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ABSTRACT This paper presents an overview of some key results from a body of optimization studies
that are specifically related to COVID-19, as reported in the literature during 2020-2021. As shown in this
paper, optimization studies in the context of COVID-19 have been used for many aspects of the pandemic.
From these studies, it is observed that since COVID-19 is a multifaceted problem, it cannot be studied
from a single perspective or framework, and neither can the related optimization models. Four new and
different frameworks are proposed that capture the essence of analyzing COVID-19 (or any pandemic for
that matter) and the relevant optimization models. These are: (i) microscale vs. macroscale perspective;
(ii) early stages vs. later stages perspective; (iii) aspects with direct vs. indirect relationship to COVID-19;
and (iv) compartmentalized perspective. To limit the scope of the review, only optimization studies related
to the prediction and control of COVID-19 are considered (public health focused), and which utilize formal
optimization techniques or machine learning approaches. In this context and to the best of our knowledge,
this survey paper is the first in the literature with a focus on the prediction and control related optimization
studies. These studies include optimization of screening testing strategies, prediction, prevention and control,
resource management, vaccination prioritization, and decision support tools. Upon reviewing the literature,
this paper identifies current gaps and major challenges that hinder the closure of these gaps and provides
some insights into future research directions.

INDEX TERMS Optimization, COVID-19, decision support, screening testing, prediction, prevention,

control, resource allocation, vaccination, literature review.

I. INTRODUCTION

In late 2019, a Chinese ophthalmologist alerted fellow
doctors in Wuhan, China, of an alarming, new virus [1].
By March 2020, COVID-19, a highly contagious, airborne
coronavirus, had ravaged nearly every continent in the world,
causing the World Health Organization (WHO) to declare a
global pandemic [2].

The sudden rapid outbreak of the coronavirus has posed
significant challenges to all communities. Due to the
novel nature of COVID-19 and its emerging new strains,
researchers and doctors have struggled to fully understand all
variables attributed to the virus, such as its transmission rate,
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making it extremely difficult to accurately model [3]. Even
as more information and data are becoming available, these
variables continue to be dynamic, which makes it difficult
to quantify them. During the beginning of the pandemic,
the lack of good models and sufficient data on confirmed
cases and deaths also made it challenging to predict future
cases and plan for critical hospital resource demands and
appropriate mitigation strategies. Due to the unfamiliarity
and novelty of the coronavirus, mixed messages were sent
regarding the potential severity of the outbreak, the impor-
tance of mask wearing and social distancing, and other related
measures, leading to ad hoc, unplanned lockdowns, and
spikes in COVID- 19 cases. As doctors and scientists were
beginning to better understand the destructive and disruptive
nature of COVID-19, supply chains and hospitals around the
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world were unable to keep up with the demand for ventila-
tors, personal protective equipment (PPE), and intensive care
unit (ICU) beds, causing critically ill patients to be turned
away [4]. Some hospitals began to construct makeshift ICU
wards in parking lots and garages to accommodate the influx
and vast surge in patients needing critical care due to the
effects of COVID-19 [5].

These challenges required quick solutions and responses
and presented many opportunities for optimization. Exam-
ples include optimizing prediction models to quantify future
COVID-19 cases [6]-[24], optimizing the allocation of criti-
cal hospital supplies to treat COVID-19 patients [25]-[32],
and developing decision support tools to guide data-
driven mitigation strategies to combat the spread of the
virus [33]-[37]. While numerous studies have tried to tackle
these challenges, the COVID-19 pandemic continues to
expose the flaws and shortcomings of current systemic poli-
cies, many of which were unanticipated and unprepared for.
Analyzing available published literature on COVID-19 from
multi-disciplinary fields and various countries reveals which
areas, whether resource allocation or non-pharmaceutical
interventions (such as mask mandates or social distancing),
need to be addressed to sufficiently contain the pandemic.
In addition, should another pandemic like COVID-19 ravage
the globe in the future, the current shortcomings will need to
be addressed to minimize deaths and hospitalizations while
maximizing containment of the virus. Government response
time was also seen as a catalyst or barrier to containing
the spread of the virus. For example, in New Zealand, the
government immediately closed all borders in conjunction
with lockdowns and mask mandates. However, in the United
States, where the government was much more hesitant, reluc-
tant, or unable to dictate a shutdown with mask mandates,
death tolls reached nearly 600,000, in comparison to 26
deaths in New Zealand due to COVID-19 (as of June 15,
2021). Although population density is a contributing factor
and directly parallels the number of deaths, the United States,
unfortunately, witnessed the inability of some hospitals to
accept patients due to ICU shortages, whereas New Zealand
remained constant.

In this paper, our aim is to present a review of the litera-
ture pertaining to formal optimization studies related to the
prediction and control of the COVID-19 pandemic. These
studies include optimization of screening testing strategies,
prediction models, resource allocation, vaccine distribution,
and mitigation policies to curb the spread, as well as decision
support tools. From these studies, it is observed that since
COVID-19 is a multifaceted problem, it cannot be studied
from a single perspective or framework. Thus, four new and
different frameworks are proposed that capture the essence
of analyzing COVID-19. We believe it would be of value
to present the reader with these frameworks that provide
a holistic view of COVID-19 and its contributing aspects.
These frameworks may even enable better preparedness for
future pandemics by helping the reader visualize the structure
and connections between the various aspects related to the
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virus. The frameworks can also provide insight into which
aspects of the pandemic should be focused on and the rela-
tionships between various optimization models pertaining to
the pandemic.

This paper provides the following contributions to the
existing literature: (i) a review of key studies in the area
of optimization in the context of COVID-19 prediction and
control; (ii) four new frameworks to gain a holistic view of
COVID-19, or future pandemics; (iii) identification of current
gaps and challenges; and (iv) insight into future research
directions.

The remainder of this paper is organized as follows.
Section II discusses the literature search approach and the
criteria used for consideration of the reviewed papers.
Section III provides a broad overview of papers that fit into
the realm of optimization and COVID-19 in relation to pre-
diction and control and mentions current efforts related to
tracking the virus transmission and the developed decision
support tools. Section IV describes the four new frameworks
and reviews the literature related to each specified topic.
Finally, Section V summarizes the identified gaps, chal-
lenges, and lessons learned, followed by concluding remarks
in Section VI.

II. LITERATURE SEARCH APPROACH

The main source used for the literature search was Web of
Science (WoS), which includes a rich collection of various
databases that are referenced in both the scientific, engi-
neering, and medical communities. Google Scholar was an
additional source we utilized to ensure that we covered a
broader horizon and did not potentially miss any significant
publications. The papers considered for the literature search
were selected from those published between December 2019
and June 2021. The two main keywords used for the search
were the words optimization and COVID-19. More specific
keywords were also used, such as prevent*, testing, vaccin®,
predict®, forecast®, resource, allocat*, distribut®, mitigat*,
and decision support. The symbol “x’’ is used as a wild-
card character and can be substituted by any number of
alphabetical letters that can complete the incomplete word,
e.g., ‘“‘vaccin®” can include vaccine, vaccinating, vac-
cination. The more specific keywords were chosen based
on general knowledge related to pandemic response
and preparedness [38] and based on the scope of this
review.

This literature review covers the papers which we believe
are the key and unique papers in the area of optimization
studies related to the public health aspect of COVID-19,
particularly those that fall under the umbrella topics of pre-
diction and control. Fig. 1 shows the high-level process of the
downselection approach of the papers considered. The spe-
cific selection criteria used to downselect will be discussed
below. It is worth mentioning that some papers fit and thus
are counted under multiple categories. For example, a paper
may fall into both the ‘“‘Prediction” and “Prevention and
Control™ categories, or into both the “Resource Allocation”
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FIGURE 1. Flowchart of literature selection process. The final selected papers were categorized by the respective

topics shown.

and ““Vaccination™ categories and counted as such in both
categories.

