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ABSTRACT With the advancement of cloud computing technologies, there is an ever-increasing demand for
the maximum utilization of cloud resources. It increases the computing power consumption of the cloud’s
systems. Consolidation of cloud’s Virtual Machines (VMs) provides a pragmatic approach to reduce the
energy consumption of cloud Data Centers (DC). Effective VM consolidation and VM migration without
breaching Service Level Agreement (SLA) can be attained by taking proactive decisions based on cloud’s
future workload prediction. Effective task scheduling, another major issue of cloud computing also relies
on accurate forecasting of resource usage. Cloud workload traces exhibit both periodic and non-periodic
patterns with the sudden peak of load. As a result, it is very challenging for the prediction models to precisely
forecast future workload. This prompted us to propose a hybrid Recurrent Neural Network (RNN) based
prediction model named BHyPreC. BHyPreC architecture includes Bidirectional Long Short-TermMemory
(Bi-LSTM) on top of the stacked Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU).
Here, BHyPreC is used to predict future CPU usage workload of cloud’s VM. Our proposed model enhances
the non-linear data analysis capability of Bi-LSTM, LSTM, and GRU models separately and demonstrates
better accuracy compared to other statistical models. The effect of variation of historical window size and
training-testing data size on these models is observed. The experimental result shows that our model gives
higher accuracy and performs better in comparison to Autoregressive Integrated Moving Average (ARIMA),
LSTM, GRU, and Bi-LSTM model for both short-term ahead and long-term ahead prediction.

INDEX TERMS Cloud computing, deep learning, recurrent neural network, time series analysis, virtual
machine, workload prediction.

I. INTRODUCTION
With the introduction of a new wave of applications and
services via the internet, a new dawn of information explo-
sion is taken place. As a result, there is a huge surge in
the requirement for data storage and data processing. Cloud
computing brings forth the on-demand access of the network
to a collective pool of configurable computing assets for
profuse computing services (e.g., data storage, data process-
ing) [1]. In this modern era of information technology, cloud
computing acts as the framework for on-demand computing
services. It avails us of a pay-as-you-go pricing architecture.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chao Tong .

The elasticity of resources is achieved by scalable virtualiza-
tion of the cloud. Cloud provides us three different services
based on three delivery structures. These are Infrastructure as
a Service (IaaS), Platform as a Service (PaaS), and Software
as a Service (SaaS) [2].

Owing to its high computational power and network
access, there are widespread use of cloud computing in count-
less industries, health care facilities [3], financial service
corporations [4] and academic fields. As a result, cloud data
center assets are expanding to meet the demand, which is
subsequently increasing the cost of enterprise investment in
data centers. A data center can become inefficient due to
low resource utilization. For proper utilization of data cen-
ter resources, we need to balance our loads. An immense
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improvement in utilizing cloud resources and execution
of tasks can be attained by the dint of precise forecast-
ing [5]. Effective prediction of workload holds the key in
enabling a system to take proactive and dynamic decisions,
instead of taking reactive decisions. Consolidation of Virtual
Machines (VMs) can be accomplished by merging and real-
locating VMs into a tiny quantity of active physical servers.
Another key hallmark of the cloud is the ability to relocate
VM to a distinct hardware environment. This feature is called
VM migration [6]. VM consolidation leads to a reduction
in energy consumption by turning Physical Machines (PMs)
having no VM to sleep state. Here, energy reduction occurs
as PM in the sleep state consumes remarkably less energy
compared to PM in active state [7]. Energy awareness tools
are necessary to improve decision-making capability at both
PM and VM levels. This can be done by accurately fore-
casting the workload pattern at VM level [8]. To circum-
vent the breach of Service Level Agreement (SLA), there
is a necessity of precise prediction of PM usage in both
VM consolidation and VM migration [9], [10]. Prediction
of the trend of workload change also enables us to handle
task scheduling proactively. Proactive scheduling by forecast-
ing the load eventually assists in load balancing of cloud
resources [11]. Hence, A robust future workload prediction
in cloud computing architecture plays a crucial role in overall
efficient resource assignment, reduction of energy consump-
tion, load balancing, and task scheduling without breaching
the SLA [12]–[14].

Prediction of workload is one type of time series
forecasting. It has always been a tough challenge to pro-
vide precise future workload predictions in Cloud and Grid
systems, with various time series data having different pat-
terns and abrupt peaks at times. It is very likely that an
algorithm can produce different under-and over-predictions
within a single time series. In consequence, it becomes
difficult to design a method using the results of such
prediction [5]. Existing practices of prediction involve con-
ventional methods of prediction using statistical models and
neural networks. Nevertheless, there are several deficiencies
in all methods while interacting with time series forecast-
ing. The repetitive workload pattern of cloud resources with
sudden peak [15] plays the key role in making accurate
forecasting.

Among the various models which deal with time series
forecasting, one common model is the statistical model.
Statistical forecasting includes the usage of statistics to
predict what will occur in the future, hinge on historical
evidence. For intricate and non-linear time series forecasting,
statistical approaches are inefficient and unreliable. Autore-
gression (AR), Moving Average (MA), Autoregressive Mov-
ing Average (ARMA), Autoregressive Integrated Moving
Average (ARIMA), Simple Exponential Smoothing (SES),
Holt-Winters Exponential Smoothing (HWES) and others are
the example of statistics-based classical time series forecast-
ing methods. Additionally, a neural network can also be used
to predict the workload. The neural network model performs

better in handling the complex observations compared to the
statistical methods [16].

Uneven temporal structures, incomplete values, excessive
noise, and complicated interrelationships across several vari-
ables characterize real-world time series data. Moreover,
the trends and seasonality present in the temporal structure
of the data make the prediction task more difficult. Deep
learning techniques are equipped to deal with these problems
as they can automatically learn and elicit features from raw
and faulty data. As a result, the importance of deep learning
techniques for the purpose of time series data forecasting,
like CPU load in a cloud data center is immense. Recurrent
Neural Network (RNN), a frequently used deep learning
technique performs better than classical time series prediction
models, as RNNs are able to process a series of inputs in
deep learning and can retain their state until the next series
of inputs are processed. Gated Recurrent Unit (GRU) and
Long Short TermMemory (LSTM) are commonly used RNN
for this purpose. Due to its ingenuity to process non-linear
data, RNN based models are used in various time series fore-
casting applications, e.g., cloud workload prediction, stock
prediction [17]–[19], and weather forecasting [20] etc.

