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ABSTRACT The Domain Name System (DNS) is among the most ubiquitous and important protocols
for network communication; however, security concerns regarding DNS have been on the rise and demand
for encrypted traffic has followed suit. Using a publicly available dataset, this work compares 10 different
machine learning classifiers using stratified 10-fold cross-validation. The classifiers are used to deter-
mine the most effective and efficient way of detecting malicious DNS over Hypertext Transfer Protocol
Secure (HTTPS) traffic, dubbed DoH traffic. Model performance is evaluated on Non-DoH vs. DoH traffic,
then tested on benign vs. malicious DoH traffic. Additionally, this paper seeks to build upon existing research
by removing noise and introducing feature selection methods and feature explainability to produce a better
model for real-world deployment. After eliminating five overfitting features, our findings indicate that light
gradient boosting machine (LGBM) yielded the highest accuracy to training time ratio while approaching
0% error using 20 top features.

INDEX TERMS Chi-squared, DNS, DoH, decision tree, LGBM, machine learning, pearson correlation,
random forest, sequential forward selection, XGBM.

I. INTRODUCTION
The Domain Name System (DNS) is a vital component
of the modern internet. DNS improves user experience by
translating human-readable names into Internet Protocol (IP)
addresses which are necessary for accessing websites and
domains. In other words, one does not need to memorize IP
addresses to visit a website. Additionally, DNS provides a
hierarchical system for hosts which prevents name collisions
and whose traffic gives valuable information for network
administrators [1].

To understand the DNS protocol, follow along with
Figure 1. Say a user looks up the website www.site.com.
The user’s request is sent to the Local DNS Resolver
(usually managed by an Internet Service Provider). The
Local Resolver either responds with the corresponding IP
address (if that address is cached) or it will forward the query
to the Public Resolver [2]. Similarly, the Public Resolver
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either returns the associated address or queries the Root
Server [2].

The Root Server will not reply with the corresponding
address—instead, it will direct the DNS Resolver to the
Top-Level Domain (TLD) Server for the.com domain (in this
example). Once again, the TLD Server will not know where
to find www.site.com. Therefore, it will respond with the
address of the corresponding Authoritative Name Server [3].
Finally, the Authoritative Name Server returns the IP address
for www.site.com [4]. The client is now able to access the
requested website.

Although DNS is a critical protocol, it was not designed
with security and privacy in mind. DNS is vulnera-
ble to amplification attacks, DNS cache poisoning, bot-
net attacks, phishing attacks, and DNS manipulation [5].
DNS-over-Encryption protocols such as DNS-over-HTTPS
(DoH) and DNS-over-TLS (DoT) were introduced to address
these security concerns [2]. Internet users have rapidly
adopted these encryption protocols which have become a
lynchpin in protecting user’s privacy.
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FIGURE 1. The DNS protocol.

DoT encrypts DNS traffic through the Transfer Layer
Security (TLS) protocol. As seen in Figure 2, before any
DNS lookups occur, a TLS session is established between
the server and the client on port 853 [6]. To establish the
session, the client queries the server and receives a certificate.
Next, the certificate authority authenticates the certificate
sent by the server. If all goes well, the client and server
share encryption keys [3]. Once the TLS session is active,
DNS queries and subsequent responses are sent over the
encrypted channel, making it difficult for a third party to
view the contents of the queries. Unlike DNS, DoT mitigates
man-in-the-middle attacks [7].

FIGURE 2. The DoT protocol.

Since port 853 is dedicated exclusively to DoT traffic,
it is easy for Network Administrators to monitor and block
malicious traffic. Should malicious traffic be detected, one
could simply Block port 853, effectively restricting the use
of DoT [2]. Developed separately in 2018, DoH serves as
an alternative to DoT. Unlike DoT, DoH utilizes the HTTPS
protocol on port 443. DoH queries coexist among other
HTTPS connections, therefore port 443 should not be

blocked [3]. Depending on the situation, the increased privacy
that DoH provides can be seen as advantageous or disadvan-
tageous because its traffic is less identifiable. For instance,
a privacy concerned user would be in favor of the more
anonymized traffic; however, it can be harder for network
administrators to monitor and block DoH traffic as it is
mixed in with HTTPS traffic. The DoH protocol can diminish
network security since network administrators can no longer
utilize DNS filtering or monitoring as easily as they could
with DoT. These techniques provide significant data, includ-
ing response IP address, originating IP address, and query
type. DoH has seen more adoption than DoT. As of now, there
are 17 DoH providers, notably Google and Cloudflare [7].

