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ABSTRACT Because of shorter key and higher security, elliptic curve cryptosystem has attracted people’s
attention and it is widely used in various fields, such as wireless sensor networks. Scalar multiplication is one
of the most basic and critical links in the realization of elliptic curve public key systems, and its operation
efficiency directly affects the implementation efficiency of the entire cryptographic system. To improve speed
up the efficiency of the scalar multiplication algorithm, we express k for scalar multiplication kP by using
triple-base chain representation of the scalar using {2, 3, 7} as basis of the triple-base chain in this paper.
However, the efficiency of scalar multiplication is not only related to the length of representation but also
the numbers and costs of doubling, tripling, septupling and addition. Therefore, we improve septuple formula
of the elliptic curve by using Co_Z operation, which costs decreased by 8.3%. Due to the high redundancy of
the triple-base chain representation, the algorithm can resist side channel attacks. The experimental results
show that the proposed algorithm compared with that of other scalar multiplication algorithms, it requires
less cost.

INDEX TERMS Co_Z operation, elliptic curve cryptography, triple-base number system, triple-base chain,
scalar multiplication, septuple.

I. INTRODUCTION
A. BACKGROUND
With the rapid development of wireless communication tech-
nology, wireless sensor networks of low-cost, low-power, and
multi-functional are used in many civilian fields, such as
environmental and ecological monitoring, health monitoring,
home automation, and traffic control. However, users have
high requirements for the security capabilities of wireless
sensor networks in these application environments. There-
fore, the introduction of encryption technologies that can
ensure information security has become a major research
hotspot at the moment, and it is vital to the development
of wireless sensor networks. However, elliptic curve cryp-
tosystem has attracted people’s attention with shorter key and
higher security, and it is widely used in various fields, such as
wireless sensor networks. Elliptic curve cryptography (ECC)
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has been a research topic for many scholars since it was first
discovered byMiller [1] andKoblitz [2] in 1985. In particular,
substantial research has been conducted on how to improve
the overall computing efficiency of elliptic curves and how
to resist side-channel attacks. The security of ECC depends
on the computational intractability of the elliptic curve dis-
crete logarithm problem (ECDLP). In contrast to the discrete
logarithm problem in finite fields and the integer factorization
problem, there is no known sub-exponential time algorithm to
solve the discrete logarithm problem on a well-chosen elliptic
curve. In terms of security, compared with RSA [3] public
key schemes and ElGamal [4] public key schemes, the elliptic
curve cryptosystem provides higher security strength per bit.
For instance, the security strength provided by the 160-bit
key length elliptic curve cipher is equivalent to the security
strength provided by the 1024-bit key RSA password. There-
fore, ECC is simpler and more universal in implementation
than other public key cryptographic systems, and its applica-
tion is increasingly widespread. ECC is particularly suitable
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for application environments with limited storage or comput-
ing resources, such as smart cards and PDAs. When using
the elliptic curve cryptosystem for encryption, decryption,
digital signature and digital signature verification [5]–[7], the
most time-consuming operation is scalar multiplication, and
its operation efficiency effects the implementation efficiency
of the elliptic curve cryptosystem.

Scalar multiplication is denoted by kP, where k is a scalar
and P is a point on an elliptic curve. How to accelerate scalar
multiplication is a challenging task, especially in resource-
constrained environments. Methods to improve the efficiency
of scalar multiplication can be considered based on the
following aspects: on one hand, k can be represented in
binary form [8], or non-adjacent form(NAF) [9]; on the other
hand, the cost of point addition and doubling operation is
decreased. In order to describe the cost of field operations,
we will respectively denote the cost of field inversion, field
multiplication, field squaring and field cube by using I, M,
S and C. We shall always ignore the costs of field addition,
field subtraction and multiplication by small constants. For
large prime field, we assume that the quantity relationship
among them is S/M = 0.8, as is customary in software
implementation.