As shown in Fig. 1, we considered studies related to
the optimization of COVID-19 testing strategies, prediction
models of cases and deaths due to the virus, forecasting the
demand for critical hospital supplies to treat patients, deter-
mination of optimal pandemic mitigation strategies, resource
allocation, vaccine distribution, as well as development of
decision support tools to aid in combating the spread.

In this review, we have included studies that used formal
optimization methods, machine learning techniques (where
optimization algorithms were explicitly used in the pro-
cess), and studies that were directly related to COVID-19.
By formal optimization methods, we mean that the authors
of the reviewed paper identified a problem that had emerged
as a result of COVID-19 and formulated that problem in
mathematical or simulation forms. This is then followed
by setting up an optimization problem by defining decision
variables or strategies (such as the number of ventilators
to allocate to a specific region), a specific objective func-
tion(s) to minimize or maximize (such as minimizing the
number of deaths due to COVID-19), and a set of con-
straints or requirements (such as capacity or resource lim-
its) to satisfy. Subsequently, this optimization problem was
solved using optimization techniques, see, e.g., [39]-[41].
Since machine learning [42]-[45] has become prevalent in
many applications, we also considered papers that applied
optimization techniques in the context of machine learn-
ing models to estimate or optimize certain parameters.
Overall, we focused on papers in which the optimization
problem was directly related to COVID-19 - e.g., papers
related to the management of the virus, rather than papers
addressing the effects of the pandemic on various aspects of
our lives, as discussed next.

For clarification, we did not consider papers that fell into
the following two categories. The first category included
what we call informal optimization papers, which did
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not utilize formal optimization methods or techniques.
Many studies used the term “‘optimization” loosely, or
informally — e.g., there was no formal formulation of an
optimization problem. Instead, an ‘“‘optimal” solution was
reported by selecting an option that yielded the ‘‘best”
results from a small set of known, pre-selected alternatives
(see [46]-[48]). Other papers focused on the optimization
of certain procedures or protocols, thus establishing a set
of “best practices” (see [49]-[52]). The second category
consisted of papers indirectly related to COVID-19. This cate-
gory of papers covered the optimization of certain aspects that
were not directly related to COVID-19, but were rather a rep-
resentation of the effects of COVID-19 on different domains.
Examples of the second category include disruptions in sup-
ply chains (e.g., rise in new and used car prices due to chip
shortages), electricity market (e.g., significant increase in
residential electricity demand vs. substantial decrease in com-
mercial demand), or transportation sector (e.g., fluctuations
in fuel costs), see, for example, [53]-[55].

1Il. BROAD PERSPECTIVE OF THE COVID-19
OPTIMIZATION LITERATURE

A quick search of all the databases on WoS revealed that as
of June 30, 2021, over a year after the start of the pandemic,
countries all over the world had studied COVID-19 through
the lens of optimization. Fig. 2 shows a density map of
papers published by country with the keywords optimization
and COVID-19. India, the United States, and China are the
top three leaders for the number of papers, with 290, 262,
and 219 publications, respectively. The remaining countries
have up to 60 publications on the topic of optimization and
COVID-19.

It was also noted that the majority of the literature related to
optimization and COVID-19 focused on topics related to the
prediction (i.e., forecasting of cases), detection methods, test-
ing, and prevention of the virus, while less attention was given
to topics concerning decision support tools and allocation
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or distribution of resources (Fig. 3). Fig. 3 illustrates the optimization and COVID-19, and an additional, more specific
number of publications grouped by specific keywords. The keyword (e.g., testing, predict*, prevent*). For example, there
blue bars represent the presence of the two main keywords were 203 papers that resulted from searching the keywords
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“optimization, covid-19, vaccin*” in the topic across all the
databases in WoS. It is important to keep in mind that a paper
can fall into several categories. For example, a study on the
optimization of vaccine distribution may belong to both the
vaccin® and resourc* distribut™ categories.

With a plethora of papers published on various topics in
relation to COVID-19, some literature reviews emerged that
grouped similar papers and provided an overview of the
current state-of-the-art in a particular topic and suggested
future directions of research. Some of the most common
literature review topics included: general overviews of the
COVID-19 pandemic [56]-[58], COVID-19 and its relation
to or effect on other health issues [59]-[61], diagnosis and
treatment methods [62]-[66], and effects of the pandemic
on various areas of our life (e.g., supply chain [67]-[69]
or the economy [70], [71]). However, there has yet to be a
review of the literature which focuses on the optimization
studies in relation to the COVID-19 pandemic, specifically
pertaining to prediction and control — this paper closes that
gap.

In addition to studies and publications, the develop-
ment of informative COVID-19 dashboards and prediction
tools [72]-[74] has been approached by many scientists
and researchers. For example, the Johns Hopkins Univer-
sity (JHU) COVID-19 dashboard has tracked the transmis-
sion of the virus both locally, in the US, and globally,
including the number of cases, deaths, and hospitalizations,
since the start of the pandemic. The European Centre for
Disease Prevention and Control also reports the number of
cases and deaths globally. Many university labs (e.g., MIT,
UT Austin), news sources (such as the Washington Post, New
York Times), and organizations (CDC, The COVID Tracking
Project, CovidActNow) have also created COVID-19 trackers
to visualize the spread and impact of the virus. In addition
to the number of different cases, some of these dashboards
also provide demographic data (JHU, The COVID Track-
ing Project). In addition to trackers, researchers and scien-
tists have also focused on developing interactive prediction
and forecasting models to aid in determining appropriate
intervention policies (e.g., lockdowns, social distancing) and
hospital resource allocation, including a couple of the well-
known models developed by IHME at the University of Wash-
ington and the CDC. Table 1 summarizes some examples of
such tools and their capabilities. Additional information and
examples of various tools and resources pertaining to mod-
eling the pandemic can be found in MIDAS,' the National
Institutes of Health,? and the American Hospital Association’
repositories.

The next section will discuss the four proposed frame-
works and summarize the literature reviewed for this

paper.

1 https://midasnetwork.us/covid-19/
2https://datascience.nih. gov/covid-19-open-access-resources

3 https://www.aha.org/guidesreports/2020-04-09-compendium-models-
predict-spread-covid-19
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IV. THE FOUR FRAMEWORKS AND LITERATURE REVIEW
In this section, we propose four different frameworks that
capture the essence of analyzing the approach to studying
COVID-19 and related optimization models. We follow up
with a more detailed review of the optimization studies in the
context of prediction and control. The four frameworks are:
(i) microscale vs. macroscale perspective; (ii) early stages vs.
later stages perspective; (iii) aspects with direct vs. indirect
relationship to COVID-19; and (iv) compartmentalized per-
spective. These frameworks can provide some insights into
the structure and relationships between the various aspects
of the pandemic. Consequently, this can also shed light on
the connections that can be made among the corresponding
optimization models.