An efficient combination of several methods can give rise
to hybrid models. In this paper, a novel hybrid model is
presented to forecast a vital cloud data center resource usage
namely, Central Processing Unit (CPU) usage in VMs. The
major contribution of our work in this paper is stated below:
• We propose a novel hybrid model namely BHyPreC,
which combines a 1D convolution layer, Bi-directional
Long Short Term Memory (Bi-LSTM), LSTM, and
GRU with the best hyper-parameter settings to accu-
rately predict multi-step-ahead workload. The ability of
our model to efficiently extract features and to use both
past and future data to learn the nature of workload pat-
terns along with a combination of well-designed stacked
LSTM and GRU units; gives us an upper hand in dealing
with the nonlinear and complex data patterns.

• We apply a combined grid search technique of historical
window size and train:test ratio to tune the model prop-
erly and to obtain the best possible set of window size
and train:test ratio size. This set is responsible for gen-
erating the least error while predicting the CPU usage in
VMs.

• We implement an overlapping sliding window approach
technique across the entire training data. As a result,
data is split into segments of equal lengths. Segmented
data are then fed into the 1D-Convolution layer of our
model. This helps in increasing the long-term prediction
accuracy.

• We evaluate our model for four different evaluation
metrics. The experimental result affirms the superiority
of our model in comparison to traditional ARIMA and
three other prevalent RNN basedmodels trained with the
same dataset.

• For analyzing each of these models, we carry out Cumu-
lative Distribution Function (CDF), box plot, prediction
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length, and error percentage rise analysis of each eval-
uated metric separately. It is done through a series of
systematic analyses. For each analysis, the least value is
obtained through training themodel with an optimum set
of grid searched window size and training:testing ratio.

We have arranged the rest of the paper in this following
fashion. Related works are discussed in section II. Section III
exhibits the complete architecture of our proposed model.
Section IV demonstrates the analysis and metrics of the
experimental results used for appraisal. In section V, we
conclude and summarize the whole paper along with future
research scopes.

II. RELATED WORKS
For predicting the workload in the cloud, several statistical,
neural network-based, and deep learning-basedmethods have
been proposed earlier. Time-based correlation within a group
of VMs is used to predict changing workload patterns by
using the Hidden Markov Model in [15]. In [21] we find
that it is possible to use Markov chain analysis to predict
how a broader system will respond when quality service
assurances are not fulfilled. The expense of using the Markov
chain is much less compared to that of test-beds and the
computational costs are not influenced by the size of the
modeling system. The Revised Simple Exponential Smooth-
ing (RSES) method is generated by taking a new notion
of shift arising probability into the context of the Simple
Exponential Smoothing (SES) method in [22]. Here, weight
coefficients of the forecasting system are assessed by using
shift arising probability. The RSES method helps one to
forecast time series with abrupt level changes more precisely.
An autonomic three-dimensional resource provisioning pro-
cedure, equipped with resource-aware, SLA-aware, and user
behavior-aware attributes has been proposed in [23]. In an
attempt to grant both providence and flexibility, the sug-
gested technique employed a Radial Basis Function (RBF)
neural network. This method gives more attention to web
user behavior in comparison to the Two-Phase Alarm (TPA),
Double Exponential Smoothing (DES), and Latency-based
One alarm (LAT-1Al) approach. To administer the elasticity
attribute in the cloud environment, an elastic controller is
designed in [24] that employs Colored Petri Nets (CPNs).
The proposed model uses CPNs to provide a comprehen-
sive approach for simulating arrival, controller, and host
transitions.

A pragmatic approach to complex resource provisioning
for SaaS applications based on ARIMA model prediction
is introduced in [25]. The precision of the future workload
prediction is appraised by utilizing actual traces of Wiki-
media Foundation web server requests. Accuracy of pre-
diction also contributes to the efficient usage of resources.
In [26], CloudInsight, a complex and highly variable cloud
workload prediction system for online workload prediction is
introduced. It incorporates a handful of local predictors and
by interactively evaluating the appropriate weights of each
local predictor, generates an ensemble prediction model for

them. A Hierarchical Pythagorean Fuzzy Deep Neural Net-
work (HPFDNN) is proposed in [27] to estimate the number
of cloud resources available. Here, neural representation is
used as a supplementary approach for clear interpretations of
original results, beyond the use of fuzzy logic. Consumers can
determine the number of cloud services to buy on the ground
of the expectancy of a deep neural network. A prediction
approach that is self-adaptive using the Ensemble model
and Subtractive-Fuzzy Clustering-based Fuzzy Neural Net-
work (ESFCFNN) is suggested in [28]. For proactive resource
provisioning in a cloud environment, a self-learning fuzzy
approach is implemented in [29]. To investigate the appro-
priate auto-scaling decisions, a decision-maker framework
is proposed which uses the self-learning fuzzy technique.
Here, we can see that the proposed approach can effectively
allocate resources in comparison to the dynamic resource
provisioning approach and a neural network-based proactive
proposal. In [30], a hybrid resource apportion method based
on the amalgamation of the automatic computing concept and
the Fuzzy Analytical Hierarchy Process (FAHP) approach is
proposed. It outshines other state-of-the-art resource provi-
sioning approaches concerning virtual machine allocations,
response time, and cost.

To address the resource provisioning issue, a hybrid
approach is provided in [31], which clusters the workload
submitted by end-users using the Imperialist Competition
Algorithm (ICA) and K-means clustering. To identify scal-
ing decisions for effective resource provisioning, a decision
tree method is employed here. It performs better in com-
parison to K-means Pattern and Log-fuzzy methods. For
workload estimation, an adaptive approach is introduced
in [32], where workloads are grouped into various sections
that are automatically allocated as per workload attributes
for various prediction models. It performs better in com-
parison to ARIMA, Support Vector Machines (SVMs), and
Linear Regression (LR). Performance comparison among
three machine learning techniques such as ARIMA, Multi-
Layer Perceptron (MLP), and GRU is studied in [33].
It shows that GRU performs better among the compared
techniques. To construct an emerging framework to antici-
pate the VM workload, [34] introduces a modified Elastic
Adaptive Neural Network (EANN), equipped with modified
adaptive smoothing errors. Recurrent neural network with
Back Propagation Through Time (BPTT) algorithm has better
capability to precisely estimate host CPU usage in [35]. It also
demonstrates how far into the future can an RNN model
predict the workload accurately.