In recent years, the double-base or multi-base represen-
tation of integer k has researched by many scholars and
has made great progress. The double-base number sys-
tem (DBNS) representation of integers was first proposed
by Dimitrov and Cooklev in 1995 [10], where an integer K
is represented as k = 6l

i=12
ai3bi . In 1997, Dimitrov et al.

present a rigorous theoretical analysis of the main properties
of a double base number system with using base 2 and 3
and emphasize the sparseness of the representation in par-
ticular. And its potential areas of application is computa-
tion of modular exponentiations in cryptography [11]. After
that, Dimitrov et al used DBNS to improve the performance
of modular exponentiations and gave an theoretical about
DBNS, which the greedy algorithms terminates after steps

k = o(
logx

loglogx
) [12]. Due to the DBNS seems to be not that

efficient in the case of a randomly chosen base point. In order
to overcome this problem, Dimitriv et al. [13] introduced
the concept of double-base chain(DBC), which as a special
case of double-base number systems(DBNSs), requires the
restrictions b1 ≥ b2 ≥ . . . ≥ bl ≥ 0 and t1 ≥ t2 ≥ . . . ≥

tl ≥ 0. The algorithm accelerate scalar multiplication by
fewer point additions and can be protected against simple
and differential side-channel analysis by using side-channel
atomicity and classical randomization techniques. However,
the new restriction conditions increasing the number of
double-base chain terms. To overcome this problem, a triple-
base number system(TBNS) appeared.

Triple-base chain(TBC) as a special case of triple-base
number systems(TBNSs) have the characteristics of shorter
scalar representation length and fewer non-zero bits. In 2007,
Mishra and Dimitrov [14] presented efficient formulas
for point quintupling and introduced a triple-base number

system (TBNS) for computing scalar multiplication more
efficiently based on {2, 3, 5}. In 2013, Wei et al. [15], [16]
proved the number of TBNSs and indicated that the sub-linear
bound is still valid. Meloni and Hasan [17] introduced a class
of constrained DNBSs that were restricted to exponents of
base {2, 3} in 2015. Yunqi et al. [18] proposed a constrained
TBNS on the basis of a constrained TBNS based on {2, 3, 5}.
After that, Yunqi et al. [19] proved that the upper bound on
expansion length of a constrained TBNS is still sub-linear.
This result provides a more practical boundary of the TBNS
to accelerate scalar multiplication. However, since the length
of the TBC representation has not been visibly became short,
but the number of points doublings, point triplings, and point
septuplings increased greatly, the computational overhead of
scalar multiplication may be very large. Therefore, it is of
great significance for TBC to optimize to reduce the com-
putational complexity of the underlying filed by improving
operation on the bottom layer such as field inverse, multipli-
cation and so on. Table 1 shows the operations needed in this
paper.

TABLE 1. Cost of elliptic curve point operations in FP .

B. CONTRIBUTION
In the present work, our main contributions are as follows:

First, we improve septuple formula of the elliptic curve by
using Co_Z operation, which costs decreased by 8.3%.

Second, an efficient scalar multiplication algorithm of
a point P on an elliptic curve is proposed using TBC
representation of the scalar using {2, 3, 7} as basis of
the TBC.

Third, we apply the improving algorithm to wireless sensor
networks. It can effectively improve the quality of wireless
sensor network broadcast authentication service.

C. ORGANIZATION
The rest of this work is organized as follows: in section II,
we provide the background on the ECC and MBRS. In
section III, we improve the septuple operation formula. Then,
we introduce a fast TBC scalar multiplication algorithm with
the scalar using {2, 3, 7} as basis of the TBC in section IV.
In section V, We analyse the efficiency of the group operation
and the efficiency of the TBC scalar multiplication algorithm.
And we describes the application of the algorithm. Finally,
in section VI concludes the paper.