(i) Microscale vs. Macroscale Perspective. A virus is
microscopic, yet has a macroscopic effect on our lives. There-
fore, a virus can be studied on a microscale level and (or all
the way to) a macroscale level (Fig. 4), or, alternatively, from
a medical vs. public health perspective, where the medicine
focus is on the individual, whereas the public health focus is
on the population [75]. At the microscale level, the virus is
studied in relation to itself and how it transmits to and affects
an individual person. For example, studies of the genome
of the virus, or its evolution and transmission mechanisms;
the development of optimal testing, diagnostic, and detec-
tion methods to identify the virus in infected patients; the
identification of the “‘best” ways to treat the virus, including
therapies, drugs, and vaccines - are categories that would
fall into the microscale level of analysis. At the macroscale
level, the virus is studied in relation to how it spreads within
a population, how it can be controlled within a population
via policies or mitigation strategies, how it affects healthcare,
the economy, and other aspects of our life. Optimization can
play an important role in all of these studies. For example,
optimal strategies that minimize transmission dynamics of the
virus, improve forecasting of the demand for critical hospital
supplies, minimize the detrimental effects of COVID-19 in
a certain area, and suggest optimal recourse strategies to
mitigate the ramifications - are categories that would fall into
the macroscale level of analysis.

(ii) Early stages vs. Later stages Perspective. From a tem-
poral perspective, the evolvement of the pandemic can be
divided into two sections: the early stage and later stage,
or alternatively, upstream and downstream (Fig. 5). The
upstream portion focuses on the beginning stages of the
pandemic - studying its emergence, how to diagnose and
detect it, how to prevent its spread either by enforcing certain
policies, or by developing temporary treatments. In summary,
the major focus of the upstream section is the virus itself and
the “‘here and now”” aspects. The downstream portion focuses
more on the longer run or planning horizon and requires more
fundamental knowledge and data about the virus. Some key
questions for the downstream portion include: (i) how to pre-
dict the transmission dynamics of the virus and forecast the
number of cases or demand on resources, (ii) how and when
to distribute critical resources, how to develop decision and
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TABLE 1. Example of COVID-19 Tools.

Tool Name Source Tool Type Description

COVID-19 Dashboard John Hopkins University (JHU) Dashboard* Tracks # of cases, deaths, testing rate, vaccination
status globally and within the USA

COVID-19 Situation Dashboard European Center for Disease Dashboard Tracks # of cases, deaths, and vaccinations in

COVID-19 Vaccine Tracker Prevention and Control reporting European countries

COVID-19 Indoor Safety Guideline — Massachusetts Institute of Model** Predicts time under certain circumstances to

Technology (MIT) contract COVID-19 if infected individual is in close

proximity

Localized COVID-19 Model and Qventus Model Localized (by hospital) estimates of COVID-19

Scenario Planner cases and hospital resource needs. The user has the
ability to modify a variety of model parameters

Washington Post COVID-19 Washington Post Dashboard Tracks # of cases, deaths, tests, hospitalizations, and

Tracker vaccinations in the United States

New York Times COVID-19 New York Times Dashboard Tracks # of new reported cases, deaths,

Tracker vaccinations, and regions with high positivity rates
globally

COVID Data Tracker Centers for Disease Control and Dashboard Tracks # of cases, deaths, testing, vaccination, and

Prevention (CDC) hospitalizations, as well as demographic data

The COVID Tracking Project The COVID Tracking Project Dashboard Tracks # of cases, deaths, hospitalizations, daily
tests administered, and key metrics by state in the
USA

U.S. COVID Risk & Vaccine CovidActNow Dashboard Tracks # of vaccinations, risks by region, infection

Tracker and positivity rates, and vulnerability levels

COVID-19 Projections Institute for Health Metrics and Model Predicts # of deaths, hospital resource use,

Evaluation (IHME)

infections and testing, and effects of masking and
social distancing

* Dashboards are what we call tools that merely present a visualization of the current state of the pandemic; these are data visualization tools
** Models are what we call tools that use existing data to provide more insight - be it the prediction of future cases or hospital demand; models use data
and epidemiological/optimization/machine learning/etc. models to generate new information

policy support tools to mitigate the effects of the pandemic,
(iii) how to plan for the vaccine and its distribution in a timely
manner, and (iv) how to determine when and in what ways life
can return to normal.

(iii) Aspects with Direct vs. Indirect Relationship to
COVID-19. Some studies can be classified as directly
related to COVID-19, while others are indirectly related
(Fig. 6). Directly related studies consider the virus as
the ““center-piece”. For example, the optimal treatment of
COVID-19 patients, vaccine development and distribution,
and COVID-19 transmission dynamics. Indirectly related
studies, on the other hand, consider the effects of COVID-19
on various aspects of life, for example, on supply chain,
transportation planning, electricity demand, local businesses,
and optimal strategies used to mitigate the effects of the virus.

(iv) Compartmentalized Perspective. This framework is
arguably the simplest and easiest to understand, since it
divides or groups studies related to the virus by a specific
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topic, or “compartments” (Fig. 7). The list of topics can
be endless, since it is limited only by people’s imagination,
interest, and research. Some examples of “compartments’ in
optimization in the context of COVID-19 include prediction,
detection, effects on supply chain, vaccine distribution, the
genome of COVID-19, protocols for cleaning work areas,
telehealth improvement, treatment of cancer patients during
COVID-19, and utilization of Al and machine learning for
classifying CT images.

In summary, one must realize that these frameworks all
contain similar, even overlapping, components - the key dif-
ference though is how we organized them and from what
perspective, or lens, we looked at them. One benefit of
these frameworks is that they provide perspectives on top-
ics where there has been a lot of focus and where there is
a gap. For example, considering the framework in Fig. 5,
it is evident that the majority of the literature so far has
covered COVID-19 optimization-related topics in the early
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stages portion. Fig. 3 shows that there have been fewer
studies conducted in the areas of mitigation and decision
support (compared to prediction, for example) in relation to
COVID-19 optimization. This insight could be valuable for
researchers to identify areas that need to be studied further.
Another benefit these frameworks provide is a structured
visualization of key areas that might need more attention
(and which can be optimized) when the world is fighting a
pandemic, such as COVID-19, and how these areas might
relate to each other. Finally, a subtle, yet important insight
these frameworks provide is not only the connections that
can be drawn between the different aspects of the pandemic,
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but also between their corresponding optimization models.
These connections can serve as the backbone or framework
of a full-scale, all-encompassing decision support system
that will guide the management of future pandemics. From
common practice, it is evident that creating such a model
requires a structured approach and must build upon some
skeleton, which is precisely how our frameworks would have
the greatest impact. As we will see in the following sections,
a model and system of such breadth has yet to be developed.
Considering the broad scope of the COVID-19 pandemic,
we decided to focus on the topics that fell under the umbrella
of prediction and control, or if looking from the frameworks’
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perspective, our paper covers studies that fall into the overlap
of the macroscale (public health), later stages (downstream),
and directly related to COVID-19 perspectives. Specifically,
these topics include optimization of COVID-19 screening
testing strategies, prediction models, pandemic prevention
and control policies and decisions, resource allocation, and
mass vaccination.

The remainder of this section will take a deep dive into
the respective topics related to COVID-19 optimization that
we have considered. In each subsection below, we present an
overview and analysis of the existing literature that has been
published in that area.

A. SCREENING TESTING STRATEGIES
This section covers papers wherein optimization meth-
ods were used in relation to COVID-19 screening testing
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Optimization

strategies - i.e., pooled testing strategies and sample size,
prioritizing population groups to test first, and allocation of
testing Kkits.

Before diving into this section, we would like to differen-
tiate between the terms ‘“‘screening testing” and ‘‘diagnostic
testing” [75], [76]. The goal of screening tests is to identify
the spread of a disease in a population, and it aligns with the
public health focus; while the goal of diagnostic (or clinical)
tests is to detect and then treat a disease within an individual,
and it aligns with the medical focus. Although there have been
multiple studies focusing on the optimization of diagnostic
testing of COVID-19 (using chest X-rays or CT scans — see,
e.g., [77]-[80]), they will not be reviewed in this section,
since they do not fall within the scope of this paper.