To establish an encrypted connection with a DoH server,
the client sends a DNS request to resolve the Uniform
Resource Identifier (URI) template and get the IP address of
the server [8]. The client can now communicate directly with
the DoH server by using HTTPS GET or POST requests [9].
At this point, the rest of the steps are the same as in Figure 1
(the DNS Model).

FIGURE 3. The DoH protocol.

Currently, protective DNS services filter malicious
addresses/domains and provide defense against typosquatting
(directing a user to a malicious website through common
inadvertent typos in their URL search). Ideally, DoH con-
nects a client to enterprise resolvers which can send queries
through the same DNS protections; however, should the DoH
resolvers be external, the DNS services are bypassed and
many of these protections are lost [10]. There are also poten-
tial security leaks when considering external DoH. With an
external DoH request, the DNS server will be forgone, and the
DoH request goes straight to the external DoH resolver. This
becomes problematic when users are trying to access an
internal domain. The initial external request will fall over
to an internal DNS resolver, where the user’s information is
now susceptible to attack. In addition, the user may find the
site’s services inaccessible due to the fact they are an external
source [10].
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Upstream DNS traffic becomes a security problem when
using DoH. While DoH secures the connection between the
client and the DoH server, it does not protect the user’s
DNS traffic between DoH servers and top-level DNS servers.
When reaching this level, DoH is not used and traffic is not
encrypted. During this time, cyber threats could passively
view plaintext DNS or redirect the traffic to a malicious
site [10]. Moreover, a DoH provider can store a client’s
data [3]. In DoH downgrade attacks, nefarious individuals
work to switch a DoH connection to a DNS connection. Once
a DoH connection is downgraded to DNS, man-in-the-middle
attacks, cache poisoning, DNS hijacking, and many other
attacks can be performed [8]. Due to these security concerns,
it is advantageous to detect malicious DoH traffic.

For this paper, our research will be focused on DoH in
an attempt to critique and improve Banadaki’s [11] research
(see Related Works section). By removing noise, introduc-
ing feature selection methods, and providing explainabil-
ity to the features that characterize the dataset, we work
to detect malicious DoH traffic more accurately and
efficiently.

The rest of the manuscript is organized in the following
manner. Related works are analyzed in section II, and a
brief overview of the experiment and dataset are provided
in part III. In section IV, feature selection is introduced
along with results from the Chi-Square and Pearson Corre-
lation Coefficient tests. Four machine learning classifiers are
explained in section V, followed by experiments and results
in part VI. Next, sequential forward selection results are
presented in section VII. Finally, discussions and limitations
are explored in section VIII, and the manuscript concludes in
section IX.

TABLE 1. Acronym reference.

II. RELATED WORKS
A. DNS
The Massachusetts Institute of Technology Laboratory for
Computer Science conducted research to find new solutions
to increase DNS abilities, primarily to solve many DNS
shortcomings using the new technology DDNS [12]. DDNS
is a peer-to-peer hash table on top of the system Chord. The
system sought to eliminate tedious server administration by
inheriting load balancing and fault tolerance from the peer-
to-peer layer. The researchers [12] discussed the benefits of
using DDNS over normal methods of DNS, as well as the
disadvantages of using the alternative system. Ultimately, the
researchers concluded that the system’s latency rates were too
high to be a worthy investment to improve DNS. In addition,
response times were much higher, having a median response
time of 350ms compared to the 43ms for standard DNS. The
team further reviewed other areas that DDNS struggled in
when compared to normal DNS. Finally, the team addressed
the areas of potential growth for DDNS.

Bilge et al. [13] presented EXPOSURE, a system that pas-
sively views DNS activity for domains that can be involved in
malicious activity. Their study included 15 features for anal-
ysis that pertain to DNS queries. The research consisted of a
dataset of 100 billion real-world DNS requests, which were
collected over two months consisting of DNS traffic acquired
from the Security Information Exchange (SIE). The system
was trained with a two-layer detection method: the first layer
separated benign and malicious domains, then the second
layer determined and detected suspicious domains. Evalua-
tion of the system, including detection rates, misclassified
rates, and domain detection times are included. They found
their classifier had a 98% detection rate using their training
set. To ensure that this translated to unseen data sets, the team
went further using mal-wareurls.com to present EXPOSURE
to a new dataset. Their classifier achieved a 98% accuracy in
this dataset. The team incorporated the implementation of the
system into new scenarios through an ISP show, proving its
scalability and proof of concept.