II. MATHEMATICAL BACKGROUND
In this section, we give a brief review of the basic knowledge
used in the paper.
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A. ELLIPTIC CURVE CRYPTOGRAPHY
Definition 2.1: An elliptic curve E over a finite field K is
defined by the following equation:

E : y2 + a1xy+ a3y = x3 + a2x2 + a4x + a6 (1)

where a1, a2, a3, a4, a6 ∈ K are such that, for each point (x, y)
on E , the particle derivatives do not vanish simultaneously.
The Weierstrass equation(1) can be highly dependent on

the characteristics of K and can be simplified by applying
admissible changes in variables. If the characteristic of K is
not equal to 2 or 3, equation (1) can be simplified as:

y2 = x3 + ax + b (2)

where a, b, ∈ K and 1 = 4a3 + 27b2 6= 0. When the
characteristic of K is equal to 2, we use the nonsupersingular
form of an elliptic curve and the Weierstrass equation(1) is
represented as:

y2 + xy = x3 + ax2 + b (3)

where a, b ∈ K and 1 6= 0. In this paper, we only consider
curves defined over a prime finite field (K = Fp) of charac-
teristics greater than 3. The set of points E(K ) defined over K
forms an abelian group. Elliptic curve group law computation
has been a very active research area. If we assume that
P1 = (x1, y1) and P2 = (x2, y2) are arbitrary points on the
elliptic curve and P1,P2 are not equal, point addition (ADD)
is defined by P3 = P1 + P2 and point doubling (DBL) is
defined by P3 = 2P1. The equations for ADD and DBL are
as follows: ADD operation P3 = P1 + P2 = (x3, y3)

x3 = (
y1 − y2
x1 − x2

)2 − x1 − x2,

y3 = (
y1 − y2
x1 − x2

)(x1 − x3)− y1.
(4)

DBL operation P3 = 2P1 = (x3, y3).
x3 = (

3x21 + a

2y1
)2 − 2x1,

y3 = (
3x21 + a

2y1
)(x1 − x3)− y1.

(5)

B. THE JACOBIAN COORDINATE ON OPERATION
In the affine coordinate system, the formulas of point addi-
tion and point doubling on the elliptic curve in Fp involve
an inverse operation, which is computationally expensive.
In order to avoid inversion, Jacobian projective coordinates
we would be introduced: for Jacobian coordinates, we set

x =
X
Z2 and y =

Y
Z3 , giving the equation

EJ : Y 2
= X3

+ aXZ4
+ bZ6. (6)

The point addition formula is as follows. Let P =

(X1,Y1,Z1),Q = (X2,Y2,Z2) and P+Q = R = (X3,Y3,Z3).
X3 = R2 + G− 2V ,

Y3 = R(V − X3).
Z3 = ((Z1 + Z2)2 − I1 − I2)H .

(7)

where, R = 2(K1 − K2), G = FH , V = U1F , K1 = Y1J2,
K2 = Y2J1, F = (2H )2, H = U1 − U2, U1 = X1I2, U2 =

X2I1, J1 = I1Z1, J2 = I2Z2, I1 = Z2
1 , I2 = Z2

2 [25].
The point doubling formula is as follows: Let P =

(X1,Y1,Z1), and 2P = R = (X3,Y3,Z3).
X3 = A2 − 2B,

Y3 = A(B− X3)− 8E2.

Z3 = C .

(8)

where A = 3D + aF2, B = 2((X1 + E)2 − D − E2), C =
((Y1 + Z1)2 − E − F), D = X2

1 , E = Y 2
1 , F = Z2

1
According to the above formulas, under Jacobian coordi-

nates, point addition costs 11M+5S and point doubling costs
1M + 8S + 1c, where c denotes the cost of a multiplication
by curve parameter a.

Moreover, it is important to attention that it has been pro-
posed that the parameter can be fixed at a = −3 for efficiency
purposes. In fact, most curves recommended by public-key
standards use a = −3, which has been shown to not impose
significant restrictions on the cryptosystem. In this case, the
cost of point doubling is reduced to only 3M + 5S [20], [21].