Screening is an extremely important tool for detecting and
preventing any further spread of COVID-19, especially when
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a vaccine is not widely available. If people are able to detect
the presence of COVID-19, especially if asymptomatic, they
are able to immediately implement mitigation strategies, such
as quarantining. However, there is not a simple “one size
fits all” approach in optimizing the testing strategies. The
available literature proposes different testing strategies to
account for the limited stockpile of testing kits available,
depending on the severity of COVID-19 in a specific region,
while seeking to maximize the detection of the virus.

In instances where testing must be conducted in massive
numbers, pooling tests have been used [81]-[86]. This type of
testing is designed to estimate the ‘““best” pool size for testing
under uncertainty.

Regarding testing strategy, a way to implement testing
given constraints on resources and varying infection rates by
region is critical to accurately identify clusters and waves.
For example, [87] addressed the need for an optimized testing
strategy for college and university campuses. The study uses
a decision tree analysis to assess various testing strategies,
including testing of either just symptomatic or all students.
Determining the optimal number of students to test is critical
in mitigating any spread of the virus on a campus, as also seen
in [85], where an optimization model was developed to esti-
mate the optimal number. In terms of utilizing testing to deter-
mine mitigation strategies, [88] found a parallel relationship
between increasing the number of tests with increasing num-
bers of those isolated in Italy. In a different study [89], also
involving Italy, an optimization model was constructed and
solved to determine how much diagnostic testing would need
to be conducted per region in order to maximize COVID-19
infection detection capabilities. Increased swab testing was
found, in this instance, to have an inverse relationship with
any burden on the hospital system. Finally, [90] used a
multi-armed bandit approach to determine the optimal dis-
tribution of testing resources considering their limited avail-
ability and prioritize which groups in the population receive
the test. The study [90] presents the effectiveness of different
prioritization policies that allow for the maximum detection
rate while minimizing the amount of testing resources used.

There have been several approaches aimed at increas-
ing testing efforts. For example, in China, scientists have
focused on testing optimization by increasing the laboratory’s
COVID-19 nucleic acid testing capacity [91]. In the United
States, a data-driven optimization model was fabricated to
estimate which pharmacies should offer testing to acceler-
ate the accessibility of testing. The model found that with
facility location optimization efforts, people’s “willingness-
to-travel” and receive testing would increase to 94% [92].
In conjunction with testing accessibility, testing number opti-
mization is also a critical variable in mitigating the further
spread of the virus while also identifying potential clusters
of those infected. Determining a methodology for sampling a
particular and optimal number of people would minimize the
number of testing kits required and the time of testing [93].
As the literature suggests, testing accessibility by determin-
ing an optimal number of testing per group will reduce the
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number of testing kits needed and the time it takes to test a
cluster of potentially infected people. In addition, these opti-
mization measures would assist decision-makers in ensuring
that lockdowns would be imposed on a need-basis (ensuring
that the reproduction number is less than 1) to account for the
potential economic damages that may incur due to prolonged
lockdowns [94].

Overall, in the realm of screening testing optimization, the
key studies have focused on optimizing testing strategies,
specifically pooling tests, determining optimal testing sample
sizes, and accessibility. However, we did not find any papers
regarding optimizing (using formal methods) the design of
testing kits or methodologies.

B. PREDICTION

This section covers papers where optimization was used in
relation to the prediction of COVID-19 cases, deaths, and
hospitalizations, as well as forecasting the demand for critical
hospital resources needed to treat COVID-19 patients.

From the start of the pandemic, the ability to forecast the
spread of COVID-19 has been crucial for both public and hos-
pital administrators. A good prediction can help with timely
planning of critical resources to treat COVID-19 patients.
It can also enable the implementation of appropriate miti-
gation policies (such as lockdowns) in a timely manner to
minimize the spread of the virus and avoid reaching hospital
capacities.

Regarding the optimization of COVID-19 prediction mod-
els, three main approaches have been reported in the lit-
erature. The first uses the SEIR (Susceptible - Exposed
- Infectious - Recovered) model (or its derivatives) as its
basis and applies machine learning and optimization meth-
ods to determine the epidemiological parameters of the
model [6]-[13], [95]-[106]. The second approach uses a
population-based model to simulate the transmission of the
virus [14], [15]. Finally, the last approach is purely a machine
learning based model. For this type of approach, a data-driven
machine learning model is developed to forecast the case
count, where the inputs are COVID-19 historical time series
data or relevant predictors, and optimization algorithms are
used to tune the hyperparameters of the machine learning
model [16]-[22].

The SEIR model is an epidemiological compartmental
model that has been used to model many infectious diseases,
including COVID-19 [23]. The main compartments cover
the susceptible, exposed, infectious, and recovered popula-
tion categories, while variations of the SEIR model usu-
ally include some additional compartments (e.g., number of
deaths, hospitalized, quarantined, infected but asymptomatic)
[107]. Due to the novelty of the virus, its epidemiological
parameters are unknown, so the SEIR model is fitted to
historical COVID-19 data, and the resulting estimated param-
eters are used to predict future cases. Bayesian optimiza-
tion [6], metaheuristics (e.g., particle swarm optimization,
stochastic fractal search) [7]-[10], [104], [108]-[114], neu-
ral networks [11], [115], [116], and nonlinear curve-fitting
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based optimization methods [12], [13], [117]-[119] are some
of the most popular approaches used to fit the model to
the data and estimate the epidemiological parameters of
the model, such as the reproduction number. In addition
to forecasting COVID-19 cases, some studies considered
additional aspects, such as the effect of different non-
pharmaceutical intervention policies (social distancing and
lockdown) and re-opening plans [101], [114], [120]-[127].
For example, Ghamizi ef al. [11], in addition to predicting
cases and deaths, also developed a model to search for optimal
exit strategies - i.e., best policies to re-open from lockdown,
while maintaining low infection rates. Here, the problem is
formulated as a multi-objective optimization problem and
solved by a genetic algorithm, wherein the objective function
is to maximize the economic aspect of returning to normal
life while minimizing the number of deaths and hospital-
izations. Russo et al. [10] were interested in determining
“day 0 for the outbreak of COVID-19 in Lombardy, Italy,
as well as the number of asymptomatic patients, since both of
these factors affect the length and rate of virus transmission.
Guan et al. [13] evaluated the effects of complete or partial
lockdown in France.

Other studies simulated the transmission of the virus via
population- or agent-based models [14], [15], [127]-[129]
and network models [130]. These models typically divide the
population into the SEIR compartments, and then employ
machine learning techniques and heuristic algorithms to
optimize the hyperparameters of the model. Additional
parameters or factors that may be related to the transmis-
sion dynamics were considered as well, such as population
density (and therefore the effectiveness of social distanc-
ing) [14], [15], or climate related factors [15].

