proposed method is visually pleasing
as compared to other methods.

We have also analyzed one set of the color image from
the dataset [54]. Until recently, extensive work has been
done related to grayscale images, but the advances in
computational power and instrumentation have evolved the
research on color images as well [35]. The proposed method
can be extended from grayscale to the color images. Thus,
the multidimensional capability of the proposed method
enables the implementation of more efficient methods in the
future as well. The applicability of the proposed method
for color images is based on the selection of an appropriate
likelihood measure. Figure 13 represents the proposed
method based qualitative image restoration results for a color
image. The different rows of Figure 13 indicate the following:
Row 1: High frequency coefficients based restoration;
Row2: Low frequency coefficients based restoration; Row
3: Aggregate transformation; Row4: Log-Likelihood based
restoration; Row5: Minimized Nij w.r.t high frequency;

TABLE 7. Values of reliability and statistical estimation parameters for
proposed algorithm.

Row 6:MinimizedNij w.r.t low frequency; Row7: Optimized
image; Row8: Final denoised image.
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FIGURE 13. The proposed method based qualitative image restoration results for color image (512 × 512) (Col 1,2: Gaussian
induced noise (40dB); Col 3,4: Gaussian induced noise (40dB); Col 5,6: Poisson induced noise (40dB)); (Row 1: High
frequency coefficients based restoration; Row2: Low frequency coefficients based restoration; Row 3: Aggregate
transformation; Row4: Log-Likelihood based restoration; Row5: Minimized Nij w.r.t high frequency; Row 6: Minimized Nij
w.r.t low frequency; Row7: Optimized image; Row8: Final denoised image).

In this paper, we have quantitatively analyzed the
performance of all the algorithms in terms of performance
measures such as RMSE, PSNR, Quality Index, Entropy,
Correlation coefficient, SSIM. These performance mea-
sures consider average pixel intensity under different noise
levels i.e. 20dB and 40dB. The input image has been
introduced to Gaussian, Gamma and Poisson noise by
using a pseudorandom noise generator. We generate a
noised image by scaling the ideal intensity image Ia by

a factor n such that the final image becomes (n.Ia).The
scale factor n is used to control the average intensity
of the image. The value of n is small under low light
conditions. We have chosen its value as twice the aver-
age pixel intensity value of E(nIa). In our experiments,
we have chosen average pixel intensity value of E(nIa) as
0.05, 0.1, 0.5, 1 and 1.5. We have used PSNR and SSIM to
benchmark denoising performance as shown in tabulation
results.
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TABLE 8. Performance metric based comparison under Gaussian noise distribution for an average of image sets.

TABLE 9. Performance metric based comparison under Gamma noise distribution for an average of image sets.

TABLE 10. Performance metric based comparison under Poisson noise distribution for an average of image sets.

In Table 7 the values of statistical estimate and reliability
have been calculated by using the proposed method as
average values of all image sets. These average values have
been computed for different noise densities of 20dB and

40dB under Gaussian, Gamma and Poisson noise. We have
considered different image sizes as 1024 × 1024, 512 ×
512 and 128 × 128 to compute the values of true values
of statistical estimate. The value of the bias parameter is
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TABLE 11. a. Variation in PSNR w.r.t. average pixel intensity under
different noise distributions for average of image sets at noise level 20dB.
b. Variation in PSNR w.r.t. average pixel intensity under different noise
distributions for average of image sets at noise level 40dB.

TABLE 12. a. Variation in SSIM w.r.t. average pixel intensity under
different noise distributions for average of image sets at noise level 20dB.
b. Variation in SSIM w.r.t. average pixel intensity under different noise
distributions for average of image sets at noise level 40dB.
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TABLE 13. a. Variation in PSNR w.r.t. variance under different noise
distributions for average of image sets at noise level 20dB. b. Variation in
PSNR/SSIM w.r.t. variance under different noise distributions for average
of image sets at noise level 40dB.

small for large image sizes and vice versa. The value of
root means square error also reduces for large image size.
The efficiency of the estimate is analyzed in terms of bias.
As bias reduces the efficiency of estimate improves. We have
examined the effect of normal priors on the estimates. The
precision of the estimate improves by using a good set
of priors so that a smaller bias and a smaller RMSE are
attained.

