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ABSTRACT The rapid increase in the importance of human-machine interaction and the accelerating
pace of life pose various challenges for the creators of digital environments. Continuous improvement
of human-machine interaction requires precise modeling of the physical and emotional state of people.
By implementing emotional intelligence in machines, robots are expected not only to recognize and track
emotions when interacting with humans, but also to respond and behave appropriately. The machine should
match its reaction to the mood of the user as precisely as possible. Music generation with a given emotion
can be a good start to fulfilling such a requirement. This article presents the process of building a system
generating music content of a specified emotion. As the emotion labels, four basic emotions: happy, angry,
sad, relaxed, corresponding to the four quarters of Russell’s model, were used. Conditional variational
autoencoder using a recurrent neural network for sequence processing was used as a generative model. The
obtained results in the form of the generated music examples with a specific emotion are convincing in their
structure and sound. The generated examples were evaluated with two methods, in the first using metrics for
comparison with the training set and in the second using expert annotation.

INDEX TERMS Generative models, music generation, music emotion, variational autoencoder.

I. INTRODUCTION
More and more devices and machines enter our everyday life.
Nowadays, human-machine interaction can be encountered
not only in industry. It started more than half a century ago
with industrial robots [1]. Gradually, they were joined by
increasingly complex and multifunctional information and
vending machines, and today this interaction is almost every-
where, e.g. a great number of people are increasingly using
e-assistants like Amazon Alexa1 and Google Assistant.2

The importance of human-machine interaction on the
one hand and customer expectations on the other set qual-
ity requirements for new machine generation. The continu-
ously improving digital environment reflects the gradually
progressing state of people. The implemented emotional

The associate editor coordinating the review of this manuscript and

approving it for publication was Luca Turchet .
1https://developer.amazon.com/en-IN/alexa
2https://assistant.google.com/

intelligence machines and robots are expected not only to
recognize and track emotions when interacting with humans
but also to respond and behave appropriately to the actual
human mood. One way to fulfill this requirement is through
the appropriate creative behavior such as music generation
with a given emotion.

The generation of content with a specific emotion [2] by
intelligent machines is the next stage in the development of
systems that deal with the emotions expressed by humans,
its recognition and tracking. Expressing emotions by robots
interacting with humans is quite an important issue if this
interaction is to be successful. Generating music with a spe-
cific emotion is also part of this form of communication,
asmusic transmits content in which emotions play a dominant
role.

Deep learning techniques for music generation is a rel-
atively new phenomenon [3] that enters the area of music
composition, which is typically an area of human creativ-
ity and artistry. There are more and more music generating
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systems [4]–[6] that try to imitate human creativity, even
compete with it, and learn from compositions created over the
past centuries of human development. Music is an expression
of human thoughts in the form of an organization of sounds in
time. It can be compared to verbal expression, which is also
spread over time in the form of words, creating sentences,
conveying content and abstract concepts. Due to this simi-
larity, also technological solutions to problems such as text
generation and music generation have similar approaches.

Similarly to verbal expression, in addition to its content,
music conveys emotions, which in music are evoked by musi-
cal elements spread over time. Depending on the changes
over time in melody, timbre, dynamics, rhythm, or harmony,
we can notice different emotions in music [7]. Song lyrics
may also affect emotions [8], however in this study we
focused on music files without lyrics.

The aim of this paper was to build a model generating
monophonic music sequences with one of four basic emo-
tions: happy, angry, sad, relaxed. The musical elements of the
generated sequences should affect the emotion they contain.
The model should recognize the emotion-affecting patterns
in the training set and apply them to the generated examples.

The use of the four categories of emotions is of course
a simplification of the possible emotional variations of the
generated music, but it helps to start experiments on the
problem of generating music with a specific emotion. This
choice facilitates the labeling process with emotion music
data as well as model building. A more advanced version of
the music generation problem would be based on continuous
values of emotion descriptions. A similar selection of four
categories for generating emotional symbolic music was also
selected in [9].

II. RELATED WORK
Studying human-machine interaction in industrial
environments, a lot of research on the robot’s percep-
tion and hardware for the recognition of human activ-
ities emerged [10], [11]. Being an important basis for
human-machine interaction success, emotion recognition is
also a popular field of exploration. Over the last decades,
a wide range of deep learning techniques based on various
models and databases [12], [13], research on feature extrac-
tion algorithms [14], [15], etc. have been conducted. How-
ever, the implementation of their results for human-machine
interaction improvement has not yet been fully resolved.