Finally, some studies [16]-[22], [131]-[146] followed a
model-agnostic approach and relied solely on the historical
time series data of COVID-19 cases or other relevant predic-
tors to forecast future cases. These methods employ machine
learning models (neural networks [17]-[21], [133], [135],
[138], [142] and deep learning [139]) to make predictions
while using various optimization algorithms (such as Gaus-
sian process regression [16], Bayesian optimization [17], and
metaheuristic algorithms [18]-[22], [144], [147]-[149]) to
optimize the model hyperparameters. When the only input
was COVID-19 time series data, the optimization model was
essentially a curve-fitting problem, where the objective func-
tion was to minimize the squared error between the predicted
and actual values. Other machine learning models consid-
ered additional data as inputs, such as clinical data [24] or
meteorological factors [150], to predict COVID-19 cases or
deaths. This class of papers did not only focus on predicting
future cases and deaths - some studies went beyond, or refined
their predictions. For example, Sun et al. [18] estimated the
demand for medical resources, such as PPE, medical person-
nel, ventilators, ICU beds, and oxygen. Schwab et al. [24]
trained a machine learning model to predict the likelihood of
a patient receiving a positive COVID-19 test, requiring hospi-
talization, or requiring intensive care. Since these predictions
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were based on the patients’ clinical data, the authors in [24]
also suggested which clinical features (such as demographic
or blood analysis measurements) were most predictive for
each outcome.

Overall, several approaches have been used to predict
the spread of the virus, namely, SEIR-based and machine
learning models, all of which require data to be built and
verified. This aspect is particularly troubling during the initial
stages of the pandemic, when no data is available. Also, while
these models are reported with very small error margins,
it is important to recognize that all these models were based
on some assumptions and (potentially incomplete) data such
that a different set of assumptions and data could lead to
significant changes in outputs.

C. PREVENTION AND CONTROL: CURBING THE SPREAD
AND MITIGATING THE EFFECTS

This section covers papers where optimization methods were
used in relation to COVID-19 prevention and control - i.e.,
social distancing, mitigation efforts, and quarantining upon
infection.

As the pandemic continues to take lives and a toll on
healthcare and the economy, decision makers are faced
with the challenge of controlling the spread, preventing
additional surges, and determining the best exit strategies.
A key question is how to return to normalcy and revive
the economy without sparking another wave of COVID-19
cases and overwhelming hospitals. Optimal control prob-
lem formulations have been a popular way of modeling
and optimizing mitigation strategies and assessing their
effect on the spread of the virus [98], [151]-[159]. These
frameworks are based on the SEIR model and utilize
reinforcement learning (RL) [152], [154] and optimization
approaches [153], [160]-[162] to determine the optimal
exit strategies. The exit strategies range from cyclic short-
term lockdowns to gradual release policies, where differ-
ent groups of people are allowed to resume normal life
activities over staggered time periods. The objective is to
minimize the adverse effects of the pandemic on the econ-
omy without overwhelming hospital capacities. For example,
Kompella et al. [154] used an agent-based pandemic sim-
ulation approach to model interactions between people in
conjunction with an RL model to optimize mitigation poli-
cies. This model also accounts for imperfect information,
such as false test results and inconsistent adherence to non-
pharmaceutical interventions.

Metaheuristic optimization approaches have also been
applied to solve the optimal control strategies of the pan-
demic. These strategies range from the implementation
of social distancing to reach herd immunity [163], [164],
to increasing testing and quarantine requirements [165],
and to developing traditional Chinese medicine (TCM) pre-
vention programs [166]. In [165], the authors developed a
nature-inspired model to simulate the distribution process
of COVID-19 in different countries and strive to maximize
the number of ‘“‘safe” countries (those that are immune
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to COVID-19). Each country can be categorized as safe,
safe but susceptible, infected and can transmit, and infected
but cannot transmit the virus; and countries can help each
other by increasing testing capacity, enforcing quarantine
measures, and tracking infected individuals that may travel
between countries and spread the virus. All these actions are
designed to control the pandemic and minimize the risk of
infected individuals transmitting the virus to others. In [166],
the authors acknowledged the benefits of TCM in treating
COVID-19 patients, but realized the need to create diversified
prevention and treatment programs for different groups of
community residents. TCM is a system of treatment plans
or programs that are mainly based on herbal medicine, and
one of its principles states that treatment must be individu-
alized, there is no ‘“‘one-size-fits-all”” solution. Recognizing
the impossibility of creating an individual TCM treatment
plan for each person, the authors targeted groups of people.
A fuzzy clustering method was used to divide the popula-
tion into groups, and a metaheuristic approach (water wave
optimization) was developed to optimize the different TCM
programs under resource constraints.

Finally, classical optimization approaches have been used
to control the spread of COVID-19. Stochastic optimization
(e.g., [167]) and game theory approaches (e.g., [168]) were
implemented to determine the optimal timing and duration
of social distancing policies, and other mathematical pro-
gramming models were developed to determine both personal
and mass protection strategies [169], as well as targeted
immunization models [170]. In [171], the authors created a
linear programming model to study the trade-off between the
expected fatality rate due to COVID-19 and the return to
normal activities. Deaths were minimized by optimizing the
implementation of non-pharmaceutical interventions, such as
social distancing and mask mandates. In [172], the authors
developed a decision tool to determine the optimal timing
and duration of physical distancing (PD) interventions. The
objective is to maximize a measure of control over the pan-
demic by implementing PD while minimizing the deaths due
to COVID-19 and economic costs (which are reflected by the
duration of the PD interventions). Finally, Brandao [173] for-
mulated a calculus of variation approach to analyze complex
scenarios with competing factors and limited resources. In the
context of COVID-19, the competing factors are health and
economy, and the optimal control policies require a balance
between the two.

In summary, the optimization of mitigation policies is inte-
gral to the prevention and control of the COVID-19 virus,
especially considering its highly transmissible and oftentimes
invisible (i.e., asymptomatic) nature. These studies focused
on developing models that would suggest an optimal preven-
tion or mitigation strategy or provide insight into the effects
and consequences of different strategies. Studies approached
the problem from different angles, with various assump-
tions, model parameters, and considerations, which implies
that no study has considered all aspects or has approached
the problem from a holistic perspective. Additionally, for
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multi-objective studies, the two key competing objectives
were minimizing cases and maximizing economic benefit,
and it would be interesting to consider other objectives as
well.

D. RESOURCE ALLOCATION AND DISTRIBUTION

This section covers papers in which optimization methods
were used in relation to the allocation and distribution of
critical resources to care for COVID-19 patients (e.g., ICU
wards, ventilators, and PPE).

Due to the COVID-19 pandemic impacting and ravaging
the globe, available critical resources were in sudden high
demand, causing a need for optimization in resource alloca-
tion and distribution to maximize patient survival. Critical
resources, for the purposes of this literature review and in
the context of COVID-19, include PPE (i.e., masks, gloves,
gowns, etc.), ventilators, oxygen, ICU beds, and trained
medical personnel. Hospitals in certain areas suffered from
faster resource depletion than others, causing some areas to
makeshift ICU wards in parking lots, stadiums, and other
alternative areas. In this regard, optimization of resources and
resource distribution was needed to ensure that areas with
higher cases (and thus higher demand) were able to access the
necessary resources to minimize the number of deaths due to
COVID-19.

As an example, an optimization model was developed
based on available data to forecast the trend in virus
transmission, therefore allowing decision-makers to prepare
for sudden surges in demand and corresponding resource
needs [25]. Other optimization models considered the allo-
cation and sharing of specific critical resources, such as ven-
tilators [26], [174] and ICU beds [175]. Additionally, medical
supply chain networks [176] and medical resource allocation
models have been developed and implemented to optimize
resource [177]-[179] or patient transfer [27]. In [27], the
most optimal load sharing strategy (transfer of ventilators vs.
transfer of patients requiring intensive care) was determined,
where the minimized cost function was dependent on the
number of ICU units above capacity. Similarly, to account
for optimized resource planning, simulation environments
that used the synergy of deep learning-based predictions and
linear optimization were used to plan for resource allocation
due to the demands of the COVID-19 pandemic [28]. Deci-
sion models were also developed to assist physicians and
hospitalists in making decisions pertaining to the allocation
of ICU beds - when areas experience surges in COVID-19
infected patients requiring hospitalization, ICU bed avail-
ability dramatically diminishes. To combat surges in infected
patients requiring intensive care, binary integer optimization
models were developed to model the best allocation, and
a Monte-Carlo simulation was used to support the output
decision [29]. A data-driven combined genetic algorithm
and particle swarm multi-objective optimization method was
used to solve for allocation of critical resources [30]. Route
planning problems [180], [181] were also considered, where
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optimization methods were applied to determine the optimal
route to the closest hospital.

