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ABSTRACT As the population worldwide continues to age and the percentage of elderly people continues to
increase, falls have been become the second leading cause of death from accidental or unintentional injuries.
Although many imaging sensing devices have been used to detect falls for elderly people, most involve
using the Internet to transfer images taken by a camera to a large back-end server, which performs the
necessary calculations; however, algorithm limitations and computational complexity may cause bottlenecks
in image outflow, and the image transfer can result in privacy problems. To address these problems, in this
paper, an artificial intelligence (AI) fall detection method is proposed that operates using an edge computing
architecture, called the pose estimation-based fall detection methodology (PEFDM), which is based on a
human body posture recognition technique. The proposed PEFDM can effectively reduce the computational
load, runs smoothly on mainstream edge computing systems and possesses artificial intelligence computing
capabilities. By using edge computing, the privacy and upload bandwidth issues caused by image outflow
can be eliminated. Experiments with real humans show that the PEFDM can detect falls for elderly people
with a recognition accuracy of up to 98.1%.

INDEX TERMS Artificial intelligence over Internet of Things (AIoT), deep learning, edge computing, fall
detection, Internet of Things (IoT), image recognition, image sensor application, posture recognition.

I. INTRODUCTION
Due to modern advances in medical treatments and public
health, the average human life span has increased sub-
stantially. According to statistics from the World Health
Organization (WHO), an American individual’s average life
expectancy is now 79.3 years and increases every year [1].
In this regard, the United States has created an aging society.
As the average age of the population continues to increase,
the number of accidents due to falls will also be increased [2].
Falls are now the second leading cause of elderly injuries
and deaths. According to statistics from the U.S. Centers
for Disease Control and Prevention [3], falls occurred for
25% of people over 65 years of age in the U.S. in 2012,
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causing 24,190 deaths and 3.2million injuries and resulting in
medical losses of US$26,340 and US$9,780, respectively [4].

According to the Kellogg international working group [5],
the causes of falls can be classified as the result of an
accident, a physical shock, stroke or epilepsy, consciousness
disturbances, or a lower-level position. From a recognition
perspective, according to references [6]–[8], a sudden decline
in head height or a head remaining close to the ground for a
substantial amount of time can be considered a fall.

In recent years, many devices have been created to detect
and report falls in elderly individuals. These devices can be
roughly divided into wearable systems and image recognition
systems. Wearable devices are sometimes inconvenient to
wear and need to be charged. Depending on the part worn
and the conditions of use, the device could have an uneven
accuracy [29]–[32]. Image recognition systems must transmit
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images to a back-end computing platform due to the amount
of calculations involved in fall recognition, causing privacy
problems.

Therefore, to accurately detect and report falls in real time
and address the privacy problems caused by image trans-
mission, this paper proposes a fall detection method based
on artificial intelligence edge computing; it combines image
recognition with edge computing to avoid the limitations
of local computing resources. In other words, we combine
image recognition and edge computing to explore the use
of local computing resources to replace cloud comput-
ing and solve privacy issues given the limited computing
resources of edge computing devices. The efficiency of the
algorithm can be adjusted to achieve specific goals. As a
result, the proposed PEFDM provides the following main
contributions:

• There is no need to use an expensive large computing
server to infer the fall behavior, thus reducing the system
construction cost.

• The computational complexity is greatly reduced so that
the overall algorithm can run on edge computing devices
with limited computing resources.

• Since only fall events are transmitted instead of video
streams, the privacy issues caused by video outflow are
greatly reduced.

• Same as above, it can also reduce the network bandwidth
required by the overall system.

The remainder of this paper is organized as follows.
Section II discusses related works on fall detection.
Section III explains the proposed methodology. Section IV
demonstrates and verifies the proposed methodology through
experiments. Finally, Section V summarizes the results and
discusses further research directions.

II. RELATED WORKS
Many works on methodologies for fall detection have been
published [35]–[43]. For example, Mubashir et al. [33] noted
that current fall detection technology can be divided into three
categories: wearable device-based detection, environmental
sensor-based detection and camera-based detection However,
older people may not accept these related technologies into
their lives due to an unfamiliarity with electronic devices
and their associated privacy issues. Hence, overcoming these
challenges is critical [34].