In human-machine interaction, human emotions are sel-
dom the central theme. Usually they are only a one-sided
background. However, once the machine identifies and rec-
ognizes them, it would be quite nice if the machine responded
appropriately. By combining emotion recognition with an
appropriate machine reaction, themachine is expected to gen-
erate or create a response containing at least a partially human
element in the audio or video domain. Williams et al. [16]
demonstrated how real-time generated music can improve
runners’ performance considering an individual user’s needs.
In [17], Navarro-Cáceres et al. proposed melody generating

under the supervision of the user. The user is supported by
a mechanical device capturing the user’s movements, and
translates them into a melody.

After recognizing an emotion, the next step toward
the development of the human-machine interaction, the
intelligent machine should be able to generate at least an
appropriate musical phrase. The resulting music could be
set as a background or audio theme to support the ongoing
interaction. In this way, additional psycho-physical comfort
is provided without any additional commitment.

Division into categorical and dimensional approach can
be found in papers devoted to music emotion recogni-
tion [18]. In the categorical approach, a number of emo-
tional categories (adjectives) are used for labeling music
excerpts [19]–[21]. In the dimensional approach, emotion
is described using dimensional space, like the 2D model
proposed by [22], where the dimensions are represented by
arousal and valence [23]–[27]. In our work we will use cate-
gorical approach with four basic emotions: happy, angry, sad,
relaxed.

A comprehensive overview of music generating systems
such as recurrent neural networks, convolutional networks,
generative adversarial networks, and autoencoders was pre-
sented by Briot et al. [3]. A functional taxonomy and state
of the art in music generation systems includes work by
Herremans et al. [28]. The main concepts, specific tasks, and
open challenges of music generation were the topics of the
work of Carnovalini and Rodà [29].

A review of systems for algorithmic composition with the
intention of targeting specific emotional responses in the
listener was presented by Williams et al. [30]. It described
using sequencing, transformative and generative algorithms
to create novel and emotionally satisfying music. Addition-
ally, it also considered the use of various emotional models
and musical features, which were employed by such systems.
Scirea et al. [31], described a music generator for games,
MetaCompose, which is based on evolutionary computation
and creates music that can express different mood states
in real-time. The authors evaluated the affective expression
perceived in the music generated by the proposed system,
based on human annotation. The idea of automatically gen-
erated music with a given sentiment (positive/negative) was
presented in [32]. It developed the method used for gen-
erating textual product reviews with a sentiment [33] by
using a single-layer multiplicative long short-term mem-
ory (mLSTM) network. The network is controlled by opti-
mizing the weights of neurons found that are responsible
for the sentiment signal. A variant of this network, where
logistic regression uses the hidden states of the generative
mLSTM to encode the labeled MIDI phrases, was used as
a classifier of sentiment. The training dataset was extracted
from video game soundtracks inMIDI format, a part of which
was annotated according to a two-dimensional model that
represents emotion using valence-arousal.

In [34], Hadjeres et al. proposed geodesic latent space reg-
ularization for the variational autoencoder, which enhances
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latent space navigation with the change of the attributes of the
decoded sequences. The paper presents a music generation
system using the proposed regulation that controls the num-
ber of notes generated by variations of a given monophonic
melody. In [35], Valenti et al. presented the architecture for
music generation that is based on an adversarial autoencoder.
The conducted experiments show that the model can organize
the latent space according to high-level genre information
of the musical pieces, which allows you to modify the style
of the input song. In [36], a generative VAE model to control
tonal tension in generated music was used. For identifying
latent tension variables, the labeled musical fragment posi-
tions in the latent space were calculated. The generated music
is similar to the original music by keeping the rhythm and
manipulating the pitches to match the tonal tension.

What distinguishes this work from others is that it uses a
conditional variational autoencoder with the emotion param-
eter influencing the generated examples. The use of this
model with four basic emotions has not yet been noted in the
literature.

The rest of this paper is organized as follows. Section III
describes the phases of building a music dataset and the
emotion model used in the experiments. Section IV presents
the representation of symbolic music, which is the data form
used during the generatedmodel training. SectionV describes
the concept of conditional variational autoencoder, its imple-
mentations, parameters, and training. Section VI presents the
generated music samples as well as their evaluation. Finally,
Section VII summarizes the main findings.

III. MUSIC DATASET
A. PREPARING OF SYMBOLIC MUSIC DATASET
The first phase of building amusic generating system is build-
ing or selecting a database with musical compositions. In this
study, the symbolic music library music21 [37] containing
compositions by J.S. Bach was used. This collection mostly
includes chorales (382) as well as several other composi-
tions, 410 pieces in total. The full list of compositions in the
MusicXML format is available in [38].