In addition to ICU beds, ventilators, and other critical
care resources, testing was also a high-demand, low-supply
resource, particularly during the early stages of the pandemic
where vaccinations were unavailable, critical to combatting
the pandemic. One study used an integer programming for-
mulation to optimize the number of tests a country could
conduct while also producing methods to increase testing
capacity [31]. Another study [182] addressed the optimal
distribution of rapid diagnostic kits when the demand greatly
exceeded the supply. Here, the objective was to minimize
the loss function that corresponds to the efficiency of an
allocation strategy.

Vaccines are also a critical resource which, due to their
premature manufacturability, are also in high demand but low
supply. Therefore, an optimized distribution of vaccines is
paramount for minimizing the number of deaths associated
with COVID-19. One method [32] proposed in the literature
uses a time-varying linear optimization-based approach that
accounts for various relevant epidemiological variables, such
as population density and infected ratios.

In summary, equitable and timely distribution of medical
resources when they are scarce is an important measure to
combat the spread. The literature has presented studies that
have focused on the distribution of key critical resources, such
as ICU beds, ventilators, vaccines, and even patients. Similar
to studies conducted under other topics, the completeness
and accuracy of these models are based on available data,
assumptions made, current knowledge of the virus, and com-
putational capabilities, which are all, unfortunately, limited.

E. MASS VACCINATION AND VACCINE DISTRIBUTION
This section covers papers in which optimization methods
were used in relation to COVID-19 vaccine distribution and
mass vaccination.

Optimization of vaccine allocation and prioritization is
critical for achieving herd immunity and returning to a level
of pre-pandemic normalcy. In cases of limited vaccinations
and resources, vaccine distribution designed to minimize the
number of deaths, particularly in vulnerable populations,
is essential, especially due to the challenge of getting the
vaccine to the population, e.g., third world countries. Thus,
the logistics of mass vaccination is an imperative aspect to
consider. In this regard, [183] developed a bilinear nonconvex
optimization model to determine the best location for vacci-
nation sites. Other studies [184], [185] developed a vaccina-
tion drive-through simulation tool to optimize the operation
and effectiveness of mass vaccination facilities by imple-
menting an agent-based modeling technique and a machine
learning model, respectively. It is important to note that dur-
ing the time of this literature review, there were options for
both single- and two-dose vaccinations. Many COVID-19
vaccines require two doses; however in the realm of limited
resource availability, policymakers considered administering
only a single dose - in this case, determining the efficacy of a
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single-dose vaccine would be imperative [186]. In [186], the
authors developed a model to determine optimal allocation
strategies with various dosage vaccinations to reduce viral
spread and transmission. The results suggested that a mix of
single- and two-dose vaccination campaigns may be a game
changer in containing the pandemic.

In some of the optimization models considered, the vari-
ables pertaining to distribution include the allocation prioriti-
zation of certain groups (e.g., age, presence of comorbidities),
and strategies for vaccine distribution [187], [188]. For exam-
ple, in Brazil, a group of engineers and scientists sought to
develop an optimal strategy for vaccine distribution utilizing
real-time data from China [189]. By formulating an inverse
problem and using a differential evolution (DE) based opti-
mization algorithm, the parameters of the SIR (Susceptible-
Infected-Removed) model were then identified. This study
proposed two optimal control problems (single- and multi-
objective). The first problem involved minimizing the number
of infected individuals during treatment, which utilized a
DE algorithm. The second problem sought to minimize both
the number of infected individuals and the quantity of vac-
cine concentrate administered during treatment. Researchers
have also developed a data-driven mechanistic model of
COVID-19 transmission to find optimal vaccine distribution
strategies, specifically in China, to reduce the effects of the
virus [190].

Another approach in vaccine allocation optimization
is the use of an age-stratified model [191]. Using this
approach, an optimal vaccine allocation plan was determined
based on three metrics: deaths, symptomatic infections, and
hospitalizations.

ICU and non-ICU availability was seen as a key metric
to evaluate the implementation of different mitigation tech-
niques. For example, the optimization study found that any
vaccine with an efficacy of greater than 50% would be able
to slow the pandemic while preventing healthcare systems
from becoming overwhelmed. The study also found that a
vaccine with an efficacy of greater than 70% would allow
for full control and containment of the COVID-19 pandemic.
Even with such formal optimization tools available for vac-
cine allocation, there are still many unknown variables, such
as immune response duration, that contribute to the mitiga-
tion of the spread of COVID-19. Additional insight about
these variables would enable the creation of more accurate
models that could account for more refined scenarios, rather
than making assumptions that may or may not be entirely
valid. Similarly, South Korea also utilized an age-stratified
model [192]. With the limited vaccination supply available in
South Korea during the time of this study, an age-structured
model integrated susceptible, latent, asymptomatic and infec-
tious, symptomatic and infectious, and recovered groups as
the epidemiological compartments. A different study assess-
ing COVID-19 vaccine distribution optimization in Quezon
City in the Philippines also utilized an age-stratified and
quarantine-modified SEIR with nonlinear incidence rates
(““ASQ-SEIR-NLIR”’) compartmental model [193].
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Vaccine allocation optimization studies have also consid-
ered vaccine equity and fair allocation of vaccines. In a case
study focusing on vaccine distribution in Mexico [194], the
authors considered different fairness schemes that guided the
allocation and included parameters that described vulnerable
groups in the population (in terms of size and risk profiles).
This particular study also addressed the need to approach
allocation by individual state needs. Inequalities in vacci-
nation distribution are further underscored when resources
are scarce, whereas the complexity of vaccine distribution
increases when resources are readily available; thus, the liter-
ature dedicated to vaccine equity during distribution empha-
sizes the need to address all scenarios when making decisions
geared towards vaccine distribution. In a case study focusing
on a developing country [195], the modelers and engineers
use an inventory-location based mixed-integer linear pro-
gramming model, based on the distribution of the influenza
vaccine, which incorporates equitable objective functions to
show the model’s applicability in a COVID-19 context.

Another aspect of vaccine optimization is pricing.
Although the vaccine is freely available to anyone in the
United States, there is a cost associated with the development,
allocation, and administration of vaccines. Reference [196]
utilizes an optimization and game theoretic approach to
specifically look at Pfizer-BioNTech and Moderna within the
US market. The objective is to minimize the total government
cost for the vaccine while ensuring that the public demand
is met, and the manufacturers achieve a target profit. The
results of this study show that even with high production
and distribution costs, it is possible to achieve a win-win
situation - low vaccine prices while still meeting the demand
and ensuring a target profit for the manufacturers.

Overall, studies related to vaccination optimization have
focused on the distribution and fair prioritization of vaccines.
A common approach was to use an age-stratified model
and account for vaccine efficiency; however, there are more
factors that can be accounted for in the models to provide
more realistic results. In the studies considered, limited and
accurate data availability and knowledge about the virus and
vaccines are key aspects that hinder the development of accu-
rate models.

F. DECISION SUPPORT TOOLS

This section covers papers in which optimization methods
were used in relation to developing decision support tools to
combat the spread of COVID-19.