In this regard, Daher et al. [35] proposed a set
of INRIA-Nanc sensing floors that can detect falls in
elderly individuals. The INRIA-Nanc sensing floors consist
of 104 intelligent tiles (60 × 60 cm2), each of which uses a
resistive force sensor to sense the walking, standing, sitting,
lying, and ground-level falling behaviors of elderly individ-
uals. If an individual is sitting on the ground, the system
will use three-axis acceleration. The system is designed to
comprehensively analyze whether any of these behaviors is a
fall and then send the fall message, if generated, through the
ZigBee wireless communication network.

Montanini et al. [36] proposed a set of wearable smart
shoes for fall detection. The wearable intelligent shoes
combine three resistive force sensors (FR1-3) with a
three-axis acceleration sensor installed in the front and back
of the insole, which are all connected to an embedded systems
development board (Raspberry Pi 3) for algorithm calculation
and Wi-Fi wireless communication transmission. Seventeen
healthy subjects were subjected to a fall test in the laboratory,
yielding an accuracy of 97.1%.

Hussain et al. [37] proposed a fall recognition system based
on wearable sensors, combining an accelerometer and gyro-
scope to determine whether the wearer demonstrates falling
behavior. Detection and recognition are divided into five
stages: data acquisition, data preprocessing, feature extrac-
tion, fall detection, and fall activity recognition. The research
combines traditional signal processing with machine learning
classifiers (K-nearest neighbor, KNN) and detects falling
behavior in elderly individuals. When an individual falls,
the system analyzes the features of the individual before the
fall, learns to recognize the fall activity, and establishes a
model to predict the risk of future falls. Fall detection is
performed with the KNN classifier, achieving a recognition
accuracy of 99.8%.

Clemente et al. [38] proposed a real-time and nonintrusive
indoor fall detection and real-time notification system. The
system incorporates an intelligent vibration sensor in the
environment, which uses the vibration generated when an
individual falls on the ground, identifies the person who fell
and immediately reports the location of the person. The pro-
posed system uses two single classifiers (One-Class Support
Vector Machine [SVM]) to classify features and analyze the
vibration signals generated during walking. First, the first
single classifier determines whether the signal corresponds
to the one generated in the walking process. If not, the signal
is sent to the second single classifier to determine whether the
person has fallen.

Saadeh et al. [39] proposed a wearable fall detection and
prediction system and applied it to patients. The system
includes a three-axis acceleration sensor on the patient’s
thigh, which is used to distinguish the characteristics of
the patient’s activities of daily living from those of his or
her falls. The proposed system is divided into two modes:
1).fall prediction, in which a nonlinear support vector
machine classifier (NLSVM) is used to classify e seven
features before the fall occurs to predict the fall before
300 ms ∼ 700 ms; and 2). fall detection, in which the
Three-cascaded 1-sec sliding frames classification frame-
work and offline training based on linear regression are used
to establish different fall thresholds for different patients.
According to the experimental results, the sensitivity of the
system in fall prediction was 97.8%, the specificity was
99.1%, the sensitivity in fall detection was 98.6%, and the
specificity was 99.3%.

Lee and Tseng [40] proposed a system that uses a built-in
accelerometer to achieve fall detection. Specifically, the built-
in three-axis acceleration characteristics of a smartphone are
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used to detect the threshold values of three different attributes
for the user while walking, running, and sitting. The system
can detect four directions when falling, namely, forward and
backward, left and right. When the user falls, the system
immediately sends a warning message to the medical center
for help. In an experiment, 650 different types of activities
were tested, including 11 daily activities, with an accuracy
of 99.38%.

Moulik et al. [41] proposed a fall detection system based
on fuzzy theory, named FallSense, which uses an Arduino
development board to connect a three-axis acceleration sen-
sor with various sensors in the environment (infrared sen-
sors, photodiodes) and an Ultrasonic sensor. The proposed
FallSense system combines the advantages of the Internet
of Things environment through the multiple data sensed by
the different sensors and then uses fuzzy theory to infer
whether the user has fallen in the environment. According to
the experimental results, compared with a single sensor, this
method of installing various sensors in the environment can
reduce error reporting by 16% and can handle more complex
situations in different environments.