Due to the fact that the symbolic music library was to be
annotated with emotion labels, the selection of the database
was guided by the fact that the database should contain
files with varying emotions. In [39], Dong et al. studied
key mode distributions of different music datasets, among
others (Lakh MIDI Dataset, Wikifonia Lead Sheet Dataset,
Hymnal Dataset, J. S. Bach music21 Dataset). They found
that key mode distributions (minor, major) in most databases
were rather imbalanced, with the exception of the J. S. Bach
music21 Dataset, where the occurrence of major compo-
sitions is equal to 56% in relation to the whole. A fairly
even key mode distribution of compositions is important
when creating a database in which emotions will be assessed,
therefore the J. S. Bach music21 Dataset was selected as the
starting database for building the training set. The database
was accessed via the MusPy Toolkit [39] and imported into
the MusPy format.

The music generation system created in this work should
generate monophonic sequences, therefore the original
J. S. Bach music21 Dataset underwent several transforma-
tions (Fig. 1). First, the tempo of all songs was standardized
to 120 BPM. The note values in songs with a tempo other
than 120 BPM were adjusted so that only the note lengths
(sixteenths, eighth notes, quarter notes, half notes, whole
notes) affected the tempo.

FIGURE 1. Transformations of J. S. Bach music21 dataset.

Another transformation is the limitation of themusic exam-
ple length to four bars and the selection of pieces only
in a 4/4 time signature, which prevail in the J. S. Bach
music21 Dataset, but which resulted in a reduction in the
number of examples in the dataset. Thus, the rhythmic struc-
ture of the examples was standardized, covering four bars
with four quarter notes. The result was eight-second exam-
ples, each example having 16 beats at a tempo of 120 BPM.

Another transformation concerned the keys of the exam-
ples, which vary greatly in the J. S. Bach music21 Dataset.
When generating simple musical sequences, distances
between sounds and rhythmic values are important, the key
does not play a significant role, and even examples in dif-
ferent keys could interfere with model training. All composi-
tions were transposed into C minor or C major.

Our model is supposed to generate one-voice musical
sequences, and therefore the next transformation concerned
only the highest voice of the composition, the soprano
part, which usually contains the main melody of the
piece. After applying all the transformations, a unified set
of 344 single-voice musical sequences was obtained, all
examples of which have the same length (8 s), are in the key
of C major or C minor, and are saved in the MIDI format.

B. DATASET ANNOTATION
During annotation of music samples, we used one of four
basic emotions: happy, angry, sad, relaxed, which correspond
to the four quarters of Russell’s model (Fig. 2), which consists
of two independent dimensions of arousal (vertical axis) and
valence (horizontal axis). Happy, angry, sad, relaxed, these
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FIGURE 2. Russell’s circumplex model [22].

are just labels representing the individual quarters of the emo-
tion model. Under each label, there are secondary emotions
from a given quarter of Russell’s model, i.e. the happy label
groups emotions with high arousal and high valence; angry,
high arousal and low valence; sad, low arousal, low valence;
and relaxed, low arousal, high valence. Similar divisions of
emotions into categories were used in papers [19], [40], [41].

The annotated set of MIDI files was played with one
volume and timbre (MIDI instrument: Grand Piano), these
elements in our experiment will not affect the emotions.
What affects the emotions of a music fragment is the musical
content: sounds, their number, the pitch, rhythmic values,
organization, minor/major scale [20], [42], [43].

The psychologist Gabrielsson in his work [44] made a
distinction between emotion perception into perceived and
felt (induced) emotions. In the case of the former, we can
perceive emotional expression in music without necessarily
being affected ourselves; while in the latter, we have an actual
emotional response to the music. Perceived emotion is the
emotion recognized in the music, and induced emotion is the
emotion experienced by the listener. The music expert’s task
was to annotate the MIDI files with the perceived emotion.

Data annotation was done by three music experts with a
university musical education. The musical education of the
experts, people who deal with the creation and analysis of
emotions in music on a daily basis, enables to trust the quality
of their annotations. Themusicians involved in the annotation
are practitioners. They play in music bands, compose, give
concerts, express emotions through music, i.e. they specialize
not only in perceiving emotions but also in creating them,
which makes them more competent in the subject of perceiv-
ing musical emotions than people who only listen to music.

Eachmusic expert heard all the examples, 344 eight-second
MIDI files, as a result of which each annotator was able to
notice all the shades of emotions in the music, which is not
always the case in databases with the emotions determined.