While many studies mention the potential of their
models to aid in decision-making processes (e.g., [11],
[94], [172], [197]), few actually fit our definition of a deci-
sion support tool. For the purpose of this paper, we define
a decision support tool as a model or tool that utilizes
formal optimization methods and explicitly suggests opti-
mal action plan(s). As such, models that utilize deci-
sion analysis techniques (such as the analytic hierarchy
process (AHP) or are based on utility theory) were not
considered.
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Several studies have developed decision support systems in
relation to various aspects of the pandemic, mainly resource
allocation, patient treatment, and non-pharmaceutical inter-
vention (NPI) strategies.

Most resource allocation models can be viewed as decision
support tools, since they do suggest a plan for the optimal
distribution of resources. For example, [29] and [30] con-
sidered an optimal allocation of ICU beds and PPE, respec-
tively, given the scarcity of available resources. However,
besides medical devices and equipment, other resources to
consider include medical staff (nurses, doctors, technicians),
hospital bed availability, and the physical locations of hos-
pitals or emergency medical vehicles. In [33], the authors
developed a decision support system for scheduling shifts
of physicians. Due to increased hospital workloads, it is
important to ensure that both COVID-19 patients and reg-
ular patients receive appropriate care while considering the
physical and mental well-being of the healthcare workers.
Thus, a mixed-integer programming model was proposed to
optimize the shift scheduling of physicians. The objective of
the model is to minimize the exposure of physicians to the
virus while maintaining healthcare service operations at a sat-
isfactory level. In addition to the availability of medical staff,
it is important to consider healthcare facility capacities and
readiness to accept new patients. To optimize the admission
process, the authors in [198] formulated a multi-objective
problem using a Pareto-Optimization based algorithm, where
the model chooses the most suitable hospital for the patient
(based on hospital readiness level and the patient’s condi-
tion) with the least admission time. Studies [34], [35], [199]
considered the problem of selecting the optimal location
for temporary hospitals and medical vehicles. [34] recog-
nizes the fluctuation of incoming patients to a hospital and
the resulting stress it inflicts on the hospital system, both
resource-wise and financially. To mitigate the undesirable
burdens due to the dynamic inflow of patients, the authors
developed a model that utilizes a Gray-based decision support
framework to select the best location for a temporary hospital
for COVID-19 patients. Similarly, [35] models the optimal
placement of emergency medical vehicles, specifically for the
case when refugee camps are nearby. Due to the high-density
populations in refugee camps, a fast response time is critical
to avoid spikes when a case has been identified. To ensure
that a medical response team can isolate an infected refugee
person as quickly as possible, while not neglecting the regular
demand load for their services, the authors have developed
a spatial hypercube queuing model to determine the optimal
locations for emergency medical vehicles.

Other studies have developed decision tools that per-
tain to decisions regarding patients’ or people’s behav-
iors (NPIs). For example, [36] utilized a machine learning
approach using Bayesian optimization to determine the med-
ical needs and survivability of COVID-19 infected patients.
Thus, this model helps hospital workers decide whether a
patient would require hospitalization, ICU bed, ventilator, or
oxygen, based on their current condition, demographics, and
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existing comorbidities. Decision tools that provide optimal
NPI strategies as outputs are another subset to look at. Some
of these models have been mentioned in previous sections
(e.g., [11], [154], [172]), while [37] demonstrates how an
evolutionary surrogate-assisted prescription (ESP) Al model
can be used to determine the most optimal intervention strate-
gies. The surrogate model approach enables the generation
of a large number of candidate NPI solutions. Each of the
solutions can then be evaluated with respect to balancing
the need to curb the spread of the pandemic and minimizing
the economic impact.

As shown in the examples above, decision support tools
play a major role in managing the pandemic and mitigating
its effects. Reference [200] suggests that modeling efforts are
applicable to various areas of decision-making in relation to
the pandemic, such as decisions regarding disease transmis-
sion, resource management, and public healthcare. Although
there has been some work done in this area to date, we have
not found any decision support systems that can capture a
broader scope of the pandemic effects - e.g., no studies have
considered incorporating prediction, resource allocation, and
prevention capabilities in a single model.

V. DISCUSSIONS: LESSONS LEARNED AND GAPS

The literature review revealed numerous optimization meth-
ods and models developed to assist decision makers in a
COVID-19 pandemic context, while considering various epi-
demiological parameters and public health variables. The
literature makes it clear that combating the virus requires
effective implementation of mitigation strategies and poli-
cies aimed at minimizing infection and transmission rates.
It can be argued that optimization serves a critical role
for decision makers by instilling some level of confidence
prior to implementing mitigation strategies. Carefully tai-
lored models and decision support tools, such as epidemi-
ological models (i.e., SEIR) for forecasting, and models for
resource allocation can assist decision makers in preventing
the drainage of critical supplies and minimizing the number
of cases and deaths associated with COVID-19.

With a plethora of studies presented in the literature, there
is a common drawback, or limitation, to the models across
all domains - the lack of sufficient, unified data and knowl-
edge about the virus. This limitation is arguably the main
root of the current gaps, namely, unstable or inconsistent
model accuracy and reliability, very low to non-existent level
of implementation of the developed models on a broader
(population-wide) scale, and the limited scope of individ-
ual models that do not account for a holistic perspective
of the virus. Also, all of the reported models are based on
some assumptions that may be true (but not guaranteed) at
a given moment yet may fail as time goes on and the cir-
cumstances change. Moreover, a vast majority of the models
is data-driven, i.e., rely on existing data to tune the model
parameters - obviously during the early stages of the pan-
demic, when no data is available, these models become inap-
plicable. Clearly, the complexity of the virus, its variant, how
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it transmits, and affects our lifestyle is beyond our current
modeling and computational capabilities.

Ideally, it would be of great use to have a “digital twin”
model of the pandemic, which would account for all the
nuances of the virus, its effects, and its multidisciplinary
nature. The frameworks presented in this paper could serve
as the foundational structure for such a model. For exam-
ple, consider the Macroscale vs Microscale perspective — on
the micro-level, a mechanistic (e.g., epidemiological) model
based on the virus microbiology and bio-behavior would
be of great value to understand the nature and dynamics of
the virus, particularly in the beginning stages when data is
scarce; on the macro-level, a data-driven model may be more
appropriate to determine, for example, the optimal resource
allocation plan or re-opening policy. From this example it is
obvious that not only is it important to view the problem from
different perspectives, but also consider integrating different
modeling approaches. Mechanistic- and data-driven models
could complement each other and possibly be combined as
well. Such a combined model would have to reflect the holis-
tic perspective rather than the individual aspects (such as pre-
diction, resource allocation, or prevention) of the pandemic.
As more data and relevant information becomes accessible
and available, the potential to optimize and improve existing
models and tools, which can aid in determining optimal inter-
vention policies and mitigation strategies, increases.