C. MULTI-BASE REPRESENTATION OF AN INTEGER
1) DOUBLE-BASE REPRESENTATION OF AN INTEGER
In this section, we introduce the concept of a DBNS; the
details can be found in [22].
Definition 2.2 (S-Integer): Given a set of primes S,

an S-integer is a positive integer whose prime factors all
belong to S.
Definition 2.3 (Double-Base Number System): Given p, q,

two relatively prime positive integers, the DBNS is a repre-
sentation scheme into which every positive integer n is repre-
sented as the sum or difference of p, q-integers, i.e., numbers
of the form paqb:

n = 6l
i=1sip

aiqbi , (9)

with si ∈ {−1, 1} and ai, bi ≥ 0. The size, or length,
of a DBNS expansion is equal to the number of terms l in
equation (10). In the following, we consider only expansions
of n as sums of 2, 3-integers; i.e., DBNS with p = 2, q = 3.

This representation is highly redundant regardless of
whether the integer K is expanded signed or unsigned. For
example, if we assume only unsigned double-base representa-
tions, we can prove that the DBNS representations of 10 have
exactly 5 different form, the DBNS representations of 100
have exactly 402 different form, the DBNS representations
of 1, 000 have exactly 1, 295, 579 different form, etc.

2) MULTI-BASE REPRESENTATION OF AN INTEGER
In this section, we give the concept of TBNS and TBC the
details can be found in [14], [24].

TBC has higher redundancy as an extension of the DBC.
Compared with other scalar representations, its chain length
is shorter and the number of nonzero bits is less, which can
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effectively reduce the amount of required scalar multiplica-
tion. TBNS first proposed by Mishra and Dimitrov [14]. Let
K be a large integer and B = b1, . . . , bl be a set of small
integers. That is, k = 6l

i=1sib
eil
1 . . . b

eil
l , si ∈ {−1, 1}where si

is the sign bit, and the integer l is the length of the expression,
then k is called the multi-base representation using the basis
set B.
Definition 2.4 (TBNS): Given three relatively prime posi-

tive integers p1, p2, p3, every integer k is represented as

k = 6l
i=1sip

ai
1 p

bi
2 p

ei
3 , (10)

where si ∈ {−1, 1}, l is the chain length. We will refer to
terms of the form pai1 p

bi
2 p

ei
3 , as 3-integers. A general triple-

base representation, although very short, is not suitable for
a scalar multiplication algorithm. So we are interested in
a special representation with restricted exponents, such as
TBC.
Definition 2.5 (TBC):Given three relatively prime positive

integers p1, p2, p3, every integer k is represented as

k = 6l
i=1sip

ai
1 p

bi
2 p

ei
3 , (11)

where si ∈ {−1, 1}, l is the chain length, a1 ≥ a2 ≥ . . . ≥

al ≥ 0, b1 ≥ b2 ≥ . . . ≥ bl ≥ 0 and e1 ≥ e2 ≥ . . . ≥ el ≥ 0.
For example, in [23], if k = 21, 962 then k can be

represented by following.

k = 21962 = 253353 + 233251 + 2

= 2(223251(223151 + 1)+ 1) (12)

Algorithm 1 uses a greedy algorithm, which can convert an
integer to a triple-base representation.

Algorithm 1 Greedy Algorithm to Compute DBNS Repre-
sentations
Input: A positive k , max2, max3
Output: the sequence(si, ai, bi)i>0, such that k =

6l
i=1si2

ai3bi
1: s1← 1, i← 1
2: for b = 0 to max2, t = 0 to max3 do
3: z = T [a, b], the best approximation of K
4: print (s, a, b)
5: max2← a, max3← b
6: if k < z then
7: s←−s
8: else
9: s← s

10: end if
11: k ← |k − z|
12: end for
13: end

III. OPTIMIZED 7P METHOD ON CO-Z OPERATION
A. ADDITION FORMULA ON CO-Z OPERATION
The Co-Z operation was first proposed by Meloni [25]. Its
main idea is that two points with different Z coordinates on

the elliptic curve use the same Z coordinate through trans-
formation during calculation. Let P = (X1,Y1,Z ), Q =
(X2,Y2,Z ) and P1 + P2 = (X3,Y3,Z3).

X3 = U − T1 − T2,
Y3 = (Y1 − Y2)(T1 − X3)− Y1(T1 − T2).
Z3 = Z (X1 − X2).