To transfer the dynamic workload into a cloud server,
a Learning Automata (LA) based offloading approach is pro-
posed in [36]. It employs an LSTM model to forecast future
workload and a Reinforcement Learning (RL) approach to
determine optimal scaling. Numerous models are stacked
based on RNN and autoencoder in [5]. RNN is trained here
to merge various prediction outcomes into one, whereas
the autoencoder is used to construct an improved input
representation characteristics layer created from the RNN
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predictions of the components. In [37], LSTM is introduced
to predict data center machines CPU utilization and it is
compared with an established conventional method named
ARIMA. Attention-based encoder-decoder LSTM network
is used in [38] to predict workload in a cloud environ-
ment. To increase the accuracy of forecasting, long predic-
tion sequences are divided into smaller sequences by using
the scroll prediction method. In [39], an LSTM-RNN based
model is introduced to predict the cloud data center workload
and it shows better prediction accuracy compared to the black
hole and backpropagation method.

For predicting the workload in PM, a GRU-based model
is introduced in [40]. In [41] a new model with an
Encoder-Decoder network based on GRU (GRUED) is pre-
sented which includes two gated RNNs (GRUs) that function
as a GRU encoder and GRU decoder duo. It can perform
more precise multi-step-ahead host load prediction, com-
pared to other RNN models. GRU-ES, which integrates the
GRU model and the Exponential Smoothing (ES) system,
is a hybrid approach for forecasting resource usage is pre-
sented in [42]. For both single-step prediction and multi-step
prediction, the proposed hybrid approach outshines state-of-
the-art techniques. A hybrid LSRU model which combines
both LSTM and GRU along with a 1D convolution layer
at the apex is proposed in [43]. It can forecast the use of
CPU, disk, memory, and bandwidth of the cloud data center
not just for short-term estimation, as well as for long-term
estimation with sudden sharp peak prediction. In [44] an
ensemble strategy, namely ESNemble is proposed to use the
Echo State Network (ESN) to draw out and merge features
obtained from different prediction algorithms to enhance the
overall accuracy and efficiency. It is organized into four key
stages. First, to pick features from various prediction algo-
rithms, it uses nonlinear ESN reservoirs. Secondly, to avoid
overfitting, the sizes of these extracted features are reduced.
Third, the derived and reduced features are consolidated into
a single matrix from the combined prediction algorithms.
Finally, regression is applied from the consolidated matrix
to produce ESNemble’s final predictions. Based on Genera-
tive Adversarial Networks (GAN), a time series forecasting
model known as Adversarial Sparse Transformer (AST) is
proposed in [45]. To grasp the sparse attention map for time
series forecasting, it incorporates a space transformer as a
generator. A discriminator is also utilized alongside the gen-
erator to enhance the prediction accuracy at a sequence level.
The authors used covariates along with the targeted univariate
data to train their model. This model also addressed the error
accumulation problem generated while forecasting.

In summary, the key motive behind the above-mentioned
works is to reduce the error rate while predicting future cloud
workload in single-step and multi-step ahead. Accurate pre-
diction is necessary to assign resources more precisely when
VM consolidation and migration is done. It can also help
us to minimize the consumption of energy and handle task
scheduling without violating SLA. For the above-mentioned
reasons, we propose a hybrid method namely BHyPreC,

which consists of different RNN methods to gain better pre-
cision in prediction by significantly reducing the prediction
error rate. Our model can also predict more precisely the
workload multi-step ahead in the future in contrast to other
prevailing state-of-the-art statistical and RNN architectures.
The comparative analysis of the related works in this field
discussed so far, along with our proposed approach has been
summarized in Table 1. This table analyzes each work based
on six characteristics: (1) Utilized technique, (2) Performance
Metrics, (3) Workload, (4) Prediction Window, (5) Prepro-
cessing, and (6) Simulator.

III. OUR PROPOSED HYBRID RNN MODEL
This section illustrates and describes the entire procedure
adopted in this paper. It is subdivided into seven sub-
sections. Sub-section III-A summarizes our proposed model:
BHyPreC, along with its visualization. The overview of
the core concept of our model: neural network and recur-
rent neural network is stated in sub-section III-B and
sub-section III-C, respectively. Then, a short introduction of
the three key RNN units presented in our model namely
LSTM,GRU, andBi-LSTM is described in sub-section III-D,
III-E, and III-F, respectively. There is also a key dis-
cussion of the training time complexity of our model in
sub-section III-G.

A. PROPOSED ARCHITECTURE
The design overview of our proposed model is shown
in Fig. 1. Here initially, input data are pre-processed using
the ‘MinMaxScalar’ function. This function allows us to
normalize the input data in the range of 0 to 1. The nor-
malized data is then fed into a 1D-Convolutional Neural
Network (CNN) layer by implementing a sliding window
approach. A 1D CNN is extremely useful for extracting fea-
tures from a fixed-length section of a larger dataset, where the
locale of the feature in the section is less relevant. It is useful
in time series analysis. This 1D CNN layer contains 64 output
filters, kernel size of 5, stride size of 1, and activation function
‘relu’.

The output of this CNN layer is then fed into a Bi-LSTM
layer of 128 hidden memory units combining both forward
and backward propagation. The output of Bi-LSTM is then
passed through 2 successive LSTM layers and a GRU layer.
Each of these layers contains 64 hidden memory units. Then,
the output will be passed into an LSTM layer containing
50 hidden memory units. Finally, the output will be propa-
gated through a fully connected neural network containing
1 layer. Here, Bi-LSTM uses both forward and backward
information to update the hidden state in two-way directions.
Again, both LSTM and GRU are two special variants of RNN
having fewer parameters in comparison to Bi-LSTM.

Although, LSTM usually performs better in larger
datasets and GRU outshines others in smaller datasets;
a well-balanced combination of both the RNN units with
better-tuned hyper-parameters yields a better result. The input
time series data is split into successive history sequences,
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TABLE 1. Summary of related works.
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FIGURE 1. The proposed hybrid RNN model.

consisting of fixed size and each of the sequences is followed
by a prediction sequence of the defined size. The proposed
architecture utilizes the history and forecasting sequences as
inputs and supervised outputs/labels, respectively.

The Summary of our proposed BhyPreC model is shown
in Table 2. Here, ‘HWS’ indicates the History Window
Size. For this experiment, we take HWS of 30, 60, 90, and
120 successively in a grid search approach. Here, the ‘Dense’
layer represents the fully connected neural network. There
is a total of 196,875 trainable parameters in our BHyPreC
model. Table 3 shows the hyper-parameters utilized in our
proposed BHyPreC model. The batch size, convolution filter
size, kernel size, and output neuron layer of each RNN unit
used in our model are tuned through a rigorous trial and error

TABLE 2. Summary of the proposed BhyPreC model.