This had a positive effect on the quality of the received
data, which was emphasized by Aljanaki et al. [45]. The
data collected from the three music experts was averaged.
Considering the internal consistency of the collected data,
Cronbachs α [46] obtained a value of 0.90. The amount of
obtained examples is presented in Table 1. The collected data
set with MIDI files annotated with four basic emotions can
be found at link.3

TABLE 1. Amount of MIDI files annotated with 4 basic emotions.

IV. REPRESENTATION OF SYMBOLIC MUSIC
Data from theMIDI filesmust be processed before being used
to train themodel to be understandable for the neural network.
Since the music generation system will learn using mono-
phonic melodies, all MIDI files from the dataset have been
encoded into pitch-based representation using the MusPy
Toolkit. The pitch-based representation represents music as
a sequence of pitch, rest, and hold tokens. The output shape
is T × 1, where T is the number of time steps. The values in
the sequence indicate whether the current time step is a pitch
(0-127), a rest (128), or a hold (129). Hold tokens are used to
hold the duration of a note when the note is longer than the
selected resolution, in our case the resolution was sixteenth
notes.

Details of the transformation are presented in Fig. 3. The
first note, a quarter note with pitch E4, was coded with MIDI
number 64, and therefore its length is four times the length of
the sixteenth note; it was supplemented with three hold values
(129). The next note (an eighth note E4) was coded similarly.
An eighth note is two times longer than a sixteenth note and
therefore was coded with two values: MIDI number 64 and
hold value 129. The coding of subsequent notes followed the
same rules.

FIGURE 3. Example of creating pitch-based representation.

The length of each example from the dataset corresponds
to four bars in a 4/4 time signature, which is four quarter
notes per bar, making a total of 16 quarter notes. The shortest
note value in the dataset is sixteenth notes, and therefore
examples with sixteen notes were discretized. There are four

3https://github.com/grekowj/musgenvae
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sixteenth notes for each quarter note, dividing the segment
with the shortest note (sixteenth note) we get 64 time steps,
4(bar) × 4(quarter note) × 4(sixteenth note). Thus, each
MIDI file from the dataset was encoded into a pitch-based
representation with 64 time steps.

After processing the MIDI dataset, the number of different
pitch notes was reduced to 29, which after adding rest and
hold tokens gives a total of 31 different tokens in a sequence,
which were additionally one-hot encoded. The shape of the
target output tensor for one example was 64(time step) ×
31(token).

V. CONDITIONAL VAE
A generative model based on variational autoencoder
(VAE) [47] was used to generate the musical sequences,
which encodes the input data into latent space with Gaussian
distribution and then decodes samples from the latent vector
to a similar form as the input. The advantage of VAE is the
ability to move in the continuous latent space of trained VAE,
which allows to generate new musical sequences. In order
to add the possibility of controlling the type of emotions in
the generated musical sequences, the model was extended to
conditional VAE (CVAE) [48]. What makes CVAE different
from VAE is the addition of a condition, which in our case is
an emotion label (Fig. 4). The condition is added on both the
encoder and decoder inputs.

FIGURE 4. CVAE model structure.

A. IMPLEMENTATION OF GENERATIVE MODEL
For building implementation of the CVAE network and con-
ducting the experiments, the Keras4 deep learning library
written in Python with Tensorflow5 as backend was used.
Figs. 5 and 6 show the encoder and decoder of CVAE, which
were implemented using the recurrent neural network (RNN).
CVAE allows to generate musical sequences with a specific
emotion through random sampling from the latent space,
which in our case has 20 dimensions.

On the first encoder input (Fig. 5), music sequences with
64 time steps and 31 unique one-hot encoded music pitch
values are given. For faster RNN learning, the sequences are
normalized (mean: 0.00, std: 1.00). On the second encoder
input, one-hot encoded four emotion labels are given. Before
concatenating two inputs, the dimension of labels is extended
with a Dense layer and reshaped to the same size as the
shape of the music sequences. The combined sequences are
processed by 512 Gated Recurrent Units (GRU) [49], which
make up RNN. The next two Dense layers reduce dimension-
ality and generate the mean and log variance. The last output
layer of the encoder is a sampling of latent vector z.

On the first decoder input (Fig. 6), the samples of latent
vector z from the encoder output are given. On the second
decoder input, one-hot encoded four emotion labels are given,
same as for the encoder. After combining, two inputs are used
to layer RepeatVector to prepare the data size for the next
layer which is RNN with 512 GRU. The last TimeDistributed
layer allows to apply a Dense layer across the time steps of
the music sequence.