Yu et al. [42] proposed a fall detection system based on the
hidden Markov model (HMM). The authors used a three-axis
acceleration sensor signal as the magnitude of acceleration
in the direction of human movement as the criterion for
judging a fall. In addition, they also integrated a direction
calibration algorithm to reduce the judgment error caused
by the inconsistent placement of the three-axis acceleration
sensor. The system improves the difficulty encountered when
using a HMM to detect falls (three-axis acceleration sensor,
placement of the device and sensing direction) to improve
the accuracy of fall recognition. The experimental results
revealed a positive predictive value of 98.1% and a sensitivity
of 99.2%, better than those reported in previous studies using
HMM to detect falls.

With many studies using wearable devices to detect falls,
Saleh and Jeannès [43] proposed a fall detection algorithm
based on low-cost and high-precision machine learning that
can effectively obtain the time when a fall occurs. The char-
acteristic value of the algorithm addresses the misjudgment
problem resulting from complicated environments during fall
recognition. In this regard, the algorithmwas developed using
machine learning. The algorithm can be embedded in wear-
able devices to improve recognition accuracy and lower costs
and power consumption. The experimental results revealed
an accuracy exceeding 99.9% with calculations of less than
500 floating-point numbers per second, minimizing battery
power consumption.

The above studies demonstrate that falls in elderly individ-
uals are an increasingly severe public safety problem. How-
ever, compared with the present study, most fall detection
was performed by installing sensors in the environment or
allowing elderly individuals to wear devices on their bodies.
These kinds of detection method are easily resisted by elderly
individuals, however, because they are not accustomed to
using electronic equipment [29]. This may be due to the

inaccurate identification resulting from the complexity of the
environment [34]. As a result, in this article, we will use
images to judge the body.

Many academic studies have been published on fall recog-
nition; however, due to hardware computing power limi-
tations, most of them used simple methods to determine
fall events. Lee and Mihailidis [9] proposed a fall detection
system that used image processing technology. This method
captures images via a suspended camera and sends them to
a computer to perform background subtraction (BGS), which
separates the background from pedestrians and then tracks
the imaged object through connective component labeling
(CCL). Finally, the perimeter of interest, Feret’s diameter,
and the image object’s speed are judged based on posture,
and the results are displayed onscreen. Twenty-one people of
different ages (20–40 years) and heights (1.52 to 1.9 meters)
were included to conduct a total of 315 experiments in a fixed
environment and finally set two different thresholds based on
height (threshold) for fall judgment. The authors calculated
the true positives (TPs): 77%; false negatives (FNs): 23%;
false positives (FPs): 5%; and true negatives (TNs): 95%. The
total accuracy of this system reached 86%.

Cucchiara et al. [10] presented a fall detection and notifi-
cation system based on HMM image processing technology.
Multiangle images captured by multiple suspended cameras
are transmitted to the computing system for BGS, shadow
detection, image segmentation, and bounding box tracking
to mark and track moving image objects. Then, the image is
converted into waveform data through projection histograms,
passed to the HMM for attitude recognition, and combined
with data from multiple cameras to overcome situations in
which the image object may be obscured from any single
lens. Finally, a video streaming transcoding server (VSTS)
is applied to transcode the video stream. The VSTS can be
pushed to provide fall notifications to family members or
caregivers.

In recent years, some related works [11]–[13] have com-
bined advancements in imaging, computing methods, and
hardware and applied machine learning (ML) as the basis for
determining falls. Tran et al. [11] proposed a fall detection
system that uses image processing and an SVM method to
capture the room depth as well as an image using a Microsoft
Kinect sensor (MKS) with an RGB-D camera and used the
results to calculate the v-disparity [12].

Next, the Hough transformation is adopted to find edges
with straight lines and obtain the location of the room floor
in the image; then, deep learning is used to perform pose
estimation (DLFPE). Twenty joint points from images of the
human body are acquired through the MKS, and the body’s
distance from the ground, the vertical deviation angle, and the
speed are calculated.

The study used the SVM to perform attitude recognition
and obtain a final result. Six individuals of different ages
(20–35 years old) were included to test nine action combi-
nations (forward fall, backward fall, left fall, right fall, rapid
sitting, lying down, walking, lifting objects, and sitting down)
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twice each. A total of 108 consecutive images were subjected
to fall identification verification. Finally, only the FP and TN
were taken as references in a fixed environment; these values
reached 3.3% and 27.7%, respectively.