B. DoH
Huang et al. [8] performed DNS-over-HTTPS downgrade
attacks on six different web browsers using four attack vec-
tors. In DoH downgrade attacks, nefarious individuals work
to switch a DoH connection to a DNS connection. Once a
DoH connection is downgraded to DNS, all vulnerabilities
associated with DNS are reintroduced. Both phases of the
DoH protocol are susceptible to DoH downgrade attacks.
Phase 1 occurs when the client is initially connecting to a
DoH server. Phase 2 deals with the TLS connection and
HTTPS GET and POST requests sent between the client and
server. The four different attack vectors that the researchers
used are DNS Traffic Interception, DNS Cache Poisoning,
TCP Traffic Interception, and TCP Reset Injection. All four
attack methods were viable on all six browsers (Google
Chrome, Mozilla Firefox, Opera, Microsoft Edge, Brave and
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Vivaldi) to downgrade DoH to DNS. To address the short-
comings, the team suggested that browsers should notify a
user when DoH is disconnected. Furthermore, they suggested
a need for a new protocol or method to address DoH security
flaws. Our research attempts to address their concern by
proposing a method to detect malicious DoH traffic.

Konopa et al. [3] used various machine learning and deep
learning approaches for automated DoH detection. The team
explained how DNS helps in converting domain names to
an IP address by using HTTPS tunneling. The team also
briefly discussed how it is difficult to maintain anonymity by
using DNSwithout the HTTPS protocol. Many browsers e.g.,
Firefox and Chrome have adopted DoH to prevent this issue.
They use an L3 switch called IPFOX which collected all the
traffic information using the NETFLOW protocol. Various
optimization processes such as Adam stochastic and Adam
optimizer were used in the experiment. They implemented
their model in the Keras/TensorFlow environment. The Rec-
tified Linear Unit (ReLU) activation function was used with
the first three layers and the last layer used the sigmoid
function. The team produced an accuracy of approximately
80% with non-normalized data and up to 95% with cleaned
and normalized data.

Nijeboer [14] uncovered a technique to filter DoH queries
from other HTTPS traffic using packet size-related features
and discussed why DoT is not as popular as DoH. The
team used Alexa to generate the top 50 popular sites based
on the average daily time spent on the website. They used
a simple algorithm to identify DoH traffic. The algorithm
correctly identified DoH requests to four servers (Cloudflare,
NextDNS, Google, and Knot Resolver) with an accuracy
of 97.87%.

Hjelm [2] proposed a system for organizations to detect and
restrict encryptedDNS traffic (particularlyDoH traffic). Zeek
logs can be used alongside SSL and HTTP logs to determine
if a client has connected to a DoH provider. Zeek can also
be used to determine if a client on your internet is connected
to a command-and-control server. Rita can be used alongside
Zeek to look for patterns in DoH traffic and identifymalicious
traffic such as beaconing. Furthermore, organizations can
restrict DoH traffic by blocking connections to known DoH
resolvers. With appropriate analysis and controls, a company
can avoid the concerns associated with DoH traffic.

C. DETECTING MALICIOUS DoH TRAFFIC
Banadaki [11] researched a two-layer approach regarding
malicious DoH traffic detection. Layer one focused on
differentiating Non-DoH traffic from DoH traffic, while
layer two worked to distinguish Malicious-DoH traffic from
Benign-DoH traffic. Banadaki utilized IBM’s Auto AI for
model selection, data preparation, feature engineering, and
hyperparameter optimization. Auto AI cleans the data set
by eliminating, scaling, and encoding features. Next, Auto
AI performs an automated feature selection process. Finally,
Auto AI performs hyperparameter optimization and ranks
models based on how well they perform on a dataset [15].

Evaluation of the six classification algorithms was done using
accuracy, precision, recall, F-Score, confusionmatrices, ROC
Curves, and feature importance. The findings documented
that the LGBM and XGBoost algorithms were superior,
reaching nearly 100% accuracy for both layers. Key features
included: SourceIP, DestinationIP, SourcePort, Destination-
Port, and TimeStamps. Other possible important features that
could lead to high classification are introduced as well. The
research conducted by Banadaki will be the focus of this
paper and is discussed in greater detail in the following
section.