The CVAE network consist of the encoder and the decoder
joined together. The shape of the music sequences on
the CVAE input and output is the same (None, 64, 31).
The encoder takes input x, and estimates the mean µ, and the
standard deviation σ , of the multivariate Gaussian distribu-
tion of latent vector z. The decoder takes samples from latent
vector z to reconstruct the input on the output as x̃. The loss
function is the sum of both the Reconstruction Loss (LR) and
Latent loss (LL). Reconstruction Loss calculates the differ-
ence between input x and output x̃ using cross entropy. Latent
loss is calculated using the Kullback-Leibler divergence,
which calculates the distance between the target distribution
(the Gaussian distribution) and the actual distribution in latent
vector z:

LL = −
1
2

K∑
i=1

(1+ log σ 2
i − σ 2

i − µ2
i ) (1)

where K is the dimensionality of latent vector z, µi and σi
are mean and standard deviation of i dimension of latent
vector z.

B. TRAINING OF THE NETWORK
For our classification task, which is the prediction of one
category (one pitch of note), the softmax function was used as

4https://keras.io
5https://www.tensorflow.org
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FIGURE 5. CVAE RNN encoder.

the activation for the last decoder layer. As a loss function to
train the CVAE network, categorical crossentropy was used,
which computes the crossentropy loss between the one-hot
pitch values and predictions. A tanh activation function was
used for GRU units.

A series of experiments were performed with and with-
out standardization of the input data, the number of GRUs
(64, 128, 248, 512), and with varying latent space size.
Finally, a combination of 512 GRU and a latent space with
dimension 20, and standardization of the input data were
selected.

The CVAE was trained with RMSprop optimizer
(lr = 0.001). The network was trained with 900 epochs and
to avoid overfitting an early stopping strategy was used. The
training process was stopped as soon as the loss did not
improve any more for 50 epochs. The loss was evaluated on
a validation set (20% of the training data).

CVAE+Dense was chosen as a baseline for comparing the
results of the obtained models. It differed from CVAE+GRU

TABLE 2. Validation loss for the tested models.

in that a simple Dense layer in the encoder and decoder was
used instead of the recurrent GRU layer. Table 2 presents the
validation loss obtained during model building. The number
in parentheses next to the model name indicates the number
of units used. The best results are marked in bold. From
the obtained results, we can see that models CVAE+GRU
with more than 64 GRU units are superior to the baseline
model (CVAE+Dense). We can see that the recurrent units in
CVAE are better suited for encoding and decoding sequential
data, which is of course well known. Testing how the use of
the baseline model (CVAE+Dense) and the proposed model
(CVAE+GRU) affects the obtained metrics for the generated
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FIGURE 6. CVAE RNN decoder.

music depending on the type of emotion will be presented
in Section VI-B.

Fig. 7 presents the stages of CVAE training with the use
of input and output data visualization. The verification of
the degree of training is illustrated by the ability of the
decoder to reproduce the input sequence (Fig. 7a) on the
output (Figs. 7b, 7c, 7d, 7e). The presented notations were
completed with sequences of numbers constituting the pitch
representation of a 64-element sequence of a given musical
example. It was noticed that in the initial stage of training
(Fig. 7b) the sequence was shorter, monotonous, with no clear
musical meaning. CVAE is not yet sufficiently trained and is
unable to generate a sequence close to the input sequence. The
next steps (Figs. 7c, 7d, 7e) show how the sequence obtained
at the output of the autoencoder starts to resemble the input
sequence.

Fig. 8 shows one view of the 20-dimensional latent space
obtained during model training. New musical examples will
be sampled and generated from the latent space. The points
in latent space correspond to the training files, and the colors
define the emotion assigned to them. We can see that the
coordinate values of all points are distributed around mean
value equal to 0. Different emotions are not grouped in one
place, but spread throughout the entire latent space.

VI. RESULTS AND DISCUSSION
A. EXAMPLES OF GENERATED MUSIC SEQUENCES WITH
PROVIDED EMOTION
A trained CVAE model was used to generate new music
sequences with a specific emotion. The generation consisted
of giving an emotion label and a random sample with a latent
space size into the decoder input (Fig. 9).

FIGURE 7. Stages of CVAE training over epochs, illustrated with (a) input
example and output example during training with (b) 50, (c) 100,
(d) 500 and (e) 700 epochs.

Fig. 10 shows the generated examples for each emo-
tion. A set of generated MIDI examples can be found
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FIGURE 8. Latent space of CVAE.