(13)

where, W = (X1 − X2)2, T1 = X1W , T2 = X2W , U =
(Y1 − Y2)2.
This operation is called as the ZADD operation. The key

observation in Equation (11) is that the computation of R =
P + Q yields for free an equivalent representation for input
point P with its Z-coordinate equal to that of output point R,
namely (X1(X1 − X2)2 : Y1(X1 − X2)3 : Z3) ∼ P.
From Equation (11), the unified Z-coordinate transforma-

tion has been calculated in the Co_Z point addition operation,
so no extra calculations are needed. At this time, the point
addition costs 5M + 2S. If Z-coordinate of P and Q are equal
to 1, the corresponding point addition costs 4M + 2S.

B. OPTIMIZED 7P METHOD ON CO-Z OPERATION
For the first time, G. N. Purohit proposed a method of cal-
culating 7P directly in affine coordinates over a binary field
using the idea of the following division polynomial [24].
Later, Lai Zhongxi and others used the idea of transform-
ing inversion into multiplication and proposed an algorithm
for calculating 7P in affine coordinates over a large prime
field [26]. And operation cost of setupling is I + 18M + 12S.
Longa et al obtained operation cost of setupling that is 13M+
18S by presenting new improvements in the point operation
formulae [27].

In this section, we further improve the point septupling
formula for elliptic curves over large prime fields. We use
the Co_Z operation to compute setupling in Jacobian coor-
dinates. The calculation process of septupling is described in
detail below. Let P be (X1,Y1,Z1) be a point on elliptic curve
given by equation (13) (14)(15)(16).

Firstly, when Z1 = 1, we use equation (8) to give the result
of the point 2P calculation. let 2P = (X3,Y3,Z3) we can get
that, 

X3 = A2 − 2B,

Y3 = A(B− X3)− 8E2.

Z3 = 2Y1.

(14)

where A = 3D, B = 2((X1+E)2−D−E2),D = X2
1 , E = Y 2

1 .
Secondly, in the same way, we use equation (8) to give the

result of the point 4P calculation. When Z1 = 1, let 4P =
2(2P) = (X4,Y4,Z4) we can get that,

X4 = A12 − 2B1
Y4 = A1(B1 − X4)− 8E2

1

Z4 = C

(15)

where A1 = 3(X3 − 4E2)(X3 + 4E2), B1 = 2((X3 + E1)2 −
D1−E2

1 ), C1 = ((Y3+Z3)2−E1−4E2),D1 = X2
3 , E1 = Y 2

3 ,
F1 = Z2

3 = 2Y1.
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Thirdly, we use equation (11) to give the result of the point
3P calculation. When Z1 = 1, P(1)1 and 2P have the same
Z-coordinate. let P = (X1,Y1, 1), P11 ∼ (X (1)

1 ,Y (1)
1 ,Z (1)

1 ) =
(4X1Y 2

1 , 8Y 4
1 , 2Y1), and 3P = 2P+ P = (X5,Y5,Z5) we can

get that,
X5 = U ′ − T ′1 − T

′

2,

Y5 = (Y (1)
1 − Y3)(T

′

1 − X5)− Y
(1)
1 (T ′1 − T

′

2).

Z5 = Z3(X
(1)
1 − X3).

(16)

where, W ′ = (X (1)
1 − X3)

2, T ′1 = X (1)
1 W ′, T ′2 = X3W ′, U ′ =

(Y (1)
1 − Y3)

2.
Finally, we continue to use equation (11) to give the

result of the point setupling. Then, using Co_Z point
addition between 4P and 3P can get the formula of 7P,
At this time, 4P ∼ P(2) = (X (2)

3 ,Y (2)
3 ,Z (2)

3 ) =

(X5(2Y3Z3)2,Y5(2Y3Z3)3,Z5(2Y3Z3), then, 7P = 3P+ 4P =
(X6,Y6,Z6). See Algorithm 2

X6 = U ′′ − T ′′1 − T
′′

2 ,

Y6 = (Y (2)
3 − Y5)(T

′′

1 − X6)− Y
(2)
3 (T ′′1 − T

′′

2 ).