TABLE 2. List of 34 features extracted from captured traffic.

D. DEEP LEARNING FOR DNS TRAFFIC MONITORING
Deep learning has proven itself invaluable for the future
of DNS traffic detection and categorization. While this
paper seeks only to compare and evaluate traditional machine
learning algorithms, it is worth mentioning some experiments
that have utilized deep learning.

Jiang et al. [16] introduced an online detection scheme
combining a convolutional neural network with neural
language processing techniques. The system utilizes
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character-level embedding to map URLs to vectors allowing
for the extraction of hidden features. Their character-level
convolutional neural network misclassified 40 URLs per
1000 analyzed outperforming a baseline feature-based model
by a significant margin. Moreover, it’s time for classification
was on par with the baseline methods, proving its efficiency.

Palau et al. [17] trained a neural network for detecting
domain generation algorithms (DGA) and tunneling DNS
threats. In other related research, these two threats are gen-
erally detected through disparate models; however, through
the use of a Multi-Class Convolutional Neural Network, they
consolidated these models into one. Their model accurately
detected normal domains 99% of the time, DGA with 97%
accuracy, and tunneling with 92% accuracy.

E. COMPARISONS
Refer to Table 3 for comparisons of DoH traffic detection
research.

III. EXPERIMENT OVERVIEW
A. GOAL AND MOTIVATION
In the study conducted by Banadaki [11], the primary
research goal was to identify DoH traffic and distinguish
malicious traffic from benign traffic using a two-layer
approach. The findings documented that LGBM and
XGBoost algorithms performed near flawlessly, yielding
close to 100% classification accuracy on a test dataset of
4,000 samples. Banadaki [11] found that when comparing the
importance of the 34 features provided by the CIRA-CIC-
DoHBrw-2020 dataset, SourceIP and DestinationIP proved
to be the most useful.

While the research conducted by Bandaki [11] resulted in
incredibly accurate classifications, there were a few tweaks
our team implemented that could improve the robustness
of the model. When looking deeper into Banadaki’s [11]
methodology, our team found limitations. In reviewing the
important features that made such a high precision rate
possible (SourceIP and DestinationIP), we concluded that
there was a lack of diversity in the dataset’s IP addresses.
In total, there were less than 30 IP addresses used for the
experiment: 12 DestinationIP and 14 SourceIP. A dataset
of 4,000 queries ideally would have very few duplicates to
simulate a real-world environment where there are many
IP addresses prone to attack at any given time. With a
lack of diversity in this area, the machine learning algo-
rithms, LGBM and XGBoost, categorized traffic based on IP
addresses and ports, which could have led to the incredibly
high accuracy, resulting in overfitting.

To improve on the methods used by Banadaki [11], our
team re-created the experiment using the same two-layer
model and a dataset containing 34 features. Layer 1’s primary
goal was to separate DoH from Non-DoH, while Layer 2’s
was to classify samples as Malicious DoH or Benign DoH.
To solve the problem of overfitting features, we eliminated
any features that were not significant for the purpose of
the study or could create unintended bias. Data returning
with NaN values were removed as well. Features including
Destination IP, Source IP, Destination Ports, Source Ports,
as well as timestamps were all removed from the study.
Destination IP and Source IP were removed to ensure that
the machine learning algorithms did not recognize the IP as
malicious or benign instead of evaluating the data for being

TABLE 3. Comparisons of DNS traffic detection research.
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malicious/benign. Eliminating these identifiers as variables
increases the broader applicability of the model since the
models would not have the advantage of knowing which
IP is malicious or benign when being utilized in real-world
situations. Both Destination Ports and Source Ports were
removed with similar reasoning. Non-DoH and DoH samples
for layer 1 were provided separately and presented one after
the other, allowing the algorithms to utilize the difference
in Timestamps to differentiate the data. In order to avoid
recognition based on Timestamps, we removed this feature
as well.