FIGURE 9. Generating new music sequences with a specific emotion.

at link.6 Figs. 10a and 10b show the notes of examples with
the emotions happy (e1) and angry (e2). In both examples,
we note an increased amount of notes, indicating greater
arousal and locating the emotions in the upper quadrants of
Russell’s emotion model. A much smaller number of notes is
in Figs. 10c and 10d, examples with emotions sad (e3) and
relaxed (e4).

We notice the minor scale in the examples of
Figs. 10b and 10c, which places them on the negative part
of the valence axis of Russell’s model – emotions angry (e2)
and sad (e3). In Figs. 10a and 10d we notice the sounds of the
C major scale, which indicate positive emotions from Rus-
sell’s model - happy (e1) and relaxed (e4).

B. EVALUATION OF RESULTS USING METRICS
To evaluate the generated music sequences, they were tested
using the following metrics [5], [39], [50]:
• pitch range - defined as the difference between the high-
est and the lowest pitch;

6https://github.com/grekowj/musgenvae

• n pitches used - defined as the number of unique pitches
used in a melody;

• pitch in scale C major rate - defined as the ratio of the
number of notes in the C major scale to the total number
of notes;

• pitch in scale C minor rate - defined as the ratio of the
number of notes in the C minor scale to the total number
of notes;

To test the statistical difference between the training data
and the generated samples, a set of 20 musical sequences was
generated for each of the four emotions (e1, e2, e3, e4) for a
total of 80 examples. Four metrics were calculated for each
generated example. The same metrics were also calculated
for the training set. Comparing the distributions of the values
of these metrics allowed us to assess whether the generated
files have the specific emotions.

Table 3 presents the mean and standard deviation (σ )
of the metrics obtained from the music generated with the
proposed and baseline models, and from music used as a
training set. Note that for pitch range and n pitches used the
mean values are lower for the baseline model than for the
proposed model, especially for emotions e1 and e2. The base-
line model produces melodies with less differences between
the highest and lowest tones and also with fewer unique
pitches used in the melody. The mean and σ values obtained
from the music generated with the proposed model are
closer to the values obtained from the training set, especially
when it comes to the metrics pitch range and n pitches
used.

TABLE 3. Mean and standard deviation (σ ) of the metrics obtained from
the generated and training sets labeled with emotions e1-e4.

Distributions of the calculated metrics for the generated
(proposed model) and the training set labeled by emotion
are shown in Figs. 11, 12, 13 and 14. In Fig. 11 we can
see that the pitch range is lower for emotions e3 and e4,
both in the generated and in the training set. This particularly
concerns the emotion sad (e3), which has the lowest values.
Similar differences between sets e1, e2 and e3, e4 can be
seen in Fig. 12, which presents the number of unique pitches
used in a melody. The sequences with emotions happy (e1)
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FIGURE 10. Examples of generated music sequences with emotions: (a) e1 - happy, (b) e2 - angry, (c) e3 - sad, and
(d) e4 - relaxed.

FIGURE 11. Box plots of the metric pitch range for the generated and training data sets labeled with emotions e1-e4.

and angry (e2) use more varying sounds than sequences
with emotions sad (e3) and relaxed (e4). We could conclude
that the pitch range and n pitches used metrics are suitable
for distinguishing emotions on the arousal axis of Russell’s
emotion model.

Analyzing the box plots in Fig. 13, we can see that the
musical sequences with emotions e1 and e4 use the C major
scale sounds both in the generated and the training set. The
use of Cmajor scale sounds in files with emotions e2 and e4 is
much smaller. We see an inverse distribution of values using
the pitch in scale C minor rate metric (Fig. 14), where files
with emotions e2 and e3 have greater values than e1 and e4.
It could be concluded that the pitch in scale C major rate and
pitch in scale C minor rate metrics are suitable for distin-
guishing emotions on the valence axis of Russell’s emotion
model.

To compare the statistics of the obtained value distributions
for the individual metrics, the Kolmogorov-Smirnov (KS)
statistic [51] was calculated to determine whether two distri-
butions differ (Tables 4, 5, 6 and 7). The smaller the KS value,
the more similar both distributions are, the samples are drawn
from the same continuous distribution. The lowest values are
in bold, which is the greatest similarity between sets.

KS values in one line in the table were computed by
selecting a set with a specific emotion (e.g. e1) from the
generated sets and compared with each set (e1-e4) from the
training sets. This was repeated for the subsequent emotions
(e2-e4), obtaining the next lines of the table.