Z6 = Z5(X
(2)
3 − X5).

(17)

Algorithm 2 Greedy Algorithm to Convert a Triple-Base
Representation
Input: A positive k ,maxai,maxbi,maxei, with si ∈ {−1, 1},

l is the chain length, a1 ≥ a2 ≥ . . . ≥ al ≥ 0, b1 ≥ b2 ≥
. . . ≥ bl ≥ 0 and e1 ≥ e2 ≥ . . . ≥ el ≥ 0.

Output: the sequence(si, ai, bi, ei)i>0, such that k =

6l
i=1sip

ai
1 p

bi
2 p

ei
3

1: s1← 1, i← 1
2: while k > 0 do
3: find {p1, p2, p3}-integer k = pai1 p

bi
2 p

ei
3 the best approx-

imation of k
4: print (s, a, b, e)
5: ai← a, bi← b, ei← e
6: if k < z then
7: s←−s
8: else
9: s← s
10: end if
11: k ← |k − z|
12: end while
13: end

The computational complexity of each step is analyzed
in Table 2. According to the costs of point doubling and point
addition, it costs 12M + 15S.

IV. NEW SCALAR MULTIPLICATION ALGORITHM OF TBC
OF USING {2, 3, 7} AS BASIS
A. A TBC REPRESENTATION OF USING {2, 3, 7} AS BASIS
According to the algorithm 2 in section II, by TBC represen-
tation of k in this paper, wemean a representation of the form.

k = 6l
i=1si2

ai3bi7ri , (18)

Algorithm 3 Seven-Tuple Formula on Co-Z Operation
Input: P1 = (X1,Y1,Z1)
Output: 7P = (X6,Y6,Z6)
1: W ′′← (X (2)

3 − X5)
2

2: T ′′1 ← X (2)
3 W ′′

3: T ′′2 ← X5W ′′

4: U ′′← (Y4 − Y5)2.
5: X6← U ′′ − T ′′1 − T

′′

2
6: Y6← (Y (2)

3 − Y5)(T
′′

1 − X6)− Y
(2)
3 (T ′′1 − T

′′

2 )
7: Z6← Z5(X

(2)
3 − X5)

8: return (X6,Y6,Z6)
9: end

with si ∈ {−1, 1}, l is the chain length, a1 ≥ a2 ≥ . . . ≥

al ≥ 0, b1 ≥ b2 ≥ . . . ≥ bl ≥ 0 and r1 ≥ r2 ≥ . . . ≥ rl ≥
0. Obviously, the exponents ai, bi and ri form three separate
monotonic decreasing sequence.

Algorithm 4 Greedy Algorithm to Compute a TBC Repre-
sentation of Using {2, 3, 7} as Basis
Input: A positive k , max2, max3, max7, with si ∈ {−1, 1},

l is the chain length, a1 ≥ a2 ≥ . . . ≥ al ≥ 0, b1 ≥ b2 ≥
. . . ≥ bl ≥ 0 and r1 ≥ r2 ≥ . . . ≥ rl ≥ 0.

Output: the sequence(si, ai, bi, ri)i>0, such that k =

6l
i=1si2

ai3bi7ri
1: s1← 1, i← 1
2: while k > 0 do
3: find {2, 3, 7}-integer k = 2a3b7r the best approxima-

tion of k
4: print (s, a, b, r)
5: ai← a, bi← b, ri← r
6: if k < z then
7: s←−s
8: else
9: s← s
10: end if
11: k ← |k − z|
12: end while
13: end

Algorithm 4 shows that if k = 21962, k is represented by
following:

k = 21962 = 2673 + 23 + 2 = 2(22(2373 + 1)+ 1) (19)

B. NEW SCALAR MULTIPLICATION ALGORITHM OF TBC
OF USING {2, 3, 7} AS BASIS
According to Algorithm 3, the scalar k can be expressed
as a TBC. we fastly compute to scalar multiplication by
using a recursive formula using following equation for recur-
sive calculations for purpose of implementing the scalar
multiplication.

k1 = 1, ki = k = 2x3v7u + si, si ∈ {−1, 1} (20)
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TABLE 2. Cost of elliptic curve point setupling operation in FP .