Lie et al. [13] developed a fall recognition system that uses
DLFPE and a long short-termmemory (LSTM) deep learning
model [14]. They used a suspended camera to capture pedes-
trian images and then performed calculations with DeeperCut
[15] on fourteen recorded human body joint points (forehead,
chin, both shoulders, elbows, wrists, hips, knees, ankles, and
ears). The coordinates of these key nodes are input to the
LSTM along with the coordinate array output by every set of
eight images. The system recognizes five types of behavior:
standing, walking, falling, lying down, and getting up.

Every eight consecutive images are divided into train-
ing data (800 units), verification data (255 units), and test
data (250 units) for training and fall identification. Finally,
the test data were used in a fixed experimental environment to
perform five verification runs, achieving an average accuracy
of 88.9%.

However, the calculations required for the abovementioned
works are substantial; thus, they all send their images to a
large, centralized computing device to perform these cal-
culations. Unfortunately, this approach causes a number of
problems, as described below.

A. SECURITY AND PRIVACY PROBLEMS
During image transmission, security and privacy issues can
occur if the image passes through a router or switch to the
back-end server. Such transmissions give criminals opportu-
nities to obtain the surveillance camera images, which can
result in serious security and privacy problems [44].

B. NETWORK BANDWIDTH PROBLEM
Network bandwidth problems can occur after the image
is transmitted. Some algorithms require continuous,
high-definition resolution images [11], [13]. When images
are processed uniformly by a large computing device, the data
volume may result in packet blockages and losses due to
insufficient bandwidth. Ref. [45] used compressed images to
address these privacy and bandwidth issues, but the images
still needed to be decompressed server side to achieve normal
image recognition.

C. COST PROBLEM
Large computing devices and system construction are expen-
sive, difficult to replicate, and difficult to set up quickly, all of
which affect the deployment of the associated fall detection
devices, systems, and algorithms.

To address these problems, this article proposes an
artificial intelligence (AI)-based fall detection method that
operates on edge computing architecture like [55], namely,
pose estimation-based fall detection methodology (PEFDM),
which is based on recognizing human body postures. The pro-
posed PEFDM runs smoothly onmainstream edge computing
systems that possess AI computing capabilities.

III. THE PROPOSED PEFDM
A. HARDWARE MODULES: ADOPTION AND
IMPLEMENTATION
1) IMAGE SENSING MODULE
Computer vision applications are widely used in automation.
One indispensable module is the image module responsible
for capturing images. Considering the shooting distances,
angles, speeds, and image sizes required, we selected an
image-sensing module (model: MIT-AA41PAF) made by
MiTech as the camera for the AI fall image sensor and
attached a 60 mm extended lens to adjust the image. The
captured image’s focal length and size make it similar to
images captured by general surveillance cameras.

2) AI EDGE COMPUTING MODULE
Deep learning is a field that requires robust computing
capabilities; a graphics processing unit (GPU) that can per-
form large-scale parallel computing is typically required.
Computing acceleration software is needed on edge com-
puting platforms to execute deep learning frameworks and
deep neural networks. Therefore, the algorithm described in
this study is based on software and hardware requirements
evaluated and tested on two edge computing platforms, Jetson
Xavier and Jetson TX2, both of which were developed by the
NVIDIA Corporation. The Jetson Xavier is equipped with
the latest Xavier system-on-a-chip (SoC); it uses an ARM
architecture consisting of an 8-core processor with NVIDIA’s
Volta current-generation GPU architecture. The computing
performance was the highest among the tested systems and
is suitable for robotics applications and self-driving vehicles.

However, the Jetson Xavier requires 30W of power, which
is considerably more than the 15.5 W power supply available
over Ethernet (PoE). This 15.5W is the highest power used by
general monitors, and such high power–consuming devices
can cause heat dissipation problems. Finally, we selected the
Jetson TX2 as the computing device in this study. The Jetson
TX2 GPU uses the previous-generation Pascal architecture
and is installed on a system with a CPU with a maximum
of 6 cores, and a maximum of 8 GB of memory (RAM).
A sample photograph and the specifications for the adopted
image-sensing module and AI edge computing module are
shown in Fig. 1.