Separate statistics are not always able to identify the most
similar sets. To summarize the most similar sets, a win matrix
was calculated based on the previous four Tables 4, 5, 6 and 7.
Table 8 shows which of the training sets are closest to
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FIGURE 12. Box plots of the metric n pitches used for the generated and training data sets labeled with emotions e1-e4.

FIGURE 13. Box plots of the metric pitch in scale C major rate for the generated and training data sets labeled with emotions e1-e4.

FIGURE 14. Box plots of the metric pitch in scale C minor rate for the generated and training data sets labeled with emotions e1-e4.

the generated sets with the given emotion. The most sim-
ilar sets for each metric were recorded with an increment
of 1 (or 0.5 in the case of two winners) in the matrix.

The table should be viewed horizontally as it indicates
in how many cases the given generated set with a given
emotion was similar to the training set with the same emotion.

The sum of the horizontal lines in Table 8 is 4.0 as the
similarities were counted for four metrics.

From the information generalized in Table 8, we can see
that the diagonal values are the largest, i.e. that a given
set generated with a given emotion is most similar to its
counterpart from the training set. The diagonal values are
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TABLE 4. Kolmogorov-Smirnov statistic between distributions of
metric pitch range obtained from the generated and training sets
labeled with emotions e1-e4.

TABLE 5. Kolmogorov-Smirnov statistic between distributions of
metric n pitches used obtained from the generated and training
sets labeled with emotions e1-e4.

TABLE 6. Kolmogorov-Smirnov statistic between distributions of
metric pitch in scale C major rate obtained from the generated
and training sets labeled with emotions e1-e4.

TABLE 7. Kolmogorov-Smirnov statistic between distributions of
metric pitch in scale C minor rate obtained from the generated
and training sets labeled with emotions e1-e4.

TABLE 8. Winners between the generated set by the proposed
model and the training sets.

also exactly the winners that indicate for the success of this
method. All other elements of the table should be 0 in the
ideal case. Their values, different from 0, show that the
separately used metrics are not as sensitive as they should
be and these elements could be interpreted as errors. Hence,
we can make one more interesting observation, the metric-set
used in this evaluation is much more sensitive to arousal
than to valence. Such a conclusion can be made by properly
summarizing the appropriate elements of the table. Thus we
can see that the errors between the examined sets are greater
between the right and left hemispheres of Russell’s model,

emotions e1-e2 and e3-e4, i.e. on the valence axis it is 2.5 vs.
the 1.5 on the arousal one.

Additionally, KS statistic was calculated between the
music generated by the baseline model (CVAE+Dense) and
the training sets, which are presented in Table 9. We notice a
clear deterioration in the similarities generated to the training
sets with emotions from the upper quarters of Russell’s model
(e1, e2), when arousal is high (diagonal values: 0.0, 2.0).
Comparing Table 9 with Table 8, we notice a smaller number
of wins on the diagonal, which indicates that the music gener-
ated by the baseline model is less similar to the original songs
than that generated by the proposed model. This is confirmed
by the use of the CVAE+GRUmodel with recurrent units for
sequence processing; it is better suited than CVAE+Dense.
GRU provides better possibilities for coding and encoding
sequences. The generated music using the proposed model
according to the presented metrics is more similar to the
music of J.S. Bach, which was used as a training set.

TABLE 9. Winners between the generated set by the baseline model and
the training set.

The use of CVAE+Dense as the baseline model showed
that the non-recursive model is worse at generating music
with e1 and e2 emotions than the CVAE+GRU model
(Tables 8 and 9). A smaller deterioration in the quality of
the generated music was noticed for emotions e3 and e4. The
use of a simpler model generates worse music, particularly in
the upper quarters of Russell’s model. This proves that even
the use of a non-recursive model as a baseline in our experi-
ment made sense because it showed changes in the obtained
metrics for different emotions, which is a very interesting
observation.

C. EVALUATION OF RESULTS USING EXPERT OPINIONS
The same method that was used to label the training dataset
(Section III-B), i.e. asking the same three music experts
with a university music education to annotate the emotion of
the generated music files, was used as a second method of
evaluating the generated music sequences.

The evaluation concerned the same files as during the
evaluation using the metrics (Section VI-B), i.e. each model
was assessed using 80 music sequences, generated 20 for
each of the four emotions (e1, e2, e3, e4). Assessment of
the generated examples pertained two models: the baseline
(CVAE+Dense) and the proposed model (CVAE+GRU).
The task of each music expert was to listen and determine the
emotions for all the examples generated by a given model,
i.e. making 80 annotations for the evaluated model. The
annotated examples were mixed up so that their order was
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not grouped by emotion. The obtained annotations from the
music experts were averaged.