Although the literature reviewed overwhelmingly
addressed COVID-19, many of the developed optimization
models have not actually been implemented or utilized, and
the added value which can be achieved from the implemented
models has not been quantified. For example, although
age-stratified and other models that seek to prioritize vaccine
distribution in a manner that would minimize the number of
deaths and burden on the healthcare system exist, many coun-
tries did not apply strategies recommended by the developed
optimization models. Data and model reliability and accu-
racy may have been a variable in implementation hesitation.
Instilling trust in decision makers requires an accurate and
adaptable model. However, the novelty of the virus and its
variants, and the lack of sufficient or accurate data pose a
great challenge for the verification of existing models. Unfor-
tunately, since the models reported in the literature have not
gained widespread popularity among decision makers, many
decisions were ad hoc and based on expert knowledge and
opinion. In many situations ‘“‘optimal” prevention and control
strategies were determined by trial and error. This approach
is very subjective, which could be detrimental, especially
considering the global, complex, and dynamic nature of the
virus. Moreover, the lack of a systematic approach may annul
all previous efforts to control the spread and leave uncertainty
about their effectiveness. Table 2 provides some examples of
regulations and COVID-19 statistics in a few countries as of
June 30, 2021. From the frameworks’ perspective, the four
regulations shown in Table 2 fall into the prevention, testing,
and vaccination compartments. Without the framework or
models, these regulations appear to be implemented almost
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TABLE 2. Examples of COVID-19 Response Actions in Different Countries®.

0,
Regulations* o Fully Confirmed Deaths
Country Vaccinated Cases
Stay-at-home Face coverings Testing policy Vaccination Utility
[ I
USA Recommended Required in all Open public Universal 16 47.2% 33,664,991 604,598
public spaces testing
Brazil Required (except Required outside- Symptomatic & Vulnerable + 15 12.4% 18,557,141 518,066
essentials) the-home key groups some others
Australia Required (except Required in all Anyone with Vulnerable + 15 5.9% 30,643 910
essentials) public spaces symptoms some others
China Required (except Required in some Open public Universal 16 89% 103,769 4,847
essentials) public spaces testing
India Required (few Required outside- Anyone with Vulnerable + 17 4.2% 30,411,634 399,459
exceptions) the-home symptoms some others
Saudi Arabia  No measures Required in all Open public Universal 15 4.6% 487,592 7,819
public spaces testing
Egypt No measures Required outside- Anyone with All vulnerable 13 0.8% 281,282 16,169
the-home symptoms
Italy Required (except Required in some Open public Universal 16 31.3% 4,259,909 127,566
essentials) public spaces testing
Spain Recommended Required in some Anyone with All vulnerable 12 38.3% 3,808,960 80,875
public spaces symptoms

* Data from Johns Hopkins University, for January 22, 2020 — June 30, 2021’

randomly, and we can see the resulting effects on cases,
deaths and vaccination status are inconclusive. For example,
if we create a utility function for each regulation, where
stricter regulations and greater accessibility to testing and
vaccinations are defined by a greater utility value, then the
respective total utilities summarized in Table 2 describe
the overall “goodness’ of the regulations. The USA and
India both have high utility values (16 and 17, respectively)
compared to Spain (12), yet the number of cases is 10 times
greater in the first two countries (USA and India). Australia
on the other hand has the lowest case count, as shown in
Table 2, despite the mediocre level of regulations and very
low vaccination rate. This analysis shows how critical it is to
have a structured framework and model to assess and improve
the effectiveness of regulations and other decisions, as well
as ensure that no aspects get ignored.

Finally, the complexity of the virus and its unprece-
dented effects create unanticipated challenges when attempt-
ing to develop and update models. This pandemic is a
multi-player, multi-objective, and multi-disciplinary prob-
lem, which is why it has been approached by parts, rather
than as a whole. For example, some studies focused on opti-
mizing prediction models of COVID-19 cases, while oth-
ers focused on equitable allocation of vaccines in a certain
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country. An additional challenge and level of complexity
are introduced by the nonuniform and detached nature of
the developed models - different sets of assumptions, vary-
ing approaches, parameters, and objectives. Unifying and
standardizing these models would be ideal; however, the
complexity of the processes would grow exponentially and
may become computationally intractable. Utilizing a modular
approach that could eventually be assembled together based
on the frameworks presented in this paper could be a possible
direction. Developing individual models that could be inte-
grated into a main system model would require a fundamental
framework that could account for the relationships between
the subsystems, and a uniform approach and overarching
common goal.

To summarize, data availability, accessibility, and accu-
racy are prevalent issues. Countries use non-standardized
approaches when collecting and interpolating relevant
data. In addition, some nations have hindered efforts for
COVID-19 data accessibility. Moreover, unfortunately, polit-
ical and economic incentives have led some governments to
intentionally provide false reports on the status of COVID-19.
Therefore, the detection of trends and the ability to develop
and verify a data-driven model becomes inaccurate, which
directly affects decision makers. The development of a
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reasonably robust algorithm where such intricate data is not
required but does not compromise the accuracy of the output
prediction, could be a possible future direction.

COVID-19 has proven to be a ubiquitous phenomenon
that has affected all areas and components of life. Through
this literature review, the critical need for data accessibil-
ity and accuracy to support data-driven decision-making
when creating mitigation strategies, is apparent. The develop-
ment of proper models and decision support tools for future
pandemics can assist in ensuring that the healthcare system is
well equipped for another pandemic and that the number of
lives lost is minimal.

VI. CONCLUSION

As mentioned at the outset, this is the first paper that has
provided a review of optimization studies in the context of
COVID-19 with a focus on prediction and control. From the
literature reviewed, it is evident that researchers, scientists,
and decision-makers are constantly attempting to develop and
determine the most effective and optimal way to combat the
spread of COVID-19 and its effects on the general popula-
tion. The utilization and implementation of optimization tech-
niques has been a powerful tool for studying and analyzing
the potential impacts of the virus, as well as the effective-
ness of certain mitigation strategies. For example, models
that optimize the prediction of virus transmission, forecast
demand for hospital resources, or provide exit strategies can
aid decision makers in determining the best course of action
and understanding its implications.

This literature review focused on a subset of optimization
studies related to the COVID-19 pandemic. Specifically,
studies related to the optimization of prediction models
of COVID-19 cases and deaths, forecasting the demand
of critical hospital supplies to treat patients, optimiza-
tion of screening testing strategies, resource allocation, vac-
cine distribution, and the development of decision support
tools were considered. Four new frameworks were intro-
duced to facilitate the structure of different perspectives on
COVID-19 and other imminent pandemics. Additionally, this
literature review sought to identify any gaps in the current
literature.

Assessing the literature using the four proposed frame-
works underscored the need for better optimization models
to minimize the external and internal effects of a novel and
ubiquitous pandemic, such as COVID-19. The frameworks
can be used to account for various aspects of the virus that are
all intertwined with one another, while simultaneously being
dependent on the rate of community transmission and hos-
pitalizations. For example, the microscale versus macroscale
framework can be used to gain a macro-perspective behavior
of the virus while being heavily dependent on its performance
at a microscale level.

4https://ourworldinclata.org/policy—responses—covid
Shitps://doi.org/10.1016/S1473-3099(20)30120-1
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Finally, in terms of future research directions, there are
still many gaps and challenges remaining due to the ongoing
nature of the COVID-19 pandemic. For example, a better
understanding of the virus and its transmissibility, though
challenging due to its evolutionary nature, would allow for
more accurate and effective mitigation and resource alloca-
tion optimization efforts. Also, better accessibility, unifor-
mity and accuracy of data would provide vastly more robust
and reliable mechanistic models, particularly when dealing
with virus variants that continue to mutate and dampen mit-
igation efforts. Regarding vaccinations and the impact of
mass vaccinations, due to the ongoing efforts to vaccinate
the general population, there is still a lack of data and infor-
mation on vaccine distribution and formulation optimization.
As COVID-19 continues to evolve, prediction and forecast-
ing have become powerful tools in preparing and protect-
ing decision-makers, hospitals, supply chains, governments,
and civilians in the realm of testing, prevention and control,
vaccination, and resource allocation. However, these tools,
which are designed to provide more accurate and effective
optimization strategies, can only become useful if data are
accessible and trustworthy.
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