Compared with traditional server-based image-sensing
solutions, the proposed PEFDM is implemented with an AI
edge computing module. Hence, the proposed PEFDM has
a cost advantage over these traditional systems. Moreover,
the proposed PEFDM is implemented or integrated as an
Internet Protocol (IP) camera, which is also easy to use and
install.

B. DESIGN OF THE PROPOSED HUMAN BODY POSTURE
RECOGNITION-BASED PEFDM
The proposed PEFDM is divided into two main parts: 1) the
human detection model (HDM), which is used to detect the
position and skeleton of the human body in the image; and
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FIGURE 1. Photograph and specifications of the adopted image sensing
module and AI edge computing module.

FIGURE 2. The process of the proposed PEFDM.

2) the fall detection model (FDM), which detects fall events
based on positional changes of the human skeleton. The
process of the proposed PEFDM is shown in Fig. 2. The two
main modules in the proposed PEFDM are described below.

1) HUMAN DETECTION MODEL (HDM)
To recognize human behaviors, this work adopts deep learn-
ing pose estimation technology, which simultaneously detects
an individual’s skeleton and its position, making it beneficial
for analyzing human movements. The goal is to implement
this technology on an edge computing device with limited
computing power. As the core technology for the proposed
PEFDM, this work uses RAM and OpenPose [16], which
have low computing requirements. The OpenPose architec-
ture is shown in Fig. 3.

After confirming the performance of the OpenPosemodule
based on the Visual Geometry Group-19 (VGG-19) model
[17], which was run on a deep learning training server,
we ported the module to the selected edge computing device
(the NVIDIA Jetson TX2) to test and optimize its computing
capabilities. The average number of frames per second (FPS)
was 2.5; at this speed, the human body in the image produces
blurred areas when moving fast, which can cause some joint
points to be lost, as shown in Fig. 4.

To solve this speed problem while achieving the same or
approximately the same accuracy, we referred to the module
comparison benchmark proposed by Ref. [18]. Compared
with the Lightweight-OpenPose proposed by Osokin [46],
the feature extraction part of the VGG-19 model, which
accounts for the largest computing time of the OpenPose
module, was replaced with MobileNetV2, and other archi-
tecture modifications were performed to produce OpenPose-
light. Unlike Lightweight-OpenPose, which uses the CPU to

FIGURE 3. The OpenPose architecture.

FIGURE 4. The human body in the image produces blurred areas when
moving fast, resulting in the loss of some joint points.

perform calculations and adjustments, our algorithm uses the
GPU to perform the calculations. Therefore, the network reor-
ganization method (refinement stages) used in Lightweight-
OpenPose were not used in the current structure; instead,
directly within the VGG-19 model, the CNN was replaced
by the MobileNetV2 architecture, as shown in Fig. 5.

To calculate the speed difference in more detail, we use
Multiply Adds and the neural network (NN) hierarchy pro-
posed by MobileNet [19]. As shown in Table 1, we evaluated
both of these modules, and the calculations and results are as
follows.
• MobileNetV2 [28]: In Table 1, t is the expansion mag-
nification of the inverted residual, c is the number of
output channels, n is the number of repetitions, and s
is the convolution offset stride for a total of 19 layers.
Multiply Adds performs the following calculation (1):

MultiAdds = H ∗W ∗ Cin ∗ t ∗ (Cin+ k2 + Cout),

(1)

where H and W are the height and width of the input
picture, respectively, Cin is the number of input chan-
nels, k2 is the size of the convolution, and Cout is the
number of output channels. TheMultiply Adds total was
592,010,944.

• VGG-19: VGG-19 uses a general convolutional neu-
ral network (CNN), and its Multiply Adds calculation
method is shown in (2).

MultiAdds = H ∗W ∗ Cin ∗ k2 ∗ Cout. (2)

The Multiply Adds total for VGG-19 is 11,271,536,
640—approximately 19 times larger than that of
MobileNetV2.
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FIGURE 5. The architecture of the proposed OpenPose-light: (a) The
bottleneck architecture of MobileNetV2; (b) The overall architecture of
the proposed OpenPose-light.

TABLE 1. Network architecture of MobileNetV2 and VGG-19.

Feature extraction calculations account for approximately
three-fifths of OpenPose’s total calculations. Therefore,
OpenPose-light can theoretically reach a speed of approx-
imately 11 times greater than that of OpenPose. However,
due to communication delays and bottlenecks between the
CPU, GPU, and RAM, during real-world tests of the NVIDIA
Jetson TX2, the true speed increased by only approximately
4 times, as shown in Fig. 6.