TABLE 3. Hyper-parameters of the proposed BHyPreC model.

method approach. The learning rate, β1, β2, and ε of the
Adam optimizer are set according to [38]. We iterate each
of our models 100 times.

B. NEURAL NETWORK
Inclined by the biological neural network, a neural network
or commonly known as Artificial Neural Network (ANN)
is an array of algorithms that are designed to detect hidden
relationships in a collection of data. It can adjust to evolving
data, resulting in the best possible outcome without requiring
the output requirements to be redesigned. Each node in ANN
is known as a neuron, forms the basic backbone of the neural
network. Fig. 2 exhibits a simplified view of a neural network
with two input nodes, one output node, and two underlying
hidden layers in between them.

FIGURE 2. A simplified neural network block diagram [46].

Each artificial neuron receives inputs and generates a
single output that can be transmitted to multiple other neu-
rons. A neuron blends data input with a set of coefficients,
or weights and incorporates bias terms. To generate the out-
put, the weighted sum is transmitted through a nonlinear
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FIGURE 3. Recurrent neural network with its unfold architecture [47].

activation function. If the output of this aggregated weighted
sum exceeds the neuron threshold, the neuron is activated
and the signal passes to the next layer neuron input. The
signal in the network passes through each successive layer
until it reaches the output layer. It is commonly known as a
feed-forward network. The network trains the data to identify
the patterns present within the data and adjust the associated
weights to predict the output for a brand new set of similar
data. Weight and bias in each neuron and edge are opti-
mized using the backpropagation technique, which employs
gradient descent [46]. The last part of the BHyPreC model
incorporates a fully connected dense neural network having
a single output layer neuron to calculate the final prediction.

C. RECURRENT NEURAL NETWORK
RNN is a special type of ANN algorithm which is convenient
for handling the data that are sequential in nature such as
time-series data. RNN is equipped with a feedback loop and
it can process input sequences of variable length by utilizing
their internal state or memory. In this case, the output from
step n−1 is fed back into the network to leverage the outcome
of step n, and so on for each subsequent step. This network
style can be used for our cloud workload prediction role by
forecasting the next value based on previous load values.
RNN model consisting of one hidden layer with its spread
out shape is demonstrated in Fig. 3, where Xt is the input data
at time t , Ht is the hidden state at that time step, and Yt is the
output of the RNN [47].

Historical cloud workload data such as CPU usage value
will be used as Xt in our forecasting. From Fig. 3, Hidden
state Ht of the RNN depends on the previous hidden state
values and the current time step output. Ht can be calculated
as:

Ht = αH (UXt +WHt + bH ) (1)

The output state Yt for the input Xt can be computed
depending on the hidden state Ht at time step t as follows:

Yt = αY (VHt + bY ) (2)

Here, αH and αY are the non-linear activation function such
as tanh, ReLU , or sigmoid function. Again, U ,V , W and b
are the parameter matrices and vector, respectively. Unlike a
typical deep neural network, RNN employs the same array

of parameters matrices and vectors throughout all stages.
It significantly reduces the parameter numbers that RNN
needs to learn.

D. LONG SHORT-TERM MEMORY
Vanishing gradient and short-term memory problems are
most prevalent in RNN due to backpropagation through time
technique. This issue can be addressed by using a special
kind of RNN, known as LSTM. It is also adept of learning
dependencies of long-term. Fig. 4 shows the overview of an
LSTM cell.

An LSTM cell has three gates namely input gate, forget
gate, and output gate. All of the gates having a sigmoid
activation function that acts as a filter and decides which
information to keep and which one to forget. Besides the
gates, LSTM has the following components [47]:

• Xt is the input data at time step t.
• Ht−1 is the hidden state at time step t − 1 or from
previous time step. It serves as short-term memory in
LSTM.

• Ct−1 is the cell state at time step t−1. It is responsible for
long-term memory in LSTM. It is updated at two points
inside LSTM.

• σ is the sigmoid activation function.
• tanh is the activation function that gives output in the
range of 1 to −1.

• ft is the output of the sigmoid function of forget gate
which decides whether to forget or remember the previ-
ous time step memory Ct − 1.

• it is the output of the input sigmoid gate which controls
what new input data information to add to the cell state.

• c∼t is the candidate cell state which is the result of the
non-linear transformation of the external input data Xt
using tanh.

FIGURE 4. A LSTM cell architecture [5].
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• ot is the output of the sigmoid activation of the vector
created by the pointwise addition of previous hidden
state Ht − 1 and external input Xt . It determines what
portion of the new cell state data should pass over to
output Ht and hidden state Ht .

• Ct is the next cell state.
• Ht is the output of the LSTM cell and acts as the next
hidden state.

With each new external input data Xt , a LSTM cell block
undergoes the following internal gate updates [47]:

ft = σ
(
Wf [Ht−1,Xt ]+ bf

)
(3)

it = σ (Wi [Ht−1,Xt ]+ bi) (4)

ot = σ (Wo [Ht−1,Xt ]+ bo) (5)

c∼t = tanh (Wc [Ht−1,Xt ]+ bc) (6)

Finally, an LSTM updates the next cell state Ct and output
Ht by using the results of internal gates and candidate cell
state as follows:

Ct = ft ⊗ Ct−1 ⊕ it ⊗ c∼t (7)

Ht = ot ⊗ tanh (Ct) (8)

In our proposed architecture, we used three LSTM units.
Through proper tuning, we choose the memory units as 64 for
two (in the left side of GRU) and 50 for last LSTM units
(in the right side of GRU).

E. GATED RECURRENT UNIT
GRU is the advanced version of RNN equipped with a gating
mechanism. It is capable of preventing vanishing gradient
problem that takes place in traditional RNN. It is comparable
with LSTM but with fewer training parameters. As a result,
it is faster than LSTM with lesser training time and has less
memory consumption. It exposes all the hidden states without
any control. For a shorter sequence of input data, GRU is a
more suitable version of RNN. Fig. 5 shows the architecture
of the GRU unit.

Unlike LSTM, GRU has two gates namely, reset gate and
update gate. Update gate combines the functionality of forget
gate and input gate of LSTM. It aids the model in identifying
howmuch prior data (from previous time steps) can bemoved
on to the future. On the other hand, the reset gate is used
to determine how much data from the past can be erased.
GRU also removes the cell state that is present in LSTM and
transfer data over the hidden state. The components presented
in the GRU architecture unit are:
• Xt is the external input data at time step t.
• Ht−1 is the hidden state at previous time step t − 1.
• rt is the reset gate vector which after point-wisemultipli-
cationwithHt−1 controls the amount of past information
to forget.