B. DATASET
The dataset for our research was gathered from the project
CIRA-CIC-DoHBrw-2020 provided by the Canadian Insti-
tute for Cybersecurity (CIC) under the Canadian Internet
Research Authority [18]. The data was generated by running
chosen destination IP addresses through DoH tunnels set by
source IPs for Google Chrome and Mozilla Firefox. The
clients were run simultaneously on ten servers that were all
connected to a single C2 server. To collect and analyze this
traffic flow they developed DoHLyzer in Python using Scapy
to read pcap files or sniff packets online. The resulting data
was a collection of packets, flows, and DoH types for each
case. Finally, using a DoHMeter developed in Python, they
were able to extract the statistical and time-series features
that are used to classify and group the dataset for inspec-
tion [11]. The dataset is composed of 34 features and are listed
in Table 2.

IV. FEATURE RANKING
Overfitting is a problem that occurs when a model tailors
itself too closely to its training data. If a model is overfit,
it will function poorly when introduced to new data. For
instance, the model may have high overall accuracy, but
misclassify classes when used on real world data. Our dataset
contains 34 features, though it is likely that not all of them
are pertinent for our goal of DoH traffic detection and cate-
gorization. Unnecessary features can lead to an overfit model,
rendering it unusable in real word application. To address
the overfitting problem, we performed two different methods
for feature selection: Chi-Square test and Pearson Correlation
Coefficient (PCC) test.

A. CHI-SQUARED RESULTS
After eliminating the overfitted features, the Chi-Square test
was employed to ensure that the remaining 29 features are sta-
tistically significant. This statistical test is used on categorical
data to determine the likelihood that an observed difference
emerged between features [19]. The first step in using the
chi-squared test is to calculate the chi-square statistic which
can be calculated with the following formula [20].

χ2
=

∑R

i=1

∑K

j=1

(
Oij − Eij

)2
Eij

(1)

where,

• Eij = an expected value
• Oij = an observed value
• R × K = the total number of outcomes

This test provided us with a p-value for each feature based
on its significance in the dataset. A p-value threshold of below
0.05 is commonly used to reject the null hypothesis, which
implies that the feature and target variable have a relationship.
Any value above the threshold of 0.05 is considered statisti-
cally insignificant. Features and their respective p-values are
displayed in Table 4. P-values that are considered statisti-
cally insignificant are highlighted in red and were removed
from their respective layers for training machine learning
modes.

Table 4 shows chi-square test p-values for each feature in
Layer 1 and Layer 2 data. Features are highlighted in red if
p >= 0.05, denoting statistical insignificance.

B. PEARSON CORRELATION
To validate our results from the Chi-Square test, we con-
ducted a Pearson Correlation Coefficient (PCC) test. The
PCC test measures the relationship between a variable and
a target. If the variable and the target have a strong positive
correlation, the correlation coefficient has a value close to
+1. Alternatively, if the variable and target are negatively
correlated, the correlation coefficient is close to the value−1.
The correlation coefficient is close to 0 if the correlation is
weak [21]. We settled on the absolute value of all the correla-
tion coefficients since we were looking for any correlation.
As seen in Figure 4 and 5, the results from the PCC test
aligned with the results from the Chi-Square test.

C. FEATURE DISTRIBUTION
Feature Distribution Graphs (FDGs) model feature vari-
ables allowing for better analysis of the data relevance. The
graphs in Figure 6 and 7 show two key features from the
dataset: Duration andResponseTimeTimeSkewFromMedian.
On the FDGs, we can see that there is a correlation between
a longer duration and DoH classification. The first graph
in Figure 6 shows the trend in shorter durations corresponding
to Non-DoH data whereas the second graph shows a large
increase in duration for DoH data. This visual representation
of difference aligns with the results from our Chi-Squared and
Pearson Correlation tests. This is also modeled with the data
for ResponseTimeTimeSkewFromMedian in Figure 7 that
achieved a p-value of 0. Similar to the duration graphs,
the first graph in Figure 6 shows that the Non-DoH data has
a greater negative skew, commonly at negative 10, with a
small center skew between −2 and +2. The second graph
shows DoH data that is more likely to fill the−2 to+2 range
in the skew of response time from the median. The visual
explanation helps us to draw more accurate conclusions
and better understand the relevance of our defined features
in determining the difference between DoH and Non-DoH
traffic.
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TABLE 4. P-values for layer 1 and layer 2 data.

V. MACHINE LEARNING CLASSIFIERS
In this section, we will be discussing various machine
learning classifiers utilized for our research: Decision Tree,
Random Forest, LightGBM (LGBM), and XGBoost. These
algorithms are discussed more in depth since they were
several of the more successful classifiers utilized; how-
ever, Linear Discriminant Analysis, K-Nearest Neighbors,
Gaussian Naive Bayes, AdaBoost Classifier, Gradient Boost-
ing Classifier, and Extra Trees, were also tested for the
purposes of our research.