TABLE 3. Method of calculating 21962P in different iterations.

where x is the difference of two consecutive binary exponents,
v is the difference of two consecutive ternary exponents and
u is the difference of two consecutive septenary exponents.
we use the algorithm4 to implement it.

From Algorithm 4, it can be concluded that the amount
number of points doubling, points tripling, points setupling
and points addition. respectively is x, v, u and l−1. And TBC
does not require any pre-computations but in this method
the expansion of the scalar reduces the cost of the scalar
multiplication making it faster. This algorithm requires l − 1
iterations, and the calculation amount of costing is denoted
as W

W = X ∗ DBL + v ∗ TBL + u ∗ SPL + (l − 1) ∗ ADD (21)

For example, from equation 18, if k = 21962, the scalar
multiplied by kP is

kP = 21962 = 2(22(2373P+ P)+ P) (22)

However, from equation 12, if k = 21962, the scalar
multiplied by kP is

k = 21962 = 2(223251(223151 + P)+ P) (23)

Table 3 is method of calculating 21962P in different itera-
tions and the scalar using {2, 3, 7} as basis of the TBC. It costs
113.2M . Table 4 is method of calculating 21962P in different
iterations and the scalar using {2, 3, 5} as basis of the TBC.
It costs 117M . Compared with using {2, 3, 5} as basis of the
TBC for 21962P, the total cost of the scalar using {2, 3, 7} as
basis decrease 3.3%.

V. ANALYSIS OF ALGORITHM
In this section, we conduct software simulation to compare
the efficiency of our algorithm with that of existing methods.
We analyse two aspects: the efficiency of group operations
and the overall operating efficiency of the scalar multiplica-
tion algorithm.

VOLUME 9, 2021 129517



S. Liu, L. Zhang: Efficient Septuple Formula for Elliptic Curve and Efficient Scalar Multiplication

TABLE 4. Method of calculating 21962P in different iterations.

TABLE 5. Cost of elliptic curve point setupling in FP (I = 10M, S = 0, 8M).

Algorithm 5 New Scalar Multiplication Algorithm of TBC
by Using {2, 3, 7} as Basis

Input: A integer k = 6l
i=1si2

bi3ti7ri , such that b1 ≥ b2 ≥
. . . ≥ bl ≥ 0, t1 ≥ t2 ≥ . . . ≥ tl ≥ 0, and r1 ≥ r2 ≥
. . . ≥ rl ≥ 0 and a point P on elliptic curve

Output: Q = kP ∈ E(FP)
1: Q← s1P
2: for i = 2, . . . , l − 1 do
3: x ← bi − bi−1
4: v← ti − ti−1
5: u← ri − ri−1
6: for i = l − 1 to i do
7: for i = m− 1 to x do
8: Q← 2Q
9: end for

10: for i = n− 1 to v do
11: Q← 3Q
12: end for
13: for i = h− 1 to u do
14: Q← 7Q
15: end for
16: end for
17: if si = 1 then
18: Q← Q+ P
19: else
20: Q← Q− P
21: end if
22: i = i+ 1
23: end for
24: return Q

A. GROUP OPERATION ANALYSIS
Group operation is the underlying field operation of the ellip-
tic curve scalar multiplication algorithm, which plays a key
role in the efficiency of the entire system. The comparison
of the total computational cost of different setuple formula is
shown in Fig. 1.

Table 5 shows that detailed data of computational cost
of the improved setuple formula and the previous formulas.
Compared with that of [26], the cost of calculation is reduced

FIGURE 1. Comparison of point setuple cost in FP .

to 3.6M + I , and the cost decreased by 56.7%. Compared
with [27], the cost of calculation is reduced to 2M , and the
cost decreased by 8.3%. And the cost of point doubling, point
tripling and point addition, in this paper, is shown in Table 5.