However, because OpenPose was trained on the CMU
Panoptic Studio dataset [20], which lacks human fall motion
samples, we used data enhancement methods (e.g., random
scaling, flipping, and clipping) to compensate for the lack of
fall data. The resulting recognition results are shown in Fig. 7.
Table 2 shows a comparison of the mean average precision
(mAP) [21] between the original dataset and the augmented
dataset.

2) FALL DETECTION MODEL (FDM)
The FDM consists of image preprocessing (prefiltering pro-
cess) and an action recognition module, as shown in Fig. 8.
The image preprocessing can mainly be divided into human
body tracking, spine line deviation angle judgment, distance
and acceleration judgment, and aspect ratio judgment. The
purpose of the proposed FDM is to track and filter certain
nonfalling actions to reduce the action recognition module’s
number of actions, reduce the number of calculations and
costs and improve the smoothness of the image.

In human body tracking, we use a skeleton composed
of 18 human body joint points output by OpenPose-light
and track the human head with a centroid tracker [22]. This

FIGURE 6. Module computing speed: (a) OpenPose-light; (b) OpenPose.

FIGURE 7. Module retraining: (a) Augmented (AUG) dataset; (b)
Recognition results.

TABLE 2. Comparison of mAPs between original dataset and augmented
dataset.

TABLE 3. Comparison between the bending angle of the spine and the
average number of triggering falls.

method calculates the center of gravity of the selected object
and compares it with the next object. The speed of calculating
the Euclidean distances to determine the center of gravity in
the image is inversely proportional to the number of tracked
objects. Because OpenPose-light predicts the human body’s
skeleton, some joint points may be lost due to ambient light
or other factors. Therefore, compared with tracking the entire
human body, tracking only the human head improves the
stability and accuracy of the object’s center of gravity.

A fall involves a continuous action of body tilting, acceler-
ation and finally landing. Therefore, we referred to the spine
line detection method proposed by Ref. [23] to determine the
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FIGURE 8. Process of the proposed FDM.

body tilt. Different from the horizontal lens and 3D coordi-
nates used in Ref. [23], the lens device used in this work is
located at a position similar to that of general surveillance
cameras; thus, the image gravity line (IGL) captured by the
camera lens may deviate from the real gravity line (RGL),
and OpenPose-light outputs 2D coordinates, meaning that the
depth of the spine line cannot be calculated.

Therefore, in this work, the spine line is calculated when
the human body is detected for the first time. The algorithm
stores the spine line (FT ) of the human body using the center
points of the left and right hips and the left and right shoul-
ders; then, it calculates the length according to the Euclidean
distance formula, as shown in (3), and uses the law of cosines
in (4) to calculate the offset angle Ta between this line and the
human spine line (ST ) of the same human body, where DT is
the distance between FT and ST .

FT

=
2

√
(
Hrx+Hlx

2
−
Srx+Slx

2
)
2
+(

Hry+Hly
2

−
Sry + Sly

2
)
2

(3)

Ta = arccos
FT

2
+ ST

2
− DT

2

2 ∗ FT ∗ ST
(4)

When the deviation angle Ta is greater than a threshold
value THa, the human body is determined to be falling for-
ward. The decision process is shown in Fig. 8. After acquiring
continuous images of 20 people falling, we determined that
the algorithm is most sensitive and obtains the best results
when THa is set to 15◦, as shown in Table 3.
To perform distance and acceleration judgments,

we referred to the image distance detection method proposed
by Ref. [24], which calculates the distance from an object or
target to the camera using the similarity between triangles.
First, we determine the actual length or width of the object
and calculate the actual distance according to the focal length
of the lens (focal length) and the image size of the object,
as shown in (5), where D is the true distance from the object

to the lens (m), f is the focal length of the lens (mm), H is
the actual length of the object (mm), and I is the length of the
object in the image (pixels):

D = f ∗
H
I

. (5)

After performing numerous measurements, we found that
the key points of the head are not easily occluded and that the
differences between individuals are small. The two ears and
the nearest eye and ear are used as reference points for image
ranging; these correspond to 1) the front view and rear view
and 2) the oblique view and profile view, respectively.