A. DECISION TREE
Decision tree is a supervised machine learning model that
takes a divide-and-conquer approach to classification –which
can both provide insightful features and extract patterns from
large pools of data [22]. Decision trees use various algorithms
which split a node into two or more predecessor nodes. For
every split, the algorithm calculates the information gain

and entropy of every unused attribute and then selects the
highest. Then, it splits again and repeats the process with the
unused features. This process continues until all attributes are
utilized.

B. RANDOM FOREST
Random forest is an ensemble method where various tree
predictors are built independently with each tree underlaid by
a bootstrapped sample from the training data. The predictions
of the trees are aggregated – this reduces the overall bias of
an individual tree – and helps augment the robustness of the
prediction [23].

C. LightGBM
LightGBM is a type of gradient boosted decision tree algo-
rithm that was implemented by Microsoft. Most decision
trees ‘learn’ by finding which splits receive the highest infor-
mation gain or the change in entropy before and after the
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FIGURE 4. The relationship between Pearson correlation coefficients and DoH traffic features. Correlation coefficients are displayed from lower to
higher statistical significance.

FIGURE 5. The relationship between Pearson correlation coefficients and malicious traffic features. Correlation coefficients are displayed from
lower to higher statistical significance.

split. The best split is calculated through either a pre-sorted or
histogram-based algorithm; however, it is a time-consuming
process, especially when data sets become larger. This is

the issue that LightGBM seeks to mitigate. LightGBM uti-
lizes two techniques: Gradient One-Side Sampling (GOSS)
and Exclusive Feature Bundling (EFB). GOSS notices that

VOLUME 9, 2021 129909



M. Behnke et al.: Feature Engineering and Machine Learning Model Comparison for Malicious Activity Detection

FIGURE 6. The graphs display the NonDoH data in green, the left column, and the DoH data in red, the right column. These are the Duration
graphs for layer 1.

FIGURE 7. The graphs display the Non DoH data in green, the left column, and the DoH data in red, the right column. These are the
ResponseTimeTimeSkewFromMedian graphs for layer 1.

gradients play a large role in information gain – specifically –
larger gradients correlatedwith larger information gain. Thus,
small gradients are randomly dropped. This method is com-
bined with EFB, which identifies features that are mutually
exclusive and reduces them into one feature to reduce time
complexity [24].

D. XGBoost
XGBoost (eXtreme Gradient Boosting) is a gradient boosted
decision trees algorithm. XGBoost utilizes the Gradient
Boosting Machine’s (GBM) framework but makes optimiza-
tions to it. XGBoost provides many system optimizations that
include parallelized decision tree construction, depth first tree
pruning, and out of core computing. XGBoost also provides
algorithmic enhancements to the GBM framework. These
enhancements include LASSO and Ridge regularization to
prevent overfitting, sparsity awareness to handle missing
data, Weighted Quantile sketch algorithm to find optimal
decision tree splits, and built-in cross validation [25].

VI. EXPERIMENTS AND RESULTS
The first step in deciding which machine learning models are
effective in predicting Non-Doh vs DoH and Malicious vs
Benign DoH data was to deploy an array of different models
on all features of both layers of the data set –given that the
features are statistically significant (i.e., p > 0.05). Decision
Tree (DT), Linear Discriminant Analysis (LDA), K-Nearest
Neighbors (KNN), Gaussian Naive Bayes (GNB), Random
Forest (RF), AdaBoost Classifier (AB), Gradient Boosting

Classifier (GB), XGBoost (XGB), Extra Trees (ET), and
LGBM were trained on both layers of data. The models were
trained using stratified 10-fold cross-validation. This splits
the data into 10 folds, where the original ratio of samples
is preserved. Each fold will act once as the test split, while
the remaining data acts as the training data. This allows the
models to retain reliable estimates on unseen data. Accuracy,
Precision, Recall, F1-Score, total training time, and predic-
tion time are collected for each fold. Accuracy and total
training time are reported in Figure 8, Figure 9, Figure 10,
and Figure 11 and provides the mean score for all 10 folds.