• zt is the output of the update gate sigmoid functionwhich
determines the amount of information of the previous
hidden layer that will pass along to the next hidden state.

• ĥt is the candidate activation vector which uses reset gate
vector rt to preserve the past relevant information.

• Yt is the output for the input data Xt at time step t.
• Ht is the next hidden state value and it is the same as
the Yt .

Each internal gate and candidate activation vector inside
a GRU cell for each new input data at time t undergoes the
following updates [42]:

zt = σ (WzXt + UzHt−1 + bz) (9)

rt = σ (WrXt + UrHt−1 + br ) (10)

ĥt = tanh (WhXt + Uh (rt ⊗ ht−1)+ bh) (11)

The final output of the GRU cell unit and the next hidden
layer can be obtained by manipulating the update gate vector.
The final output is updated as follows [42]:

Ht = zt ⊗ ĥt + (1− zt)⊗ Ht−1 (12)

In our proposed architecture, illustrated in Fig. 1, a GRU
layer is incorporated in between LSTM layers. We select the
output neuron layer of our GRU unit after proper tuning. It is
set to 64 units.

F. BIDIRECTIONAL LONG SHORT-TERM MEMORY
Bi-LSTM is an exclusive variant of RNN that consists of
two LSTM layers combined together. Here, one LSTM unit
processes inputs in the forward direction, and the other unit
processes inputs in the backward direction. It is an extension
of traditional LSTM, which preserves both past and future
information. This results in a substantial amount of incre-
ment of the information accessible to the network. Thus,
the network can better understand the context. Fig. 6 shows
the block diagram of Bi-LSTM network. Each LSTM block
shown in Fig. 6 follows the internal mechanism introduced in
sub-section III-D.
The forward layer LSTM in Bi-LSTM at time step t takes

into account the input data sequence Xt and past hidden
state value

−→
h t−1. Then, it calculates the present hidden state

value
−→
h t . The hidden state value is updated and processed

FIGURE 5. Architecture of gated recurrent unit cell [42].
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FIGURE 6. A bidirectional long short-term memory unit [47].

following the internal equation described below:

−→
f t = σ

(
−→
W f

[
−→
h t−1,

−→
X t

]
+
−→
b f

)
(13)

−→
i t = σ

(
−→
W i

[
−→
h t−1,

−→
X t

]
+
−→
b i

)
(14)

−→o t = σ
(
−→
W o

[
−→
h t−1,

−→
X t

]
+
−→
b o

)
(15)

−→
c∼t = tanh

(
−→
W c

[
−→
h t−1,

−→
X t

]
+
−→
b c

)
(16)

−→
C t =

−→
f t ⊗

−→
C t−1 ⊕

−→
i t ⊗

−→
c∼t (17)

−→
h t =

−→o t ⊗ tanh
(
−→
C t

)
(18)

Overall, a forward layer LSTM output hidden layer equa-
tion for time step t can be summarized as:

−→
h t = f

(
−→
X t ,
−→
h t−1,

−→
�LSTM

)
(19)

Here,
−→
�LSTM indicates the internal operation of present

state forward LSTMunit. Again, backward layer in Bi-LSTM
updates its hidden state value

←−
h t by taking into consideration

the future hidden state value
←−
h t+1 and present input data

sequence Xt . All the internal updates that takes place inside a
backward layer are as follows:

←−
f t = σ

(
←−
W f

[
←−
h t+1,

←−
X t

]
+
←−
b f

)
(20)

←−
i t = σ

(
←−
W i

[
←−
h t+1,

←−
X t

]
+
←−
b i

)
(21)

←−o t = σ
(
←−
W o

[
←−
h t+1,

←−
X t

]
+
←−
b o

)
(22)

←−
c∼t = tanh

(
←−
W c

[
←−
h t+1,

←−
X t

]
+
←−
b c

)
(23)

←−
C t =

←−
f t ⊗

←−
C t−1 ⊕

←−
i t ⊗

←−
c∼t (24)

←−
h t =

←−o t ⊗ tanh
(
←−
C t

)
(25)

In short, the equation for output of hidden state for the
backward LSTM layer can be summarized as follows:

←−
h t = f

(
←−
X t ,
←−
h t+1,

←−
�LSTM

)
(26)

Here,
←−
�LSTM represents the overall internal operation of

the backward LSTM layer [47]. The final output of the hidden
state combines the hidden state of both the forward and back-
ward layer of a Bi-LSTM network along with an activation
function. As a result, the impact of past and future data can
be traced to the output of a Bi-LSTM network. It has more
parameters in comparison to LSTM and GRU networks. Due
to its capability to handle complex data, Bi-LSTM networks
are often used in the field of time series prediction [48]–[50].
The Bi-LSTM layer used in our BHyPreC model has in total
of 128 output layer neurons, considering both forward and
backward propagation. Here, the output unit size is selected
after proper tuning. Bi-LSTM unit plays a key role in enhanc-
ing the long-term prediction accuracy of our model due to its
ability to retain both past and future data.

G. TRAINING TIME COMPLEXITY
The total number of training parameters of a model dictates
the time needed for a model to be trained. It is also dependent
on the computational power of the model simulator. For train-
ing our model, we used the Google Colaboratory platform.
It is a cloud-based Jupyter notebook environment that saves
its notebooks on Google Drive. In total, we trained our model
for 36 different cases. The total average training time of our
model is 75.68 minutes. The maximum training time of our
model is 104.08 minutes and the minimum training time is
20.46 minutes. The maximum training of 104.08 minutes
is required for training our model with the ‘‘mean absolute
percentage error’’ loss function for ‘HWS’ of 120 and 75%
training data. For ‘HWS’ of 30, 75% training data size, and
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‘‘mean absolute error’’ loss function, our model requires a
minimum of 20.45 minutes training time. However, in prac-
tice, devices with very high computational capacity will be
used that will certainly reduce the training time.

IV. RESULT ANALYSIS
The result analysis section is sub-divided into the nine sub-
sections. Together, they describe the dataset to be trained,
narrate the evaluation metrics briefly, illustrate the detailed
experimental result of our proposed model, and compare the
performance of our model with other relevant forecasting
models, along with an appropriate statistical test. This section
also demonstrates the performance comparison of all the
models with the variation of prediction length.

A. DATASET DESCRIPTION AND PRE-PROCESSING
In this work, a distributed data center commonly known as
Bitbrain is used to collect large-scale and long-term traces
of real data [51]. The dataset includes performance met-
rics for 1,750 virtual machines from Bitbrains’ distributed
DC, which specializes in controlled hosting and business
computing for businesses. It manages computational capac-
ity using generic VMware provisioning frameworks such
as Dynamic Resource Scheduling and Storage Dynamic
Resource Scheduling.