After ranging, we can determine the distance between the
human body and the lens. Then, we calculate the acceleration
of the head when falling based on the center of gravity deter-
mined from the front and rear images and the acceleration
formula shown in (6), where Fa is the acceleration of a falling
head from the center of gravity, yX is the y coordinate of the
height of the center of gravity of the head in the front and rear
images, and T is the sampling time (1/FPS).

Finally, using the universal gravitation formula, a human
body’s falling speed is the same as the G value of a free
fall at 9.8 m/s. Nevertheless, after real-world testing, due to
the deviation of the monitor’s camera angle, in this work
the falling threshold value Ath is set to 80% of the G value,
or 7.84 m/s.

Fa =
(y2 − y1)− (y1 − y0)

t2
. (6)

The aspect ratio of the length of the human body to
its width is larger when standing, walking, running, etc.,
except for certain special body shapes. In contrast, almost
all lying-down movements cause the body aspect ratio to
drop substantially. Therefore, in this study, the human body
aspect ratio judgment proposed by Ref. [25] is used. By find-
ing the maximum and minimum X - and Y -axis coordinates
of 18 human body joint points, the object frame of the
human skeleton (bounding box) is obtained, and its aspect
ratio Asp is calculated, as shown in (7). After the actual
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FIGURE 9. Flowchart of the proposed PEFDM.

fall test, because the purpose of this method is to reduce the
number of calculations performed by the complete algorithm,
too-stringent conditions will increase the error rate. For this
study, we established a relatively loose threshold value for
Asth by setting its value to Asp < Asth = 1.8.

Asp = Height/Width. (7)

Finally, the action recognition module uses an LSTM to
perform fall recognition. We referred to the LSTM recog-
nition posture method proposed by Ref. [13]. The human
skeleton data are first presented separately and then resized,
and a sliding window is used. The sliding window algorithm
[26] stores the human skeleton in a first-in-first-out (FIFO)
manner within an array of sliding windows. The FPS of the
proposed PEFDM is 8, and the total time for a complete fall
is approximately 2 seconds. Therefore, in this experiment,
the LSTM judgment interval is set to 16 FPS, and the LSTM
module established by Ref. [27] is for continuous image fall
detection. A flowchart of the proposed PEFDM algorithm is
shown in Fig. 9.

IV. EXPERIMENTAL DESIGN AND RESULTS
This section discusses the accuracy and computational
efficiency of the proposed PEFDM. In the computa-
tional efficiency experiments, we executed OpenPose and
OpenPose-light on the edge computing module NVIDIA

TABLE 4. Subject physical data.

Jetson TX2 and compared their computing efficiency scores
to verify the effectiveness of the modified modules. For
the accuracy experiments, we established an experimental
environment, and the experimenters performed fall actions to
verify the accuracy of the proposed PEFDM.

A. COMPUTATIONAL EFFICIENCY EXPERIMENTS
Our experimental environment executed OpenPose and
OpenPose-light on anNVIDIA Jetson TX2 in a fixed environ-
ment to determine the calculation speed, memory consump-
tion, and power consumption for each algorithm.We restarted
the hardware after each test to ensure the same environment.
As shown in Fig. 10, under the same power consumption,
OpenPose-light consumed less memory and has a faster
calculation speed than OpenPose. Therefore, the proposed
PEFDM is more efficient.

B. FALL DETECTION ACCURACY EXPERIMENTS
First, we established both indoor and outdoor experimental
environments. We installed the edge computing device for
fall detection on a wall at a height between 2 and 2.5 meters,
adjusted the viewing angle to focus on a distance of 4 to
12 meters, and placed a soft mattress in the fall test area to
protect the subjects. Utilizing this fall test area environment,
we then tested the OpenPose and OpenPose-light fall algo-
rithms as follows.

Ten testers performed 4 different nonfall actions (walking,
running, sitting, and squatting) and 4 fall actions (falling to
the left, right, forward, and backward) 10 times, as shown
in Table 4 and Fig. 11. Next, we recorded the recognition
results of the two algorithms, including 1) the number of
correctly recognized falls and 2) the number of correctly
recognized nonfalls, and used (8) to calculate the accuracy
(Ac) to measure the effectiveness of the algorithms.