A. CLASSIFICATION MEASURES
The classification measures used in subsequent sections of
the paper include Accuracy, Recall, Precision, F1-Score,
and AUROC (Area Under Receiver Operating Characteris-
tics Curve). These measures are modeled with the following
equations:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
∗ 100 (2)

Recall =
TP

TP+ FN
∗ 100 (3)

Precision =
TP

TP+ FP
∗ 100 (4)

F1-Score =
2TP

2TP+ FP+ FN
∗ 100 (5)

Specificity =
TN

TN + FP
(6)
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FIGURE 8. Layer 1 accuracies for various machine learning models with all features that satisfy statistical significance. Six models, RF, LGBM, ET, DT, GB,
XBG achieved an accuracy over 99%.

FIGURE 9. Layer 1 training time for various machine learning models with all features that satisfy statistical significance. GNB, LDA, and LGBM had the
lowest training times out of all 10 machine learning models.

where, TP is a correct prediction of either DoH traffic in
Layer 1 or Malicious DoH activity in Layer 2; conversely,
FP is an incorrect prediction of either DoH traffic in Layer 1
or Malicious DoH activity in Layer 2. TN is a correct pre-
diction of either Non-DoH traffic in Layer 1 or Benign
DoH traffic in Layer 2 and FN is an incorrect prediction of
Non-Doh traffic in Layer 1 or Benign DoH traffic in Layer 2.
The ROC curve is the true positive rate (sensitivity/recall)
measured against the false positive rate (specificity). The
area measured under this curve is the AUROC (sometimes
just labeled AUC). ROC (and AUROC) is a useful met-
ric because it displays classification effectiveness regard-
less of class imbalance in testing data as well as making it
easy to see how well a model can distinguish between two
classes.

B. INITIAL MACHINE LEARNING MODEL RANKING
The top three models were then selected for the Sequential
Forward Selection (SFS) algorithm. For layer 1 data, the ran-
dom forest model was selected as it had the highest accuracy.
Decision Tree and LGBM models were selected due to their
similarly high accuracy and low training times. For layer
2 data, RandomForest was selected due to very high accuracy.
XGBoost and LGBM were selected due to a combination of
high accuracy and low training times.

SFS is then applied for all three machine learning mod-
els for both layers of data. SFS starts model training with
1 feature, where the first feature is the most statistically
significant which is measured by the lowest p-value (features
are added in the sorted order based on Table 4). SFS then adds
the next most statistically significant feature and the models
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FIGURE 10. Layer 2 accuracies for various machine learning models with all features that satisfy statistical significance. Six models achieved accuracies
over 99.9% (LGBM, XGB, RF, GB, AB, ER, DT).

FIGURE 11. Layer 1 training time for various machine learning models with all features that satisfy statistical significance. GNB, LDA, and KNN had the
lowest training times out of all ten machine learning models.

train on the new subset of features. This process repeats
until all statistically significant features have been added and
trained on.

VII. SEQUENTIAL FORWARD SELECTION
TRAINING RESULTS
Both layers of data go through Sequential Forward Selec-
tion (SFS) training and metrics of accuracy, recall, precision,
F1-Score, training time, prediction time, and AUROC. The
results for Layer 1 are displayed in Figure 12 and Figure 13.
Figure 12 shows that accuracy, recall, precision, and F1-score
scores for all models become exceedingly close to no error
as the number of features reaches 20. The total training time
of these precise models differ vastly. Random Forest took
the longest to train for any number of features, where many

of the trials resulted in a training time taking over an hour.
Both decision tree and LGBM models took considerably
less time to train with LGBM taking the shortest training
time. Prediction time, approximately two seconds on average,
for Random Forest was the longest out of the three models
to predict one stratified test fold. Both Decision Tree and
LGBM had exceptionally fast prediction times with less than
0.5 seconds, Decision Tree predicting DoH vs Non-DoH
data the fastest. The results for Layer 2 data can be seen
in Figure 14 and Figure 15.

From Figure 14, it can be observed that all three models
approach 0% error at approximately 20 features. Random
Forest, similar to Layer 1’s results, has the longest training
time. In Layer 2 data, Random Forest has a longer training
time of approximately 1,100 seconds. XGBoost and LGBM
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FIGURE 12. Shows accuracy, precision, recall and F1-score metrics for Non-DoH vs DoH data for SFS using Decision Tree, Random Forest and LGBM
models.