Each file includes the VM performance metrics. These
files are grouped by tracks: fastStorage and Rnd. FastStorage
consists of 1250 VMs affiliated with SAN storage gadgets,
and Rnd is composed of 500 VMs affiliated with either faster
Storage Area Network (SAN) or relatively slower Network
Attached Storage (NAS) gadgets. The layout of each file is
row-based, and each row reflects the observation of perfor-
mance metrics containing 11 columns. In total, this dataset
contains data spanning over 5,446,811 CPU hours, having
23,214 GB memory with 5,501 cores.

After some pre-processing raw dataset is converted into
a DataFrame. From this DataFrame, we take ‘CPU Usage
[MHz]’ values for this workload prediction task. For faster
convergence and learning, the CPU usage data is normal-
ized in the range of 0 to 1 using the ‘MinMaxScaler’ func-
tion. Fig. 7 shows the CPU usage value over a period
of 43,155 minutes. Here, the data are sampled within succes-
sive 5 minutes time windows. As a result, the time interval
between successive two points in the X-axis of Fig. 7 is
of 5 minutes.

B. EVALUATION METRICS
To precisely evaluate the prediction accuracy of our model,
various evaluationmetrics such asMean Square Error (MSE),
Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), and Mean Absolute Percentage Error (MAPE) are
analyzed. Each evaluation metric projects the model perfor-
mance. Here, lower metrics value represents better prediction
accuracy.

The average of squared differences between original and
predicted sequences of an estimator is represented by the

FIGURE 7. CPU usage over time.

MSE. It is defined as:

MSE =
1
n

n∑
k=1

(yk − yk)2 (27)

RMSE is a frequently used metric of evaluation that mea-
sures the square root of average squared differences between
initial and expected sequences. It is defined as:

RMSE =

√√√√1
n

n∑
k=1

(yk − yk)2 (28)

A very commonly used metric for prediction in time series
data is the MAE. It is the average difference between original
and predicted values and is defined as:

MAE =
1
n

n∑
k=1

|yk − yk | (29)

MAPE is another efficient tool for evaluating the prediction
accuracy of the forecasting model. It is defined as:

MAPE =
100
n

n∑
k=1

|yk − yk |
yk

(30)

Here, in equations 27, 28, 29, and 30, yk and yk stands for
original and predicted sample values for the k th number of
sample, respectively. Again, n denotes the total number of
samples.

C. OPTIMUM WINDOW AND DATA SPLIT SIZE ANALYSIS
At first, our model shown in Fig. 1 is trained and later val-
idated using the Bitbrains dataset described in section IV-A.
To obtain optimumhistorywindow size, we trained ourmodel
for four distinct window widths. For each unique window
size, we split our dataset into four training-testing split ratios.
In total, we obtain a set of 16 different combinations of
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window size and data split ratio. Initially, the proposed model
is compiled using the ‘‘mean squared error’’ loss function
for the above set of 16 different combinations. We evaluate
the performance of these trained models and calculate MSE
and RMSE. Again, for each set of 16 unique combinations,
we compile our model using ‘‘mean absolute error’’ and
‘‘mean absolute percentage error’’ loss functions and cal-
culate MAE and MAPE for model evaluation respectively.
In total, our proposed model is trained for 36 unique combi-
nations. As a result, we obtained 48 different error values.

To analyze the performance of our prediction model with
respect to other established and advanced prediction mod-
els, we conducted a systematic training and validation pro-
cess. We individually trained and validated LSTM, GRU, Bi-
LSTM, ARIMA, and Bayesian Information Criterion (BIC)
plus smooth filter algorithm [52] using the same dataset and
for the same set of unique combinations of parameters. As a
result, eachmodel, except ARIMA andBIC plus smooth filter
is trained and validated for 48 unique combinations to obtain
optimum window and train:test split size. ARIMA belongs
to the group of traditional time series prediction models.
ARIMA model does not require history window size to train
the dataset. Again, BIC plus smooth filter algorithm in [52],
chooses the best possible traditional time series model based
on the minimum BIC value among six traditional time series
models. These six prediction models are Error Trend Sea-
sonal (ETS), SES, HWES, DWES, Automatic ARIMA, and
Trigonometric Exponential Smoothing State-Space model
with Box-Cox transformation, ARMA errors, Trend and Sea-
sonal Components (TBATS). Again, Savitzky-Golay (SG)
and Moving Average (MA) smooth filters are applied to the
data points separately. The BIC of the selected model with no
smooth filtering, SG filtering, andMA filtering of data points
are compared and the combination that givesminimumBIC is
selected. This algorithm also does not require history window
size to train the dataset. LSTM,GRU, andBi-LSTMare based
on deep learning techniques and require history window size
to train the dataset. For performing the above experiments,
we used Keras in python and the TensorFlow library backend.
We chose the google colaboratory platform for training all
of our models and used Adam optimizer to determine the
optimal learning rate for compiling the models. For each
training and validation, we used a batch size of 64 and an
epoch size of 100. Table 4 shows the MSE, RMSE, MAE,
and MAPE of CPU usage prediction for varying window size
and train:test ratio. Here, ‘Window= 30’ represents training a
model with history window size 30 and so on. Again, ‘65:35’
denotes the splitting of the dataset and taking 65% of data for
training and 35% data for testing purposes and so on. Here,
in the case of BIC plus smooth filter algorithm SES model
with SG filter is selected for the train:test ratio of 65:35 and
TWATSmodel with SG filter is selected for all other train:test
ratio.

Analyzing the Table 4, we can see that for varying the
window size and ratio of training and testing data, prediction
error in terms of MSE, RMSE, MAE, and MAPE varies.

The lowest evaluated prediction error for each model with
optimum window size and the training-testing split ratio is
shown in Table 5 (shown in bold). It is obtained after analyz-
ing the performance metrics of each model for all possible
combinations shown in Table 4. After inspecting Table 5,
we can see that for each of the evaluation metrics our pro-
posed model leads to the least prediction error in comparison
to other state-of-the-art prediction models. In each scenario,
the performance of ARIMA is much poorer compared to
other forecasting models. In the case of MSE and RMSE,
our model gives the least error of forecasting for window
size ‘60’ and split ratio ‘65:35’. However, the lowest MAE is
obtained in our model for a window size of 30 and a split ratio
of 65:35. Here, the split size ratio remains the same as that
for the previous metrics, but history window size changes.
Again, the window size of 120 and a split ratio of 70:30 yield
to lowest MAPE error.