Ac =
Success
Total

× 100% (8)

Tables 5 and 6 show that neither algorithm produced
false recognitions when predicting nonfalling actions; how-
ever, the proposed algorithm achieved excellent filtering
effects. The LSTM module, which mainly performs fall

129972 VOLUME 9, 2021



W.-J. Chang et al.: PEFDM Using AI Edge Computing

FIGURE 10. Actual hardware performance test.

FIGURE 11. Actual fall test.

TABLE 5. Fall recognition test results based on OpenPose.

TABLE 6. Fall recognition test results based on OpenPose-light.

judgments, is different from other machine learning algo-
rithms. The LSTM module can automatically learn features
from sequence data, support multivariate data, and output
variable-length sequences that can be used for multi-step pre-
diction. Sexual movement inference has an excellent effect.

TABLE 7. Fall recognition test results by using three public datasets.

For falls, we used OpenPose’s fall recognition method,
achieving an average rate of 76.75%, which is much lower
than the 99% fall recognition rate using OpenPose-light.
To further test the module, the Multiple Cameras Fall Dataset
[47], UR fall detection dataset [48], and Le2i fall detection
dataset [49] were used to test the fall recognition accuracy,
and the results are shown in Table 7. The main reason for the
superior results from OpenPose-light is that, as mentioned in
Section III, the OpenPose calculation speed is too low, which
causes the human body to produce fuzzy areas in the image
when moving quickly and results in the loss of some joint
points. These problems adversely affect the accuracy of fall
recognition.

In addition, we also compared the results from other
related studies that used human torso-based recognition
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TABLE 8. Comparison the other related studies based on Le2i fall
detection datasets.

methods, as shown in Table 8. Compared with the results
obtained by large-scale computing servers used in other
relatedworks. Ref. [50] adopts the history triple features tech-
nique reaches 96.6% accuracy; Ref. [51] uses the Adaboost
classifier to achieve 79.3% accuracy; Ref. [52] adopts
the Gaussian mixture model to achieve 86.2% accuracy.
Ref. [53] uses Principal Component Analysis (PCA) com-
bined with Support Vector Machine (SVM) reaches 97.5%.
Compared [50]–[53], the precondition filter used in the pro-
posed work with LSTM has higher accuracy. As a result,
in this work, modules based on edge computing devices were
used to obtain results of equal or greater accuracy.

V. CONCLUSION
This article addressed three major issues that occur in auto-
mated fall detection: security and privacy issues caused by
transferring fall detection images over a network, network
bandwidth issues caused by image transmission, and cost
issues in system construction. We proposed a fall detec-
tion method based on artificial intelligence running on edge
computing devices, which we called PEFDM. In contrast to
previous fall detection approaches that require powerful com-
puting devices, the detectionmethod presented here is divided
into two parts: an HDM, which uses OpenPose-light to recog-
nize human joints, and an FDM, which uses human tracking,
spine offset, distance and speed calculations to determine the
aspect ratio used to eliminate continuous actions other than
falls. This approach reduces the computational load on the
edge computing device.

Finally, the human body image is processed through
an LSTM, in which the continuous action of the skele-
ton junction points is used to make fall judgments. The
proposed PEFDM algorithm is based on OpenPose-light.
Consequently, we also compared the runtime performance
of our fall recognition algorithm running on OpenPose-light
on an NVIDIA Jetson TX2 with that of a native OpenPose
fall algorithm, which has 4 times runtime speed and 25%
more accuracy. As a result, experimental results has been
demonstrated that the proposed PEFDMachieves up to 98.1%
recognition accuracy. Compared to related works [50]–[53],
the proposed PEFDM has higher accuracy.

Neither algorithm produced false recognition of any non-
fall actions; however, the accuracy of OpenPose-light in
detecting falling actions was much higher than that of
OpenPose. The experimental results show that the proposed
PEFDM can run smoothly on mainstream edge computing
systems while exhibiting high accuracy and real-time judg-
ment capabilities.

In the further work, considering the diversity and complex-
ity of the environment, and to further strengthen the action
recognition module based on LSTM, we will consider and
evaluate to adopt reinforcement learning with long short-term
memory (RL-LSTM)-based methodologies such as [56] and
[57] to improve the proposed PEFDM. The human body key
point data of known falls will be used to adjust and train the
human body fall actions in an unknown environment.
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