Expert annotations of the generated set by the base-
line model (CVAE+Dense) and by the proposed model
(CVAE+GRU) are presented in Table 10 and 11. The values
in the rows refer to the generated files with the given emotion.
Due to the fact that 20 files were generated for each emotion,
the sum in the rows is also equal to 20. The values in the
columns mean the number of files with a given emotion
determined by the music experts.

TABLE 10. Expert annotations of the generated set by the baseline model.

TABLE 11. Expert annotations of the generated set by the proposed
model.

The obtained annotations show that the created models
generated music sequences with four categories of emotions.
Comparing Table 10 with Table 11, we notice the higher
accuracy (89%) of the generated examples by the proposed
model relative to the baseline model (85%).

An interesting observation is that the more complex
model, which is the proposed model (CVAE+GRU), is
better at generating files with positive emotions (e1 - accu-
racy 100%; e4 - accuracy 100%) and slightly worse at gen-
erating files with negative emotions (e2 - accuracy 85%;
e3 - accuracy 70%).

In the case of files generated by the baseline model
(CVAE+Dense), we notice a deterioration in the genera-
tion of files with positive emotions (e1 - 80%, e4 - 60%),
i.e. the opposite situation than in the case of the proposed
model (greater accuracy for emotions e2 and e3, and worse
for e1 and e4). The music experts expressed the opinion
that the melodies generated by the simpler model were often
underdeveloped, chaotic with high arousal, or monotonous
with low arousal, which shifted the emotions towards the
negative, the left hemisphere of Russell’s model. Also, in
the case of the baseline model, the smaller similarities of the
generated examples to the original melodies was reflected in
the metrics in Section VI-B (Table 9).

We noticed the rule that in both models we have errors
mainly between emotions e1 and e2 or between e3 and e4,
i.e. on the valence axis of Russell’s model. This confirms that
assessing and generating music with emotions on the valence

axis is more difficult compared with the arousal axis, where
there are almost no errors.

In summary, although the annotations showed that the cre-
ated models generate music sequences with a given emotion
with an accuracy above 85%, the mere determination of the
emotions of the generated music files by music experts did
not give a definite answer which of the tested models is
better – the difference in accuracy is only four percentage
points. After conducting both evaluations (using metrics and
expert opinions), we can see that using additional objective
metrics to evaluate the model (Section VI-B) is helpful in
this case. In the future, additional parameters for the expert
assessment of the generated music sequences could be used,
such as rhythm, melody, and musical structure.

VII. CONCLUSION
More and more different kinds of machines and devices are
entering our daily life. Robots, machines, and even objects
called things offer services and information. In order to
improve their interaction and collaboration with the user,
in-machine feedback is necessary. The machine perception,
concentrated on the analysis of a human’s orders but also
emotional state, must cause an appropriate quasi-human reac-
tion. Therefore, studies of music generation with a specific
emotion are reasonable and current trends.

This article presents the stages of creating a system gen-
erating monophonic musical sequences with one of four
basic emotions. The generated examples based on random
samples from latent space resemble real musical sequences
and, additionally, we notice the appropriate emotions in them.
A trained model recognizes the patterns influencing emotions
in the training set and is able to transfer them to the generated
examples.

The evaluation showed that the generated music examples
are similar to the training set. Due to the random element,
the generated examples are slightly different than in the train-
ing set, but their emotional characteristics are similar to the
training data.

The limitations of this study include the emotional model
we adopt, the musical area used in the training set, and the
length of the monophonic pieces. All of these result from the
initial stage of our research and were intentionally accepted
as a compromise for this pilot study. The emotional model
we apply considers just the four main emotional groups from
Russell’s model.

Thanks to such a system, in any human-machine interac-
tion, a robot would be able to create a varied bunch of suitable
and well corresponding to the current human mood melodies.
Sensing in meaning ’’detecting and tracking’’ on the one hand
and proper acoustical response of the machine on the other
complement the human-machine collaborationmaking it a bit
more human. The system could assist a composer in finding
new themes with a specific emotion and could also be used
to generate musical sequences in computer games depending
on the emotional context, or the background music in shops.
Another potential application of the system is music therapy,
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where the generated melodies with a specific emotion could
be used to change or enhance the emotional state of the
patient.

In the future, the generating system should be broadened
to the possibility of working with polyphonic, four-voice
music. Also, the use of emotion descriptions using continuous
values, arousal or valence from Russell’s model, would be a
continuation of this work.
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