D. ERROR VALUE COMPARISON
The pictorial representation of the lowest forecasting errors
for the best possible combination of window size and a split
ratio of each model is shown in Fig. 8. To fit the error
values properly in this figure, we multiply MSE by 10 and
MAPE by 0.001. As by nature, the MSE value is quite small
and the MAPE value is large in comparison to other errors.
This certain modification helps us to obtain a purposeful bar
chart to properly compare the performance of all the models.
Here, we can clearly see that for each of the prediction error
evaluations, our proposed BHyPrec model yields the lowest
possible error (Green bar), and ARIMA (Light blue bar) gives
the highest forecasting error. Therefore, we can say that our
model performs better in predicting CPU usage in VMs and
the performance of ARIMA is poor in comparison to other
deep learning approaches.

Again, another approach to compare the error value is
the calculation of the percentage increase or decrease of
prediction error in other state-of-the-art forecasting models
in comparison to our proposed model. It can be calculated by
using the following equation, where Yp is the error value of
our proposed model, and Yc indicates the error value of the
compared model.

Xc =
(Yc − Yp) ∗ 100

Yp
(31)

Here, for this experiment, we use LSTM, GRU, Bi-LSTM,
and ARIMA as the baseline models to compare. Positive Xc
indicates a percentage increase of error value of the compared
model with respect to our proposed model and negative Xc
indicates the exact opposite. Table 6 shows the percentage
increase or decrease of forecasting error in other compared
models in comparison to our proposed model for each evalu-
ation metrics.

From this Table 6, we clearly observe that percentage error
value increases in all the models in comparison to our pro-
posed model. Here, we take into consideration the best-case
scenario for all the models. Therefore, we can say that our
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TABLE 4. Performance analysis of all the models for CPU usage prediction.
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TABLE 4. (Continued.) Performance analysis of all the models for CPU usage prediction.
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FIGURE 8. Comparative error value analysis of different prediction models.

TABLE 5. Summary of lowest error value of each model.

model significantly minimizes the error in predicting VMs’
CPU usage and can precisely predict the future workload.
A high percentage rise of error in ARIMA indicates that our
model performs better in comparison to the traditional time

TABLE 6. Error percentage increase/decrease analysis of the compared
models with respect to our proposed model.

series prediction model. In terms of MAPE, the percentage
rise in error for ARIMA and BIC + Filters are huge. Our
model not only outperforms the classical models but also
performs much better compared to other relevant deep learn-
ing approaches investigated in this work. Our hybrid model
outshines all other RNN based models equipped with the best
possible combinations and its margin of error minimization is
quite high.

E. STABILITY ANALYSIS
To analyze the stability and harmony of our proposed model,
we take into account the CDF of our model along with other
compared models. CDF is an accurate indicator to depict the
distribution of the error values of models. CDF of distribution
always approaches 1 and it acts as a non-decreasing function.
The more quickly the CDF curve reaches 1 and more it is
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FIGURE 9. CDF analysis of different prediction models.

closer to the vertical axis, the higher is the stability of the
model. It results in more accurate forecasting of workload.

From Fig. 9, it can be observed that almost all the error
values are distributed exponentially. The best-case scenario is
considered here for each model. The CDF curve of ARIMA
and BIC + Smooth Filters lies slightly below the CDF curve
of other models. ARIMA CDF curve is farthest away from
the vertical axis. The CDF value corresponding to MSE value
of 0.00006 in Fig. 9a, RMSE value of 0.006 in Fig. 9b,
and MAE value of 0.004 in Fig. 9c for ARIMA and BIC +
Smooth Filters are quite less than 1 in comparison to other
CDF value of RNN models. Again by analyzing Fig. 9d,
we can clearly see that the CDF curve reaches 1 at a larger
error value and its distance from the vertical axis is the
highest. It indicates that ARIMA and BIC + Smooth Filters
perform worse compared to other models for all the evalua-
tion metrics, especially for MAPE. The non-linear nature of
the data leads ARIMA and BIC+ Smooth Filters to generate
higher errors while predicting future CPU usage.

Although, the CDF curves of all the RNN models are
very close to each other, in each case our proposed model
reaches the maximum value of 1 faster than others. Again
our proposed models’ CDF curve lies closer to vertical axis
almost throughout the graph in 9c and 9d. Although in 9a
and 9b in some portions the ‘Bi-LSTM’ curve lies closer
to the vertical axis, overall our proposed models’ curve lies
closer to the y-axis and reaches maximum value quicker.
As a result, we can say that the proposed model predicts
the workload most accurately and it is most stable among
the studied models. The performances of other RNN mod-
els are almost similar in nature. They perform better than

ARIMA and BIC + Smooth Filters, but show slightly less
stability and predict error less effectively than our proposed
model.

F. ERROR DISTRIBUTION ANALYSIS
Box plot analysis of different prediction models with the
best possible combination for each type of evaluated error
is expressed in Fig. 10. The distribution and skewness of
the error data of different prediction models are visually
represented through the box plots. Here, some outlier values
presented in the ARIMA and BIC + Smooth Filters mod-
els are omitted for better visualization of the box plot. The
median, upper quartile, whiskers, and maximum score of our
suggested models are smaller than the other four prediction
models as shown in Fig. 10c and Fig. 10d. It indicates that
our model has better prediction accuracy than all other mod-
els for MAE and MAPE analysis. Here the performance of
ARIMA and BIC + Smooth Filters are much poorer than
other RNN models, indicating supremacy of RNN models
in predicting non-linear time series data with sudden peak
values.

In Fig. 10a and 10b, the median value of Bi-LSTM is
slightly smaller than our proposed model. However, the min-
imum value and first quartile value of Bi-LSTM are larger
than the proposed hybrid model. It clearly indicates that the
prediction accuracy of our model is better than Bi-LSTM.
Analyzing median, first quartile, and third quartile values,
we can see that rest of the prediction models also shows poor
prediction accuracy in comparison to our model in terms of
MSE and RMSE analysis. Again, ARIMA shows the worst
performance.
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FIGURE 10. Box plot analysis of different prediction models.

G. PREDICTION LENGTH ANALYSIS
The analysis of the effect of prediction model performance
with the increment of the forecasting step is also a key per-
formance indicator. The model which gives less forecasting
error for large prediction steps is more suitable in multi-step
workload prediction. Knowledge of the precise future work-
load patterns will provide us an upper hand in VM migration
and consolidation tasks without violating SLA. It will also
allow us to undertake efficient task scheduling and ensure the
reduction of energy consumption through proper allocation
and utilization of cloud resources.