B. PERFORMANCE ANALYSIS OF ALGORITHMS
In order to analyze the performance of the scalar multipli-
cation algorithm proposed in this paper. Let us compare the
performance of the proposed scalar multiplication scheme to
some of the schemes existing in the literature. The experi-
ments were conducted on the elliptic curve recommended by
the National Institute of Standards and Technology (NIST)
that it is NIST B-160, and the size of the large prime field
was selected as 160-bit. For each curve and each set of
parameters, I. We generate 10,00 pseudo random integers in
{0, . . . , 2160 − 1}. II. The integers are converted into a TBC
representations. III.We calculate the costs for the algorithm in
terms of scalar multiplication. The experimental environment
is: the hardware environment is Intel (R) Core (TM) i5 CPU,
the installed memory is 16 GB, the software environment
is windows operating system, and the algorithms are imple-
mented by using JAVA language.

In the section, under in the case of different fields such
as large prime fields and over binary fields, our proposed
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TABLE 6. Cost comparison of 160-bit scalar multiplication in different field.

TABLE 7. Cost comparison of 160-bit scalar multiplication in same field.

algorithm compared with the MBNR proposed algorithm
in [14] for the same field size. See table 6.

Table 6 shows that when the key length is 160- bits and in
the case of different fields such as large prime fields and over
binary fields, the total cost of the proposed algorithm in this
paper is 105M lower than that of MMNR. And the efficiency
of the algorithm is increased by 8.5%. As a result, in the
case of different fields such as large prime fields and over
binary fields and the same field size, the scalar multiplication
algorithm we propose is more efficient.

Second, under in the case of the same fields such as
large prime fields, our proposed algorithm compared with the
DBC proposed algorithm [13], the CTBC proposed algorithm
in [18] for the same field size. See table 7.

Table 7 shows that when the key length is 160- bits and in
the case of the same such as large prime fields, the total cost of
the proposed algorithm in this paper is 627M lower than that
of DBC, 201.9M lower than that of CTBC New Algorithm 1,
and 326.2M lower than that of CTBC New Algorithm 2.
And the efficiency of the algorithm is increased by 50.7%,
16.3% and 26.4%. As a result, in the case of the same fields
such as large prime fields and the same field size, the scalar
multiplication algorithm we propose is more efficient.

C. APPLICATION
At present, because wireless sensor networks are deployed
in hostile environments, broadcast authentication as a funda-
mental security service. But the slow signature verification in
existing schemes makes high energy consumption and long
verification delay for broadcast authentication. However, the
ECC uses smaller parameters than other cryptosystems such
as RSA and DSA, it can obtain faster processing speed,
lower power consumption, and save memory and bandwidth.
Therefore, ECC is suitable for resource-constrained devices
such as wireless sensor networks. So, we apply the improv-
ing algorithm to wireless sensor networks. It can effectively
improve the quality of wireless sensor network broadcast
authentication service.

VI. CONCLUSION
The elliptic curve cryptographic algorithm is one of the most
widely used public key cryptographic algorithms, and the

performance of the scalar multiplication operation is key
to its application. In this paper we have presented efficient
scalar multiplication algorithms. First, we have introduced
an innovative methodology to derive operations of the sep-
tuple formula by applying the special addition with identical
z-coordinate to the setting of over prime fields. The new sep-
tuple formula are shown to be faster than operations of pre-
vious formulae. Second, we have proposed a new algorithm
for using TBC representation of an integer and combining
with the scalar multiplication. The purpose is to accelerate the
scalar multiplication algorithm on elliptic curve cryptography
and the scalar uses {2, 3, 7} as basis of the TBC. In the
future, we will continue to work on more efficient elliptic
curve scalar multiplication algorithms. The triple-base chain
is more redundant than the double-base chain. Therefore,
to improve the efficiency of the elliptic curve scalar multipli-
cation algorithm, future work will attempt to find the optimal
triple-base chain.
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