Tables 8–10 presents the performance results of different
algorithms in terms of performance measures i.e. PSNR,
Quality Index, Entropy, run time in seconds, and Correlation
coefficient. These performancemeasures have been evaluated
for 20dB and 40dB of noise levels for Gaussian, Gamma, and
Poisson noise cases respectively. The proposed algorithms
show a high PSNR value for a low level of noise densities.
This means that the image features are well preserved using
the proposedmethod.Moreover, it is observed fromTables 8–
10 that the results of the proposed algorithm are compared
with [28] at a high level of noise density. This convergence
of the proposed algorithm is due to the fact that with an
increase in noise density there is an increase in the probability
of occurrence of noisy pixels which results in counting
more noisy pixels than the central pixel. Because less
noisy pixels contribute to maximum likelihood estimation.
Moreover, the pixels with high PSNR value tend to have
more useful information than the pixels with low PSNR
value.

Various statistical parameters have been used in this
paper to analyse different denoising algorithms. One of
such parameters is Entropy. It is a metric that evaluates the
information content of any image.When entropy takes higher
values the information content of the image increases which
improves the performance. The proposed method yields
better qualitative results as compared to various existing
methods [21], [22], [27]–[30], [33], and [34]. Another
performance metric is Average Correlation which computes
the degree of correlation between output and input images.
Tables 8–10 also present the execution time in seconds
for various methods and it is observed that the proposed
algorithm has comparable execution time in comparison
to [28], [29].

Table 11a and Table 11b present variation in PSNR w.r.t.
average pixel intensity under different noise distributions for
an average of image sets at noise level 20dB and 40 dB
respectively. Table 12a and Table 12b present variation in
SSIM w.r.t. average pixel intensity under different noise
distributions for an average of image sets at noise level
20dB and 40dB respectively. When the noise-free image
and denoised image are alike then the value of RMSE
becomes zero which improves the PSNR value. On the
other hand, when the similarity between the noise-free image
and denoised image reduces then the PSNR value also
reduces. Table 13a and 13b present variation in PSNR w.r.t.
variance under different noise distributions for an average
of image sets at noise level 20dB and 40 dB respectively.
It is observed that for large values of variance the PSNR
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reduces which assesses the performance of the proposed
method.

VI. CONCLUSION
There exist various applications of image denoising such as
medical imaging, remote sensing, biometrics and forensics,
industrial and agricultural automation, etc. In this paper,
the spatial resolution of the image has improved using the
proposed image denoising method. Therefore, the proposed
method is proven to be capable to preserve the original
spectral content of any image. The performance results
have been evaluated in terms of qualitative and quantitative
results which include both spectral and spatial properties.
The proposed method is based on an exponential family
of distributions whose priors have been estimated w.r.t. the
parameter of interest for Gaussian, Gamma and Poisson noise
cases. The proposed method has shown better results about
the denoising method so that the noise can be removed from
the image by preserving image details. The noise reduction
in the image is achieved by using conditional likelihood and
wavelet transformation-based minimization technique. The
accuracy and reliability of the proposed methods is validated
by analyzing priors and posteriors distribution. The proposed
method presents an accurate noise model whereas the
existing methods just present noise distribution in the pixel
intensity domain. The numerical results present a quantitative
comparison of the proposed method with other conventional
methods.

Any single denoising algorithm may not be able to
exhibit the desired level of applicability. Therefore in the
future, we would combine various methods in different
domains to harness the attributes of various domains while
overcoming limitations of each other. For future work,
we will also explore real-life noises because the real noises
are much more complex than the considered noise models.
It has been observed that the proposed method leaves a
residual noise and may not be able to sustain the optimal
performance at extremely higher noise levels. However,
within the standard bounds of noise levels, the proposed
method holds performance consistency, high visual quality,
and preservation of fine feature details.
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