Fig. 11 portrays the effect of prediction length or steps
on different forecasting models for each of the evaluation
metrics. Here, the interval between each successive prediction
step is of 5 minutes. Therefore, an error corresponding to the
prediction step of ‘1200’ indicates ‘100 Hours’ ahead CPU
usage workload prediction error. The model which gives the
least amount of error throughout the entire prediction length
and which exhibits minimal error due to the variation of
prediction step ismost suitable inmulti-step ahead prediction.
Fig. 11 clearly shows that error increases with the increase of
prediction steps. From Fig. 11a and 11b, we can see that MSE
and RMSE value increase, respectively, with the increment of
prediction length for the LSTM, GRU, and ARIMA models.
In the case of Bi-LSTM and our proposed model, the rate of
prediction error increase is small due to their ability to extract
temporal features by learning workload pattern change of
both past and future. ARIMA brings out the most forecasting
error with an increase in prediction length. Both MSE and
RMSE increase drastically in cases of ARIMA and BIC +
Smooth Filter models, with the increases of prediction steps.

Thereafter, ARIMA and BIC + Smooth Filter models turn
out to be the least suitable for multi-step ahead prediction.

Analyzing Fig. 11c and Fig. 11d, we can say that our model
generates the least error while predicting future CPU usage
and the performance of ARIMA is the worst. In the case of
the ARIMA and BIC + Smooth Filters model, the margin
of MAPE is substantially higher for the future time-ahead
prediction in comparison to RNN and hybrid models. Again
with the increase of prediction length, MAE increases dra-
matically in ARIMA. In both cases, our model can carry
out precise predictions with generating the least error. The
effect of prediction length variation is also minimum in the
case of our model. In each of the above scenarios shown
in Fig. 11, by generating the least amount of error for the time
ahead prediction, our model appears to be the most suitable
candidate for multi-step ahead forecasting.

H. MULTI-STEP AHEAD FORECASTING
Our suggested hybrid model not only predicts single-step
prediction precisely but also can accurately foresight long
time ahead CPU usage pattern variations. A long-time-ahead
CPU usage prediction time series curve along with the actual
CPU usage workload curve is shown in Fig. 12. Here, interval
length is of 5 minutes.

Six hours in front conducted prediction result shown
in Fig. 12a clearly exhibits the ability of our model to accu-
rately identify the suddenworkload peak. Here. the prediction
load curve almost coincides with the actual CPU usage curve
with very little deviation and slightly damped peak amplitude
value. 1 day, 3 days, and 5 days ahead prediction shown
in Fig. 12b, Fig. 12c, and Fig. 12d, respectively, also certify
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FIGURE 11. Prediction length effect comparison of different forecasting models.

FIGURE 12. Multi-step ahead CPU usage prediction using proposed hybrid model.

the aptness of our model in multi-step ahead prediction.
In each of the scenario, both the curve coincides with each
other despite having long prediction windows. It showcases

that our model is capable to possess precise forecasting and
is very slightly affected by the range of the prediction win-
dow. In each of these scenarios, we can see that our model
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successfully identifies all the sudden CPU usage peaks in the
future. As a result, our model turns out to be most suitable for
a long-step-ahead future workload prediction.

I. STATISTICAL TEST
To precisely identify the performance of the proposedmethod
we conduct a statistical test. The main purpose of this test is
to validate the performance analysis of our proposed model.
It exhibits the statistical significance of the obtained errors.
For this purpose, we perform a two-tailed T-test as shown
in [53]. The equation for mean (µ), variance (σ 2), and critical
value (τt ) is as follows:

µ =
1
m

m∑
k=1

εk (32)

σ 2
=

1
m− 1

m∑
k=1

(εk − µ)
2 (33)

τt =

√
m |µ− ε0|
σ

(34)

Here, εk represents the k-th error of the test value, m is the
number of test steps taken into consideration for a statistical
test, ε0 is the maximum assumed error value. Now, for the
statistical test of MAE, with m = 1001, the mean test value
of the MAE for our proposed method obtained from (32) is
0.001273. From (33), we calculate the variance of our pro-
posed model as 0.000011. By taking ε0 = 0.0015, the critical
value of our proposed model obtained from (34) is 2.1991,
which is larger than the given 1.96 (for confidence level 95%)
by the two-tailed T-test table. With a confidence level of 95,
this result demonstrates that the suggested model’s test MAE
mean (0.001273) is smaller than the anticipated test MAE
(0.0015). The results for the other compared state-of-the-art
models are calculated in a similar process and are shown
in Table 7.

TABLE 7. Statistical MAE test of the compared models with respect to the
proposed BHyPreC model (ε0 = 0.0015) for 95% confidence level.

Analyzing Table 7, we can see that for the statistical test
of MAE, the maximum assumed MAE value ε0, for each of
the compared models is greater than the maximum assumed
MAE value of the proposed model (ε0 = 0.0015). It suc-
cinctly explains the statistical significance of our proposed
model over other state-of-the-art baseline models. It also
proves that the observed performance supremacy of our
model is not due to experimental errors.

V. CONCLUSION AND FUTURE WORK
Accurate forecasting of a long time in front, future CPU usage
workload is necessary for conducting efficient VMmigration

and unification tasks, resource allocation, and job scheduling
tasks without breaching SLA protocols. In this paper, we pro-
posed an RNN based novel hybrid model named BHyPreC to
address these issues. Our model combines Bi-LSTM, LSTM,
and GRU units to implement a deep learning-based approach
to tackle the non-linearity of time series data effectively. Four
of the most relevant prediction models in this field are also
trained with the same dataset to compare and evaluate the
performance of our model. Result analysis visibly indicates
that our proposed model equipped with the best possible
combination outperforms the best case scenario of all other
compared models. Error percentage increase, CDF, and box
plot analysis for eachmetric evaluation also certify the superi-
ority of our model. An increase in the prediction step size also
proves a minimal effect on our prediction model in compari-
son to the other three RNN based models and one traditional
time series prediction model. As a result, in multi-step 5 days
ahead prediction, our model can accurately reconstruct the
workload pattern with all the sudden peaks and falls. There-
fore, our model can be used as an efficient tool in resource
allocation, scheduling, load balancing, and VM migration
task design by having the proper insight into upcoming CPU
usage data.

In the future, we will try to build a more robust prediction
model which will ensemble various features from different
datasets. It will provide large-scale flexibility in the predic-
tion model. Again, we will try to design an energy-efficient
resource allocation algorithm, based on the upcoming CPU
usage knowledge obtained from the proposed hybrid model.
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