FIGURE 13. Average training time and prediction time for Non-DoH vs DoH data for SFS using Decision Tree, Random Forest and LGBM models
during 10-fold cross validation.

both have lower training times, with LGBM having the low-
est training time. For prediction time, Random Forest once
again took the longest with approximately 0.25 seconds to
predict 1 stratified fold. In this Layer, XGBoost outperforms
LGBM in prediction for most features, until the number of
features reaches 21, where they become approximately the
same. As seen in figure 16, the layer 1 AUROCs are com-
parably the same. In layer 2, XGBoost lags behind LGBM
and Random Forest until 21 features where all three models
approach 1.

VIII. DISCUSSION, LIMITATIONS, AND FUTURE WORK
From the accuracy metrics in Figure 12 and 14, it can be
observed that all the considered models, LGBM, Random
Forest, Decision Tree, and XGBM approach 0% misclas-
sification error for Non-DoH vs DoH traffic and benign
vs malicious DoH traffic. Despite all models demonstrat-
ing exceptionally high accuracy at 21 features, there were
noticeable differences in the training and prediction times
for the models. LGBM was the fastest model, with a total
training time of approximately 87 seconds for Layer 1 data
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FIGURE 14. Accuracy, precision, recall and F1-score metrics for benign vs malicious DoH data for SFS using Decision Tree, Random
Forest and LGBM models.

FIGURE 15. Average Training time (left) and prediction time (right) for benign vs malicious DoH data for SFS using Decision Tree (blue), Random
Forest (green), and LGBM (yellow) models during 10-fold cross validation.

with 25 features and approximately 40 seconds for Layer 2
data with 27 features. This is in stark contrast to the Ran-
dom Forest model, which had comparably egregious training
times of 4,991 seconds (1.39 hours) for Layer 1 data with
25 features and approximately 890 seconds (14.83 minutes)
for 27 features in Layer 2 data. This implies that LGBM
would be a preferred model if the model is continually trained
with new data instances. If the deployed model does not

forgo any further online training, Random Forest may be a
preferred model for both layers of data. All models demon-
strated relatively low prediction times. From Fig. 13 and 15,
all models had an average precision time in 10-fold
cross-validation under one second for both layers of data at
the optimal 21 features. This is a very fast prediction time
and implies that any model could be deployed and perform
well.
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FIGURE 16. Graph comparing AUROC for Random Forest, XGBoost, and LGBM for Non-DoH vs DoH data (left) and benign vs malicious DoH data (right).

The present study has some limitations which also provide
avenues for future research. The models that were eval-
uated (Random Forest, LGBM, XGBoost, Decision Tree,
Linear Discriminant Analysis, K-Nearest Neighbors,
Gaussian Naive Bayes, AdaBoost, Gradient Boosting, and
Extra Trees) on the data were default models in scikit-
learn. This means there is an opportunity for future work
to evaluate the impact of hyperparameter tuning on each
model. By performing hyperparameter tuning, the accuracy
of the machine learning models may perform at optimal
levels with a fewer number of features, thereby reducing the
amount of training time needed. Another popular machine
learning method, Artificial Neural Networks (ANN), was not
considered in this study. Future work can be conducted where
different ANN architectures can be compared to already high
performing machine learning models like Random Forest,
Decision Tree, LGBM, and XGBoost.

IX. CONCLUSION
Our experiments critiqued and improved Banadaki’s [11]
research. Specifically, we removed extra noise, introduced
feature selection methods and provided explainability to the
features that characterize the dataset, which showed detection
of malicious DoH traffic more accurately and efficiently.
These modifications, specifically, removing overfitting fea-
tures and creating an applicable model from a generic feature
set make our research methods more suitable to real-world
applications. In addition, by eliminating multiple insignifi-
cant features identified using the Chi-Squared test and PCC
test, we see a large improvement in training and testing the
models in our experiments. With fewer features to assess,
the model will train and predict faster without a loss in
accuracy. In summary, our study removes overfitting features
and insignificant data creating a faster, more accurate study
on DoH detection. Ultimately, we recommend the LGBM
model to distinguish between Non-DoH and DoH data and
malicious and benign DoH traffic because of its exceptional
classification accuracy and low comparative training time

compared to other machine learning classifiers such as Ran-
dom Forest, Decision Tree and XGBoost. These promising
results offer avenues for future work on DoH classification
research including how deep learning would compare to
LGBM in terms of accuracy and time.
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